邮箱 English

全部

3-reduction of the KP hierarchy and complete classification of soliton solutions for the “good" Boussinesq equation

  • 演讲者:陆冰滢(Academia Sinica)

  • 时间:2020-11-12 14:00-15:00

  • 地点:慧园3栋518报告厅

Abstract: The “good” Boussinesq equation is known to have merging solitons. The Boussinesq equation can be obtained by 3-reduction of the KP hierarchy. The generic line-soliton solutions for the KP II equation is completely classified by totally non-negative (TNN) Grassmannian. Thus a complete classification for the multiple soliton solutions is achieved for the Boussinesq equation by considering the eligible TNN Grassmannians after reduction. In particular, we answer positively to a conjecture by Rasin–Schiff (2017), where the authors observed from numerical experiments that there are no multiple merging for regular soliton solutions. The same machinery can be applied to 4 and higher-reduction. The coupled KdV equation is one example of the 4-reduction of the KP hierarchy.