Email
中文
Home
About Us
About Us
Contact Us
Faculty
Faculty
Staff
TA&RA
Graduate Students
Visitors
Post Doctorals
Education
Undergraduate
Graduate
Introduction to basic mathematics course
First courses
Research
Research Areas
Conference
Colloquium
Math Department Invited Talks
Research Seminars
Student Seminars
Journals
Events
Current
Calendar
Past
News
News
Recruitment
Research & Teaching Positions
Postdocs
Staff
Download
Public
Private
Math Public
Campus Affairs
Join Us
E-hall
Announcement
News
Campus Map
Faculty & Staff
Library
Calendar
Admissions
Visit
Research
Research Areas
Conference
Colloquium
Math Department Invited Talks
Research Seminars
Student Seminars
Journals
Research Seminars
体积指数增长的非紧流形上的全局分析
Abstract
体积指数增长的非紧流形,例如 Anti de Sitter 空间和双曲流形,广泛地出现于广义相对论、AdS/CFT 对偶、散射理论等数学物理理论中。这类流形上的全局分析可以用于研究黑洞中波的传播、共形不变量、几何散射及其反问题。
一方面,无穷远附近的体积指数增长条件保证了实分析中方块的覆盖引理不成立,进而使得 Calderón-Zygmund 理论无法推广到此类流形上。这给谱乘子的有界性问题带来了不可克服的困难。
另一方面,体积的指数增长带来了拉普拉斯算子预解式和谱测度在无穷远的指数衰减性,进而赋予了数学物理方程基本解的指数衰减性,增强了其全局积分估计。这一现象与具有有限中心的半单李群上的 Kunze-Stein 现象紧密相关。