邮箱 English

学术时间轴

Weak observability and stabilization

Abstract

We present respectively necessary and sufficient conditions on the exponential stabilizability and the complete stabilizability for abstract linear control systems in Hilbert spaces. These conditions are characterized by the weak observability inequalities for the dual systems. Several examples, which are not null controllable but are complete stabilizable, are given. The results in this talk are provided by joint works with E. Trelat and Y. Xu (2020) and with H. Liu, Y. Xu and H. Yu. (2022).

个人简介:汪更生,天津大学应用数学中心教授,一直从事微分系统的控制理论的研究。现任 SIAM J. Control and Optimization; ESAIM Control, Optimization and Calculus of Variation; Mathematical Control and Related Fields 等国际刊物的编委。在偏微分方程的能控能观性、能稳性和时间最优控制方向做出了重要贡献和国际领先结果,特别是热方程的插值不等式、薛定谔方程的时间两点型能观性不等式、时间最优控制的 bang-bang 性和周期发展系统的反馈能稳性等。在 Springer 与Birkhauser 出版两本学术专著,发表论文80 余篇。