邮箱 English

学术时间轴

Optimal Reinsurance to Minimize the Probability of Drawdown under the Mean-Variance Premium Principle: Asymptotic Analysis

Abstract:In this paper, we consider an optimal reinsurance problem to minimize the probability of drawdown for the scaled Cram\’er-Lundberg risk model when the reinsurance premium is computed according to the mean-variance premium principle. We extend the work of Liang et al. (2020) to the case of minimizing the probability of drawdown. By using the comparison method and the tool of adjustment coefficients, we show that the minimum probability of drawdown for the scaled classical risk model converges to the minimum probability for its diffusion approximation, and the rate of convergence is of order O(n^{−1/2}). We further show that using the optimal strategy from the diffusion approximation in the scaled classical risk model is O(n^{−1/2})-optimal. This is a joint work with Prof. Pablo Azcue, Nora Muler, and Virginia R. Young. 


报告人简介:梁晓青,河北工业大学应用统计系副教授。2015 年在南开大学数学学院获得概率论与数理统计方向博士学位,2015 年 12 月加入河北工业大学理学院。2019 年 2 月至 2020 年 3 月在美国密歇根大学数学系进行学术访问。目前主要研究领域包括风险管理与保险精算、应用概率及随机最优控制理论。主要研究兴趣包括最优再保险投资、养老金设计和优化、最优年金保险购买及投资消费、寿险模型中的最优投资消费问题、经典风险模型解的存在唯一性及渐近解问题的研究等。已在保险精算领域主要期刊 IME、SAJ、ASTIN Bulletin,以及运筹优化领域期刊SICON和 JOTA 等杂志发表多篇学术论文。目前主持完成国家自然科学基金青年项目一项,河北省自然科学基金青年项目一项,河北省教育厅青年项目一项。