演讲者:Yiwei Zhang (华中科技大学)
时间:2019-10-14 11:00-12:00
地点:慧园3栋 415报告厅
In this series of talks, I will report several recent progresses on understanding TPO conjecture both in probabilistic and topological sense, and for more general hyperbolic systems. These are joint works with Jairo Bochi[3], and Huang Wen, Zeng Lian, Xiao Ma, Leiye Xu [6]. The series of talks are potentially composed with four parts:
1. Preliminaries and background of ergodic optimization and its relationship with thermodynamics formalism.
2. History and developments of TPO conjecture.
Reference for part 1 and 2 will be [1,5,7,8,9]
3. A new proof of Contreras theorems.
Reference for part 3 will be [2,4,6,9]
4. Prevalence in TPO conjectures, and its relationships with probabilistic percolation.
Reference for part 4 will be [1,3].
References:
1. Bochi. J. Ergodic optimization of Birkhoff averages and Lyapunov exponents,Proceedings of the International Congress of Mathematicians 2018, Rio de Janeiro, vol. 2, pp. 1821-1842.
2. Bochi. J. Genericity of periodic maximization: proof of Contreras' theorem following Huang, Lian, Ma, Xu, and Zhang, lecture note, available at http://www.mat.uc.cl/~jairo.bochi/
3. Bochi, J and Zhang. Y. Ergodic optimization of prevalent super-continuous functions,International Mathematics Research
Notices 2016 (2016), no. 19, pp. 5988-6017.
4. Contreras. G. Ground states are generically a periodic orbit. Invent. Math. 205 (2016), no. 2, 383–412.
5. Hunt, B.R.; Ott, E. Optimal Periodic Orbits of Chaotic Systems. Phys. Rev. Letter 54 (1996), no. 76, 2254.
6. Huang, W.; Lian, Z.; Ma, X.; Xu, L.; Zhang, Y. Ergodic optimization theory for a class of typical maps. arXiv:1904.01915
7. Jenkinson, O. Ergodic optimization in dynamical systems. Ergodic Theory Dynam. Systems 2018, to appear.
8. Mañé, R. Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity 9 (1996), no. 2, 273–310.
9. Yuan, G.; Hunt, B.R. Optimal orbits of hyperbolic systems. Nonlinearity 12 (1999), no. 4, 1207–1224.