邮箱 English

人员 > 科研教学系列 > 朱一飞

朱一飞

助理教授  

+86-755-8801 5911 http://faculty.sustech.edu.cn/zhuyf/

  • 简历
  • 科研
  • 教学
  • 发表论著

教育背景

◆ 2013年,获美国明尼苏达大学数学博士学位

◆ 2007年,获北京大学数学与应用数学专业学士学位


工作经历

◆ 2020年2月至今,在南方科技大学任Tenure-track助理教授

◆ 2016年12月至2020年1月,在南方科技大学任访问助理教授

◆ 2016年10月至2017年1月,在中国科学院数学与系统科学研究院任访问学者

◆ 2013年9月至2016年8月,在美国西北大学任访问助理教授


代表文章

◆ Norm coherence for descent of level structures on formal deformations, J. Pure Appl. Algebra 224 (2020), 106382, 35 pp.
◆ Morava E-homology of Bousfield–Kuhn functors on odd-dimensional spheres, Proc. Amer. Math. Soc. 146 (2018), 449–458.
◆ Semistable models for modular curves and power operations for Morava E-theories of height 2, Adv. Math. 354 (2019), 106758, 29 pp.
◆ The Hecke algebra action and the Rezk logarithm on Morava E-theory of height 2, Trans. Amer. Math. Soc. 373 (2020), 3733–3764.
◆ The power operation structure on Morava E-theory of height 2 at the prime 3, Algebr. Geom. Topol. 14 (2014), 953–977.

My research interests are in algebraic topology and related fields, particularly in its connections to algebraic geometry and number theory via objects such as formal groups, elliptic curves, and modular forms. A central theme in my research is elliptic cohomology and power operations, which combines the classical methodology of cohomological computations in algebraic topology with modern inputs from arithmetic moduli of elliptic curves in number theory. I am also interested in applying topology to physics and data science, such as signal processing through persistent homology.

2020年春:MAT8024(微分流形);

2019年秋:MA323(拓扑学);

2019年春:MA327(微分几何),MAT8010(组合数学);

2018年秋:MA323(拓扑学);

2018年春:MA102a(数学分析 II);

2017年秋:MA101a(数学分析 I),MA301(实变函数);

2017年春:MA101a(数学分析 I)。


Norm coherence for descent of level structures on formal deformations, J. Pure Appl. Algebra 224 (2020), 106382, 35 pp.


Morava E-homology of Bousfield–Kuhn functors on odd-dimensional spheres, Proc. Amer. Math. Soc. 146 (2018), 449–458.


Semistable models for modular curves and power operations for Morava E-theories of height 2, Adv. Math. 354 (2019), 106758, 29 pp.


The Hecke algebra action and the Rezk logarithm on Morava E-theory of height 2, Trans. Amer. Math. Soc. 373 (2020), 3733–3764.


The power operation structure on Morava E-theory of height 2 at the prime 3, Algebr. Geom. Topol. 14 (2014), 953–977.