Undergraduate
B.Sc., Information and Computational Science , NanJing University (NJU), Sep. 2007- July 2011.
of Mathematics and System Sciences Chinese Academy of Sciences
Ph.D advisor: Habib Ammari , Professor of Applied Mathematics, Department of Mathematics ETH Zürich.
2017-2018 Teaching assistant for ’Finite element method’
2017-2018 Teaching assistant for ’Selected topics in partial differential equations’
2019 Teach tutorial classes of ’Linear algebra’ including Chinese class and English class
学期常微分方程A,2020年秋季学期线性代数I-A)
2021 Teach class of ’Ordinary differential equations A’ (2021年春季学期常微分方程A)
[1] H. Ammari, G.S. Alberti, B. Jin, J.-K. Seo and W. Zhang, The Linearized inverse problem in multifrequency electrical impedance tomography, SIAM Journal on Imaging Sciences, 2016, 9:1525-1551.
[2] H. Ammari, T. Widlak and W. Zhang, Towards monitoring critical microscopic parameters for electropermeabilization, Quarterly of Applied Mathematics, 2017, 75: 1-17.
[3] H. Ammari, L. Qiu, F. Santosa and W. Zhang*, Determining anisotropic conductivity using Diffusion Tensor Magneto-acoustic Tomography with Magnetic Induction, Inverse Problems, 2017, 33: 125006.
[4] Z. Chen, R. Tuo and W. Zhang, Stochastic Convergence of A Nonconforming Finite Element Method for the Thin Plate Spline Smoother for Observational Data, SIAM Journal on Numerical Analysis, 2018, 56: 635-659.
[5] H. Ammari, B. Jin and W. Zhang*, Linearized Reconstruction for Diffuse Optical Spectroscopic Imaging, Proceedings of the Royal Society A, 2018, 475: 20180592.
[6] Z. Chen, R. Tuo and W. Zhang, A Balanced Oversampling Finite Element Method for Elliptic Problems with Observational Boundary Data, Journal of Computational Mathematics, 2020, 38, 355-374.
[7] M. V. Klibanov, J. Li and W. Zhang, Convexification of Electrical Impedance Tomography with Restricted Dirichlet-to-Neumann Map Data, Inverse problems, 2019, 35: 035005.
[8] M. V. Klibanov, J. Li and W. Zhang, Convexification for the Inversion of a Time Dependent Wave Front in a Heterogeneous Medium, SIAM Journal on Applied Mathematics, 2019, 79(5), 1722–1747.
[9] M. V. Klibanov, J. Li and W. Zhang*, Convexification for an inverse parabolic problem, Inverse problems, 2020, 36: 085008.
[10] M. V. Klibanov, J. Li and W. Zhang*, Linear Lavrent'ev Integral Equation for the Numerical Solution of a Nonlinear Coefficient Inverse Problem, SIAM Journal on Applied Mathematics, 2021, 81(5), 1954–1978.
[11] Z. Chen, W. Zhang, J. Zou, Stochastic convergence of regularized solutions and their finite element approximations to inverse source problems, SIAM Journal on Numerical Analysis, 2022, 60(2), 751-780.
[12] M. V. Klibanov, J. Li and W. Zhang*, A Globally Convergent Numerical Method for a 3D Coefficient Inverse Problem for a Wave-Like Equation, SIAM Journal on Scientific Computing, 44(5), A3341–A3365.
南方科技大学数学系微信公众号
© 2015 All Rights Reserved. 粤ICP备14051456号
Address: No 1088,xueyuan Rd., Xili, Nanshan District,Shenzhen,Guangdong,China 518055 Tel: +86-755-8801 0000