杨童鸥
助理教授
yangto@sustech.edu.cn
(See here for the English version)
研究领域:调和分析、几何测度论、分形几何
工作经历:
-
2025.08-至今 南方科技大学 助理教授
-
2023.07-2025.06 美国加州大学洛杉矶分校 兼职助理教授
-
2022.08-2023.05 美国威斯康辛大学麦迪逊分校 Van Vleck 访问助理教授
-
2021.09-2022.08 加拿大英属哥伦比亚大学 博士后
教育背景:
-
2017.08-2021.05 加拿大英属哥伦比亚大学 哲学博士 数学专业
-
2015.08-2017.07 香港中文大学 哲学硕士 数学专业
-
2011.08-2015.07 香港中文大学 理学学士 数学专业
英文版履历(2025.08更新)
I am currently working on the following topics:
-
Decoupling theory for various geometric objects in the Euclidean space.
-
Curved Kakeya problems and their related maximal operators.
Theses:
-
Kakeya and restriction problems in harmonic analysis (my master thesis, 2017): Link
-
Configurations and decoupling: a few problems in Euclidean harmonic analysis (my PhD thesis, 2021): Link
Notes/Slides:
-
Study guide for "On restriction projections to planes in $\mathbb R^3$", with Tainara Borges and Siddharth Mulherkar, (2024), Link
-
A Study Guide for A Study Guide for the l^2 decoupling Theorem by Bourgain and Demeter (2016) (Link to [Bourgain-Demeter]) and (Link to my note)
-
A few remarks on decoupling (Link)
-
Equivalence of decoupling constants (Link)
I am teaching MA127 (Calculus II) in Fall 2025 at SUSTech. Below are courses I have previously taught elsewhere (some courses were taught more than once):
-
Linear Algebra and Applications (MATH 33A) UCLA 2025
-
Differential Geometry (MATH 120A) UCLA 2025
-
Complex Analysis for Applications (MATH 132) UCLA 2025
-
Linear Algebra and Applications (MATH 33A) UCLA 2024
-
Linear Algebra and Applications (MATH 33A) UCLA 2024
-
Complex Analysis for Applications (MATH 132) UCLA 2023
-
Elementary Topology (MATH 551) UW-Madison 2023
-
Analysis I (MATH 521) UW-Madison 2022
-
Introduction to Complex Variables (MATH 300) UBC 2022
-
Integral Calculus with Applications to Commerce and Social Sciences (MATH 105) UBC 2019
Publications:
-
(Joint with Yue Zhong) Construction of a curved Kakeya set, Bulletin of the London Mathematical Society, 2025, https://doi.org/10.1112/blms.70110
-
(Joint with Malabika Pramanik and Joshua Zahl) A Kaufman type restricted projection theorem in R3 (2022), and a Kaufman-type restricted projection theorem in R^3, accepted by American Journal of Mathematics in 2024, arXiv:2207.02259
-
(Joint with Jianhui Li) Decoupling for smooth surfaces in R3 (2021), accepted by American Journal of Mathematics in 2023, arxiv:2110.08441
-
(Joint with Jianhui Li) Decoupling for mixed-homogeneous polynomials in R3. Mathematische Annalen, 2022, https://link.springer.com/article/10.1007/s00208-021-02273-9
-
Uniform l2-decoupling in R2 for polynomials. Journal of Geometric Analysis, 2021, https://doi.org/10.1007/s12220-021-00666-5
-
On sets containing an affine copy of bounded decreasing sequences. Journal of Fourier Analysis and Applications, 2020, https://doi.org/10.1007/s00041-020-09780-4.
Preprints:
-
(Joint with Jianhui Li) Decoupling for degenerate hypersurfaces (2025), arxiv:2507.02134
-
(Joint with Jianhui Li) Decoupling for surfaces with radial symmetry (2025), arxiv:2504.17100
-
(Joint with Xianghong Chen and Yue Zhong) Improved packing of hypersurfaces in Rd (2025), arxiv:2501.03532
-
(Joint with Jianhui Li) Two principles of decoupling (2024), arxiv:2407.16108
-
(Joint with Mingfeng Chen and Shaoming Guo) A multi-parameter cinematic curvature (2023), arxiv:2306.01606