人员 > 科研教学系列 > 高辉

高辉

副教授  

http://faculty.sustech.edu.cn/gaoh/

  • 简历
  • 科研
  • 教学
  • 发表论著

工作经历

2022.6--            南方科技大学,数学系,副教授

2019.9--2022.5. 南方科技大学,数学系,助理教授

2016.9--2019.8. 赫尔辛基大学,数学系,博士后 
2013.7--2016.6. 北京大学国际数学研究中心,博士后 

教育背景
2007.9--2013.5. 普渡大学,数学博士  

2003.9--2007.6. 南开大学,数学学士 


研究领域:
数论与算术几何。

特别的:p进Hodge理论以及p进Langlands纲领。


Selected Publications

For full publication, see MathSciNet: author profile page

arXiv: author identifier: gao_h_2

Breuil-Kisin modules and integral p-adic Hodge theory (with two appendices) to appear, J. Eur. Math. Soc 
(with Léo Poyeton,) Locally analytic vectors and overconvergent (phi, tau)-modules J. Inst. Math. Jussieu 20 (2021), no. 1 
(with Tong Liu,) Loose crystalline lifts and overconvergence of étale (phi, tau)-modules Amer. J. Math. 142 (2020), no. 6 
Crystalline liftings and weight part of Serre's conjecture Israel J. Math. 221 (2017), no. 1, 117–164  
Galois lattices and strongly divisible lattices in the unipotent case J. Reine Angew. Math.  728 (2017), 263–299. 
(with Tong Liu,) A note on potential diagonalizability of crystalline representations Math. Annalen, 2014, Vol. 360, pp 481-487.


Research Interests

My research domain is arithmetic geometry. Research topics I'm particularly interested in include rational points of homogeneous varieties, arithmetic of quadratic forms and related structures, Galois cohomology of linear algebraic groups, etc. 


Grants

1. 中国博士后科学基金,博士后面上项目,2014M550539,p进朗兰兹纲领和p进霍奇理论
,2014-04至2016-06,5万元,结题,主持
2.p进霍奇理论及其应用,国家自然科学基金面上项目,2021.01-2024.12,52万元,在研,主持


Publications

Breuil-Kisin modules and integral p-adic Hodge theory (with two appendices) to appear, J. Eur. Math. Soc 
(with Léo Poyeton,) Locally analytic vectors and overconvergent (phi, tau)-modules J. Inst. Math. Jussieu 20 (2021), no. 1 
(with Tong Liu,) Loose crystalline lifts and overconvergence of étale (phi, tau)-modules Amer. J. Math. 142 (2020), no. 6 
Crystalline liftings and weight part of Serre's conjecture Israel J. Math. 221 (2017), no. 1, 117–164  
Galois lattices and strongly divisible lattices in the unipotent case J. Reine Angew. Math.  728 (2017), 263–299. 
(with Tong Liu,) A note on potential diagonalizability of crystalline representations Math. Annalen, 2014, Vol. 360, pp 481-487.