Computational & Applied Math Seminar

A bound-preserving high order scheme for variable density incompressible Navier-Stokes equations

  • Speaker: Maojun Li (University of Electronic Science and Technology of China)

  • Time: May 14, 2021, 16:00-17:30

  • Location: Tencent Meeting ID 318 476 453, Passcode 210514

Abstract

For numerical schemes to the incompressible Navier-Stokes equations with variable density, it is a critical property to preserve the bounds of density. A bound-preserving high order accurate scheme can be constructed by using high order discontinuous Galerkin (DG) methods or finite volume methods with a bound-preserving limiter for the density evolution equation, with any popular numerical method for the momentum evolution. In this talk, we consider a combination of a continuous finite element method for momentum evolution and a bound-preserving DG method for density evolution. Fully explicit and explicit-implicit strong stability preserving Runge-Kutta methods can be used for the time discretization for the sake of bound-preserving. Numerical tests on representative examples are shown to demonstrate the performance of the proposed scheme.