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Abstract: On a bounded Euclidean domain D ⋐ Cn, the most elementary canon-
ical Kähler metric is the Bergman metric ds2D. By the invariance of ds2D under
Aut(D), ds2D descends to any quotient of D by a torsion-free discrete subgroup
Γ′ ⊂ Aut(D) and can hence be used to study (quasi-)projective manifolds N
uniformized by D. However, the Bergman metric ds2D and hence the induced
Kähler metric ds2N are not necessarily complete, which limits the applicability of
Kähler geometry. In contrast it was established by Cheng-Yau and Mok-Yau that
a bounded domain of holomorphy admits up a unique canonical Kähler-Einstein
metric of negative Ricci curvature −1. The same applies to bounded domains
of holomorphy on Stein manifolds. In this talk we will show that such complete
Kähler-Einstein metrics are applicable to study rigidity problems for holomorphic
maps, when the domain manifold is an irreducible Shimura variety of rank ≥ 2
and the target is the quotient D/Γ′ of a bounded domain of holomorphy D ⋐ Z
on a Stein manifold Z by a torsion-free discrete subgroup Γ′ ⊂ Aut(D) such that
N = D/Γ′ is of bounded volume with respect to the Kobayashi-Royden volume
form dµ, the biggest canonical volume form enjoying the monotonicty property.

Let Ω ⋐ Cn be a bounded symmetric domain of rank ≥ 2 in its Harish-
Chandra realization and Γ ⊂ Aut(Ω) be a torsion-free irreducible lattice, and write
XΓ := Ω/Γ. Let Z be a Stein manifold and D ⋐ Z be any bounded domain, Γ′ ⊂
Aut(D) be a discrete subgroup such that Volume(YΓ′ , dµ) < ∞. Let F : Ω → D ⋐
CN be a holomorphic map Γ-equivariant with respect to a group homomorphism
Φ : Γ → Γ′. In a joint work with Kwok-Kin Wong, we prove that F : Ω → D must
be a biholomorphic map provided that Φ : Γ → Γ′ is a group isomorphism. We
call this the Isomorphism Theorem.

To prove that F is a biholomorphism it suffices to be able to invert the holomor-
phic map. To do this we first construct a holomorphic map R : D → Ω such that

R ◦ F = idΩ. Hence, F : Ω
∼=−→ F (Ω) such that, writing φ : F (Ω) → Ω for its in-

verse, we have R = φ◦ϖ for a holomorphic retraction ϖ : D → F (Ω). To construct
R we introduce an averaging process on bounded holomorphic functions on Ω be-
longing to H := F ∗H∞(D) in order to prove that there exist h1, · · · , hn ∈ H∞(D)
such that (F ∗h1, · · · , F ∗hn) = idΩ. The averaging process involves harmonic anal-
ysis applied to certain complex submanifolds of Ω which are holomorphically and
isometrically embedded copies of the complex unit ball of maximal dimension, and
also Moore’s ergodicity theorem on semisimple Lie groups. Finally, to prove that
F is a biholomorphism it remains to show that the fibers of ϖ : D → F (Ω) are
0-dimensional. When D is a domain of holomorphy we prove this by exploiting
the geometry of YΓ′ = D/Γ′ as a complete Kähler-Einstein manifold of finite vol-

ume. In general, we replace D by its hull of holomorphy D̂ and prove the same
by deducing from the hypothesis Volume(YΓ′ , dµ) < ∞ that D ⊂ D̂ is a schlicht

domain such that D̂ −D is of zero Lebesgue measure.


