Canonical Kähler-Einstein metrics applied to a rigidity problem for irreducible lattices of rank ≥ 2 of the Hermitian type

Ngaiming Mok

Abstract: On a bounded Euclidean domain $D \in \mathbb{C}^n$, the most elementary canonical Kähler metric is the Bergman metric ds_D^2 . By the invariance of ds_D^2 under $\operatorname{Aut}(D), ds_D^2$ descends to any quotient of D by a torsion-free discrete subgroup $\Gamma' \subset \operatorname{Aut}(D)$ and can hence be used to study (quasi-)projective manifolds N uniformized by D. However, the Bergman metric ds_D^2 and hence the induced Kähler metric ds_N^2 are not necessarily complete, which limits the applicability of Kähler geometry. In contrast it was established by Cheng-Yau and Mok-Yau that a bounded domain of holomorphy admits up a unique canonical Kähler-Einstein metric of negative Ricci curvature -1. The same applies to bounded domains of holomorphy on Stein manifolds. In this talk we will show that such complete Kähler-Einstein metrics are applicable to study rigidity problems for holomorphic maps, when the domain manifold is an irreducible Shimura variety of rank ≥ 2 and the target is the quotient D/Γ' of a bounded domain of holomorphy $D \in Z$ on a Stein manifold Z by a torsion-free discrete subgroup $\Gamma' \subset \operatorname{Aut}(D)$ such that $N = D/\Gamma'$ is of bounded volume with respect to the Kobayashi-Royden volume form $d\mu$, the biggest canonical volume form enjoying the monotonicty property.

Let $\Omega \in \mathbb{C}^n$ be a bounded symmetric domain of rank ≥ 2 in its Harish-Chandra realization and $\Gamma \subset \operatorname{Aut}(\Omega)$ be a torsion-free irreducible lattice, and write $X_{\Gamma} := \Omega/\Gamma$. Let Z be a Stein manifold and $D \in Z$ be any bounded domain, $\Gamma' \subset \operatorname{Aut}(D)$ be a discrete subgroup such that $\operatorname{Volume}(Y_{\Gamma'}, d\mu) < \infty$. Let $F : \Omega \to D \in \mathbb{C}^N$ be a holomorphic map Γ -equivariant with respect to a group homomorphism $\Phi : \Gamma \to \Gamma'$. In a joint work with Kwok-Kin Wong, we prove that $F : \Omega \to D$ must be a biholomorphic map provided that $\Phi : \Gamma \to \Gamma'$ is a group isomorphism. We call this the Isomorphism Theorem.

To prove that F is a biholomorphism it suffices to be able to invert the holomorphic map. To do this we first construct a holomorphic map $R:D\to\Omega$ such that $R \circ F = \mathrm{id}_{\Omega}$. Hence, $F : \Omega \xrightarrow{\cong} F(\Omega)$ such that, writing $\varphi : F(\Omega) \to \Omega$ for its inverse, we have $R = \varphi \circ \varpi$ for a holomorphic retraction $\varpi : D \to F(\Omega)$. To construct R we introduce an averaging process on bounded holomorphic functions on Ω belonging to $\mathbf{H} := F^*H^{\infty}(D)$ in order to prove that there exist $h_1, \dots, h_n \in H^{\infty}(D)$ such that $(F^*h_1, \dots, F^*h_n) = \mathrm{id}_{\Omega}$. The averaging process involves harmonic analysis applied to certain complex submanifolds of Ω which are holomorphically and isometrically embedded copies of the complex unit ball of maximal dimension, and also Moore's ergodicity theorem on semisimple Lie groups. Finally, to prove that F is a biholomorphism it remains to show that the fibers of $\varpi:D\to F(\Omega)$ are 0-dimensional. When D is a domain of holomorphy we prove this by exploiting the geometry of $Y_{\Gamma'} = D/\Gamma'$ as a complete Kähler-Einstein manifold of finite volume. In general, we replace D by its hull of holomorphy \widehat{D} and prove the same by deducing from the hypothesis $Volume(Y_{\Gamma'}, d\mu) < \infty$ that $D \subset \widehat{D}$ is a schlicht domain such that $\widehat{D} - D$ is of zero Lebesgue measure.