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Abstract. In this note we survey some classical problems and the recent pro-
gresses in birational geomotry in characteristic p.

1. Introduction

We work over an algebraically closed field k. Two varieties X and Y are birational
means they have two isomorphic open dense subset, algebraically this is equivalent to
that the function fields k(X) ∼= k(Y ) as k-algebras. To classify varieties birationally
(modulo birational equivalence), the following the birational invariants are of great
significance. Let X be a smooth projective variety of dimension d.

• n-plurigenera: Pn(X) = h0(X,nKX) where KX ∼ Ωd
X is the canonical divi-

sor.
• Kodaira dimension: κ(X) is the stable dimension of φnKX (X) for sufficiently

divisible n > 0, where φnKX is the n-canonical map, namely, the map defined
by the linear system |nKX |. Note that if for all n > 0 |nKX | = ∅ then
conventionally κ(X) = −∞.

If κ(X) ≥ 0, for sufficiently divisible n > 0, the map φnKX gets stable birationally
and is called Iitaka fibration.

For varieties of fixed dimension d, we can classify varieties according to their
Kodaira dimension κ(X) = −∞, 0, 1, 2, · · · , d. To find a reasonably good candidate
in a birational class, minimal model program (MMP) was developed. Please refer
to [KM98] for basic theory about MMP.

We shall discuss the following topics in characteristic p:

• minimal model theory;
• positivity results and subadditivity of Kodaira dimensions;
• explicit geometry: canonical bundle formula; irregular varieties; varieties

with KX ≡ 0; effectivity.

We spend a lot recalling the related results and techniques from characteristic zero
for two reasons: to explain the differences happening in positive characteristic and
propose reasonable questions.

Conventions:
A fibration f : X → Y means a projective morphism with f∗OX = OY (which

implies that for y ∈ Y the fiber Xy is connected).
We use the terminology of minimal model theory from [KM98].
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1.1. Preliminaries. In this section we recall trace maps of the Frobenius itera-
tions and the notion of F -singularities in positive characteristic. We work over an
algebraically closed field in characteristic p.

1.2. Trace map of the Frobenius map. For simplicity, first let X be a smooth
variety and ∆ an effective divisor with index indivisible by p. Assume (pg − 1)∆ is
integral. Denote by F g

X : X = Xg → X the gth absolute Frobenius iteration. We
have the trace map

TregX,∆ : F eg
X∗OX((1− peg)(KX + ∆))→ OX

which is the composite map of the natural inclusion

F eg
X∗OX((1− peg)(KX + ∆)) ↪→ F eg

X∗OX((1− peg)KX)

and the trace map TregX0
: F eg

X OX((1− peg)KX)→ OX .
If X is Gorenstein in codimension one (G1) and satisfies Serre condition 2 (S2), we

may replace ∆ with a rational multiple of an effective divisor and can consider the
Frobenius trace map over the Gorenstein part X0 which can extends to the whole
variety since X satisfies S2. If X is normal, without assuming (pg − 1)∆ is integral,
we can modify the trace map TregX,∆ by replacing the divisor by the integral part
x(1− peg)(KX + ∆)y to make the map reasonable.

1.3. Frobenius stable section and direct image. Now assume X is normal.
Let D be an integral divisor on X. Twisting the trace map TregX,∆ above by OX(D)
induces a map

TregX,∆(D) :F eg
X∗OX((1− peg)(KX + ∆))⊗OX(D)

∼= F eg
X∗OX((1− peg)(KX + ∆) + pegD)→ OX(D),

then taking global sections gives

H0(TregX,∆(D)) : H0(X,F eg
X∗OX((1− peg)(KX + ∆) + pegD))→ H0(X,D).

Let

Seg∆ (X,D) = ImH0(TregX,∆(D)) and S0
∆(X,D) = ∩e≥0S

eg
∆ (X,D).

The S0
∆(X,D) ⊆ H0(X,D) is called the Frobenius stable part and can be attained

for sufficiently large e.

Similarly we consider the relative case. Let f : X → Y be a surjective morphism
of normal projective varieties and assume Y is Gorenstein for safety. We may fit the
g-th relative Frobenius iteration into the following commutative diagram

X = Xg

F gX

##

F g
X/Y

��
f

��

XY g
πgY //

��

X

f

��
Y = Y g

F gY // Y
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here F g
X/Y : X → XY g denote the gth relative Frobenius iteration over Y . By

KXeg/XY eg = (1− peg)KXeg/Y eg and F eg∗
X/Y π

eg∗
Y D = pegD.

we get the trace map

TregX/Y,∆(D) : F eg
X/Y ∗OX((1− peg)(KX/Y + ∆) + pegD)→ OXY eg (πeg∗Y D).

Applying feg∗ to the above map, we get

f∗Tr
eg
X/Y,∆(D) : f∗OX((1− peg)(KX/Y + ∆) + pegD)

� Seg∆ f∗OX(D) ↪→ feg∗OXY eg (πeg∗Y D) ∼= F eg∗
Y f∗OX(D).

where Seg∆ f∗OX(D) denotes the image of f∗Tr
eg
X/Y,∆(D).

One can prove that for every positive integer e,

dimk(η̄) S
eg
∆η̄

(Xη̄, Dη̄) = rankSeg∆ f∗OX(D).

Consequently for sufficiently large e, rankSeg∆ f∗OX(D) is stable, which equals to
dimk(η̄) S

0
∆η̄

(Xη̄, Dη̄).

1.4. F -Singularities. This notion is defined according to the behavior of the trace
map of the Frobenius map. Consider a normal pair (X,∆). If for any e the trace
map

TregX,∆ : F eg
X∗OX(x(1− peg)(KX + ∆)y)→ OX

is surjective then we say (X,∆) is F -pure; and if for any effective divisor D, there
exists sufficiently large e such that

TregX,∆ : F eg
X∗OX(x(1− peg)(KX + ∆)−Dy)→ OX

is surjective then we say (X,∆) is F -regular. Moreover if the map induced by taking
global section of the second trace map is surjective then we say (X,∆) is globally
F -regular. If we consider a relative pair f : (X,∆) → Y , we can define relative
global F -regularity.

Here we mention that F -singularities behave very like singularities from minimal
model program (see Sec. 2.1), the former ones are defined via Frobenius map while
the latter are defined via resolution. The notion F -purity is roughly an analogue of
log canonical singularity, and F -regularity is an analogue of klt singularity, global
F -regularity is an analogue of log Fano varieties. Note that F -regularity is preserved
by small perturbation. Usually the F -notions are stronger, but not preserved in the
minimal model program. However, we will see that in lower dimensional cases, the
F -notions play an important role in the study of minimal model theory. We refer
the reader to [?CT12] for a survey on F -singularities.

2. Minimal model theory

In this section we will summarize the results in minimal model theory in char-
acteristic p. Remind that smooth resolution of singularities in characteristic p is
proved only in dimension ≤ 3 ([CP08,CP09]).
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2.1. Singularities in minimal model theory. To run minimal model program,
we have to permit mild singularities to guarantee working in a closed category of
varieties. More generally we usually consider a pair (X,∆) where ∆ =

∑
i ciDi is

an effective divisor with coefficients ci ∈ [0, 1]. If for every smooth log resolution
ρ : Y → (X,∆), in the formula KY = ρ∗(KX + ∆) +

∑
i aiEi, each ai > −1 (≥ −1)

then we say (X,∆) is Kawamata log terminal or klt for short (log canonical or lc);
if ∆ = 0 and for every exceptional divisor Ei the coefficient ai > 0 (≥ 0) we say X
is terminal (canonical).

2.2. Surfaces. For surfaces, the minimal model program and abundance for log
canonical pairs have been established. Precisely

• the case ∆ = 0 was proved by Bombieri and Mumford in 1970s;
• the log case is over an algebraically closed field and over an F -finite field

is established by Tanaka [Tan14, Tan16], and over an F -finite field is also
established by Tanaka [Tan18a,Tan18b,Tan20].

An advantage of treating surfaces is the Riemann-Roch formula, which provides
great convenience to obtain global sections.

2.3. Minimal model program for threefolds. Up to this moment, minimal mod-
el program has been established for klt pairs when p ≥ 5. When p > 5, Hacon and
Xu [HX15] first proved the existence of minimal model for klt pairs (X,∆) with
standard coefficients and KX + ∆ is psudo-effective; then Birkar [Bir16] treated the
nonstandard case and joint with Waldron [BW17] proved the existence of Mori fiber
space when KX + ∆ is not pseudo-effective. Hacon and Witaszek [HW19] recently
treat the case p = 5.

We explain the novelties to prove MMP for threefolds in characteristic p. We refer
the reader to [Kol92] for the proof of MMP in characteristic zero, particularly in the
proof Kawamata-Viehweg vanishing theorem plays an important role to lift sections
on a closed subvariety, for example this implies the log canonical center is normal. In
[HX15], the authors proved existence of pl-flips for pairs with standard coefficients in
characteristic p > 5. The role of Kawamata-Viehweg vanishing theorem is replaced
by a combination of Fujita’s vanishing theorem and Mumford regularity, so under
suitable conditions, those Frobenius stable sections S0(X,KX + D) are liftable. In
[HX15], they want to prove S0(X,KX +D) = H0(X,KX +D), hence they have to
assume the coefficients standard, because their argument relies on the result that a
relative del-pezzo surface (S,B)→ T with standard coefficients is globally F -regular
([Har98]). Birkar [Bir16] treated the general case by perturbing the coefficient one
by one. To treat the case characteristic 5, Hacon and Witaszek [HW19] make new
subtle observations and rectifications. For pathologies in characteristic p = 2, 3,
please refer to [CT19].

2.4. Abundance for threefolds. To investigate abundance, we try to adapt the
method from characteristic zero to characteristic p, so we separate into two cases
according to the irregularity q(X) = b1

2
= dim Pic0(X).

(1) When p ≥ 5 and q(X) ≥ 1, abundance has been proved for minimal threefolds
by the author [Zha20a], in fact the author only treated the case p > 5, but by Hacon
and Witaszek’s recent work, the proof also applies when p = 5. The advantage of
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the condition q(X) ≥ 1 lies in that X is equipped with the Albanese map, then we
get a natural fibration by doing Stein factorization

X
albX

##
f
��
Y

albY // Alb(X)

.

The problem is reduced to proving subadditivity of Kodaira dimension which will
be discussed later.

(2) When q = 0 and p ≥ 5, only nonvanishing was proved in [XZ19] by following
Miyaoka’s strategy. Comparing with characteristic zero case, one need to tackle with
the new phenomena: ρ∗KX · c2(Y ) < 0, in this case we have a foliation by rational
curves, then show the full abundance under this assumption.

2.5. Open problems. About the minimal model theory for threefold in character-
istic p, the following problems are still open.

Question 1. Abundance for minimal models when p ≥ 5.

As MMP has been established, this is almost accessible by adapting the strategy
from characteristic zero. As we have nonvanishing, the main difficulty is how to
extend a pluricanonical section from a closed divisor to the whole variety.

Question 2. Minimal model program when p = 2, 3.

Comparing with the case p ≥ 5, to prove the existence of flip, when lifting sections
on a plt center, one need this surface F -regular under this flipping contraction, but
this condition fails when p < 5. Please refer to [HX15,HW19] for the subtleness.

Question 3. Nonvanishing and abundance for minimal models when p = 2, 3.

Comparing with the case p ≥ 5, the main difficulty is to treat quasi-elliptic
fibration, which happens only in characteristic p = 2, 3. In fact we are in lack
of a reasonable canonical bundle formula, which will be discussed later.

3. Positivity

Positivity is closely related to constructing global sections, in particular is essen-
tial in the study of abundance. We will focus on the the direct image of relative
pluricanonical sheaves and compare the techniques in characteristic p and zero.

3.1. Several positivities. We introduce several positivities weaker than ample-
ness.

Definition 3.1. A locally free coherent sheaf F on a normal quasi-projective variety
Y is said to be nef if for every surjective homomorphism F → G, detG is nef.

Definition 3.2. A torsion free coherent sheaf F on a normal quasi-projective va-
riety Y is said to be weakly positive, if for every ample line bundle H on Y and
positive integer m, there exists a sufficiently large integer n such that, Sn(H ⊗
Sm(F)∗∗) is generically globally generated, where for a coherent sheaf G, G∗∗ :=
Hom(Hom(G,OY ),OY ) denotes the double dual.
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Remark 3.3. (1) Weak positivity is introduced by Viehweg [Vie83] to study subad-
ditivity of Kodaira dimensions.

(2) Nefness implies weak positivity, but when Y is a curve, they are equivalent.

3.2. Results in characteristic zero. We only concern the positivity of the push-
forward of the relative pluricanonical sheaves. There are so many related results,
here we only recall some classical ones that are applied widely in birational geometry.

Theorem 3.4. Let f : X → Y be a fibration of nonsingular projective varieties.
Then for any n > 0, the sheaf f∗ω

n
X/Y is weakly positive.

Ingredient of the proof: The case dimY = 1 was first proved by [Fuj78] dimY = 1,
and by [Kaw83] for any dimY . The proof follows from applying VHS (variation of
hodge structure) and local calculating the curvature of f∗ωX/Y (after certain base
change), which is equipped with a hermitian metric induced by the natural pairing.
For general n, it was proved by [Vie83] by applying the above result to the fiber
product

f r : X ×Y X ×Y · · ·Y X → Y.

Furthermore, if the period map of the family f : X → Y is locally injective at the
general point then the f∗ω

n
X/Y is big for n ≥ 2.

These results are generalized to log pairs by VMHS (variation of mixed hodge
structure) in [FF14].

Theorem 3.5. Let f : (X,∆) → Y be a fibration from a G1, S2 pair to a curve.
Assume (Xy,∆y) is semi-log canonical for general y, and k(KX/Y + ∆) is Catier.
Then f∗OX(k(KX/Y + ∆) is weakly positive.

Remark 3.6. Weak positivity is very important in birational geometry, for example
it is crucial

• to prove the projectivity of moduli spaces,
• to find sections, say, prove Iitaka conjecture.

3.3. Results in characteristic p. The analogous result is not true in characteristic
p > 0. There is an example f : X → Y of semi-stable fibration of a surface such
that f∗ωX/Y is not nef, and Raynaud’s example is a fibration f : X → Y of surface
with Xη̄ being singular, the sheaves f∗ω

n
X/Y is negative for any n.

Patakfalvi [Pat14] first gets a positivity for fibrations over curves under assump-
tion that KX is relatively ample and fibers are smooth (or mildly singular).

Theorem 3.7. Let f : X → Y be a surjective morphism from a normal projective
variety to a smooth curve. Let ∆ be an effective Q-divisor on X such that p -
ind(KX + ∆). Assume that for general y ∈ Y , the fiber (Xy,∆y) is sharply F -pure.

(i) If KX + ∆ is f -ample, then f∗OX(m(KX/Y + ∆)) is nef.
(ii) If KX + ∆ is f -nef, then KX/Y + ∆ is nef.

A natural question is how to choose m satisfying (i) above. Shortly later, [Eji17]
generalizes above Patakfalvi’s result and tells how to determine such m.
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Theorem 3.8. Let f : X → Y be a separable surjective morphism between smooth
projective varieties, let ∆ be an effective Q-divisor on X, and let a be a positive
integer prime to p such that a∆ is integral. Assume that

(i) the k(η̄)-algebra
⊕

m≥0H
0(Xη̄,m(a(KX/Y +∆)η̄)) is generated by H0(Xη̄, a(KX/Y +

∆)η̄); and
(ii) S0

∆η̄
(Xη̄, a(KX/Y + ∆)η̄)) = H0(Xη̄, a(KX/Y + ∆)η̄)).

Then f∗OX(a(KX/Y + ∆)) is weakly positive.

Remark 3.9. When KXη̄ + ∆η̄ is ample and (Xη̄,∆η̄) is F -pure, then (i, ii) holds for
sufficiently divisible a. So Ejiri’s result implies Patakfalvi’s.

Patakfalvi’s proof is a combination of trace maps of absolute Frobenius iterations
and Viehweg’s fiber product trick, while Ejiri mainly applies trace maps of relative
Frobenius maps and gets positivity by an iteration of sheaves. We will explain Ejiri’s
proof later.

In fact Ejiri proves the sheaf in Theorem 3.8 satisfies a stronger positivity.

Definition 3.10. Let Y be a quasi-projective variety, F a torsion free coherent
sheaf and H an ample Q-Cartier divisor on Y . Let

t(Y,F , H) = sup{t ∈ Q|the sheaf (F e∗
Y F)⊗OY ([−petH])

is generically globally generated for some e > 0}.

We say F is FWP (Frobenius weakly positive) if for an ample Q-Cartier divisor
H, t(Y,F , H) ≥ 0, equivalently, there exist a sequence of positive integers {ne|e =
1, 2, 3, · · · } such that neH is Cartier, the sheaf (F e∗

Y F) ⊗ OY (neH) is generically
globally generated and ne

pe
→ 0 as e→ +∞.

This property is independent of the choice of the ample divisor H.

Unfortunately when (Xη̄,∆η̄) is wildly singular the condition (ii) of Theorem 3.8
does not hold. If granted some numerical condition we can treat this bad case
([PSZ18] and [Zha19a]), so we have the following result.

Theorem 3.11. Let X be a normal projective variety and Y a smooth projective
variety over an algebraically closed field k with char k = p > 0. Let f : X → Y
be a separable surjective projective morphism. Let ∆ be an effective Q-Weil divisor
on X such that KX/Y + ∆ is Q-Cartier and p - ind(KX/Y + ∆). If D is a Cartier
divisor on X such that D−KX/Y −∆ is nef and f -semi-ample, then for sufficiently
divisible g, the sheaf F g∗

Y f∗OX(D) contains a FWP sub-sheaf Sg∆f∗OX(D) of rank
dimk(η̄) S

0
∆η̄

(Xη̄, Dη̄).

Remark 3.12. In fact if D is relatively big, we have that for sufficiently divisible n
dimk(η̄) S

0
∆η̄

(Xη̄, nDη̄) > 0 ([Zha19a, Prop. 2.5]).
If granted MMP, the above result, in the study of subadditivity of Kodaira di-

mension, can substitute the role of the weak positivity of f∗ω
n
X/Y in characteristic

zero. For example, if KX + ∆ is nef, relatively big and p - ind(KX/Y + ∆)η, then
for sufficiently large a, F g∗

Y (f∗OX(a(KX/Y + ∆)) ⊗ ωa−1
Y ) contains a nonzero FWP

subsheaf.
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3.4. The approach to positivity in characteristic p. We will introduce the
notion of Frobenius stable sections and sketch the proof of Theorem 3.8 and 3.11,
which are so typical.

Before preceding with the proof, I outline the strategy. FWP is defined by global
generation, this is usually obtained by Mumford regularity theorem, so we need
certain vanishing theorems. In positive characteristic, the only vanishing theorem
is Fujita’s vanishing theorem ([Kee03]), which is a generalization of Serre vanishing
theorem.

Lemma 3.13. ( Relative Fujita Vanishing) Let f : X → Y be a projective
morphism over a Noetherian scheme, H an f -ample line bundle and F a coherent
sheaf on X. Then there exists a positive integer N such that, for every n > N and
every nef line bundle L

Rif∗(F ⊗Hn ⊗ L) = 0, if i > 0.

To apply this vanishing, we need to do Frobenius amplitude by applying the trace
map of the (relative) Frobenius map, this is why these positive results hold for
Frobenius stable sections.

To prove Theorem 3.8, we set D = a(KX/Y + ∆). Then the condition (ii) implies
that

f∗Tr
eg
X/Y,∆(a(KX/Y + ∆)) : f∗OX((1− peg + apeg)(KX/Y + ∆))

→ F eg∗
Y f∗OX(a(KX/Y + ∆)).

is generically surjective. LetH be an ample divisor on Y . Let t0 = t(Y, f∗OX(a(KX/Y +
∆)), H).

(1) Only need to show that t0 ≥ 0.
(2) By definition,

t(Y, Skf∗OX(a(KX/Y + ∆)), H) ≥ kt0

and
t(Y, F g∗

Y f∗OX(a(KX/Y + ∆)), H) = pgt0.

(3) By (ii), the trace map of relative Frobenius

TrX/Y :F g
X/Y ∗OX((1− pg)(KX/Y + ∆) + pga(KX/Y + ∆))

∼= F g
X/Y ∗OX((1− pg + apg)(KX/Y + ∆))→ F g∗

Y f∗OX(a(KX/Y + ∆)).

is surjective over the generic point of Y g.
(4) By (i), if denoting kg = pg−1

a
then

Sp
g−kgf∗OX(a(KX/Y + ∆))→ F g

X/Y ∗OX((1− pg + apg)(KX/Y + ∆))

→ F g∗
Y f∗OX(a(KX/Y + ∆))

is surjective over the generic point of Y g.
(5) We conclude from the above surjection that

t(Y, Sp
g−kgf∗OX(a(KX/Y + ∆)), H) ≤ t(Y, F g∗

Y f∗OX(a(KX/Y + ∆)), H)

hence
(pg − kg)t0 ≤ pgt0
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which implies the theorem.

Proof of Theorem 3.11. We can take g is divisible enough that for every positive
integer e, the sheaf Seg∆ f∗OX(D) has the stable rank dimk(η̄) S

0
∆η̄

(Xη̄, Dη̄). Then for
every integer e > 0, the composite homomorphism below is generically surjective

αeg : f∗OX((1− peg)(KX/Y )−[(peg − 1)∆] + pegD)

� (Seg∆ f∗OX(D)) ↪→ (F
(e−1)g∗
Y Sg∆f∗OX(D)),

because the two sheaves Seg∆ f∗OX(D) and (F
(e−1)g∗
Y Sg∆f∗OX(D)) have the same rank.

Let H be an ample Cartier divisor on Y . Tensoring the map αeg with OY (eH),
we get a generically surjective homomorphism

βeg : f∗OX((1− peg)(KX/Y )−[(peg − 1)∆] + pegD + ef ∗H)

→ F
(e−1)g∗
Y Sg∆f∗OX(D)⊗OY (eH).

From now on for simplicity, we only consider the case D− (KX/Y +∆) is nef and
f-ample. Then we find that the divisor

(1− peg)(KX/Y ) + ∆) + pegD + ef ∗H = (peg − 1)(D − (KX/Y ) + ∆)) + ef ∗H

is very very ample as e is big, hence the sheaf

f∗OX((1− peg)(KX/Y ) + ∆) + pegD + ef ∗H)

is generically globally generated. (Dtails are left as an exercise)
This implies that the image of βeg is generically globally generated, hence so is

the sheaf F
(e−1)g∗
Y Sg∆f∗OX(D)⊗OY (eH). Therefore, the sheaf Sg∆f∗OX(D) is FWP.

3.5. Questions and comments.

Question 4. Let f : X → Y be a fibration to a curve. Assume the generic fiber
is smooth and KX is relatively semiample. We expect that for sufficiently divisible
m > 0, the sheaf f∗ω

m
X/Y is nef.

By [Pat14], KX/Y is nef, so if κ(F ) = 0, then the above statement is true.

4. Subadditivity of Kodaira dimension

It is a central problem to construct pluricanonical sections in birational geometry.
In characteristic zero Iitaka proposed

Conjecture 4.1 (Iitaka’s conjecture). Let f : X → Y be a fibration between smooth
projective varieties over an algebraically closed field k, with dimX = n and dimY =
m. Then the Kodaira dimension satisfies subadditivity

Cn,m : κ(X) ≥ κ(Y ) + κ(Xη̄, KXη̄).

Kawamata, Kollár, Viehweg did pioneering work in 1980s, and Chen-Hacon, Cao-
Paun etc. also made remarkable contributions to this conjecture. Up to now Cn,m
has been proved

(1) when F has a good minimal model by [Kaw85],
(2) when dimY = 1 by [Kaw82] and when dimY = 2 by [Cao18],
(3) when Y is of maximal Albanese dimension by [CP17,HPS18].
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It is worthwhile mentioning that the Albanese map aX : X → A induces a natural
fibration f : X → Y by Stein factorization, where Y is of maximal Albanese di-
mension, so this case is of special interest. In dimension ≤ 3, subadditivity almost
implies abundance for the case q(X) > 0, which was proved by Viehweg.

4.1. The formulation in characteristic p. In characteristic p > 0, it is interesting
whether subadditivity of Kodaira dimension holds. Remind that the geometric fiber
Xη̄ is often singular (not even reduced if f is inseparable). We may expect

WCn,m : κ(X) ≥ κ(Y ) + κ(X̃η̄)

where X̃η̄ is a smooth model of the scheme with reduced structure of Xη̄. But this
may be too weak, because it is far from inducing abundance in low dimensional
cases. As X is assumed smooth, the dualizing sheaf ωXη̄ is invertible, hence the
Kodaira dimension κ(Xη̄, ωXη̄) is well defined. We may expect

Cn,m : κ(X) ≥ κ(Y ) + κ(Xη̄, KXη̄).

Remark that the first inequality WCn,m does be weaker than the second one, because
if ωXη̄ has a smooth birational model ωX̃η̄ then always

κ(Xη̄, ωXη̄) ≥ κ(X̃η̄).

Up to now in characteristic p the following are known

(1) WCn,n−1 and WC3,1 ([CZ15,EZ18]);
(2) C3,1 when Y is of m.A.d. and p > 5, which implies abundance for the case

q(X) > 0 ([Zha20a]);
(3) the fiber product of Raynaud surfaces fails Cn,m ([CEKZ20]).

4.2. The idea to prove subadditivity of Kodaira dimension. We explain and
compare the differences in characteristic zero and p > 0 as follows.

(1) Positivity plays the central role. In characteristic zero or with restric-
tive condition on the fibers in chacteristic p, we have weak positivity of F =
f∗ω

n
X/Y , and assuming minimal model theory we also have a positive subsheaf of

F ⊆ F e∗
Y (f∗ω

n
X/Y ⊗ ω

n−1
Y ). When Y is of general type or detF is big, it is easy to

conclude subadditivity. Comparing with WP, FWP is easier to lead to subadditivity
([Zha19a, Theorem 4.1]).

(2) How to get sections of F up to torsion. We can often reduce to treat
the extremal cases κ(Y ) = 0 and detF = 0, for example, when Y is of m. A. d., by
doing induction we can reduce to the case Y is an abelian variety ([HPS18]). Let’s
focus on the case that Y is an abelian variety.

• In characteristic zero, when Y is an elliptic curve, F splits into direct sum
of stable vector bundles with numerically trivial determinants, these deter-
minants are torsion thanks to Simpson’s results in Hodge theory ([Kaw82]).
When Y is an abelian variety, Cao and Păun [CP17] can endow F with a
good metric, hence it is from the representation of π1(Y ), and in turn they
split F into line bundles since π1Y = ⊕Z.
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• In characteristic p, the first method to get some torsion property is using
trace maps of relative Frobenius maps ([Eji17, EZ18]), which can treat the
case when Y is an elliptic curve and fibers are smooth. In general, it is much
more difficult, by combining Fourier-Mukai transform and taking advantage
of trace map of the Frobenius iterations and “killing cohomology”, [Zha20a]
can prove that after some base change π : A′ → A of abelian varieties, there
is a surjective map

⊕iPi → π∗F where Pi ∈ Pic0(A′),

then using adjunction formula, abundance for surfaces and techniques of
MMP, when Y is of m.A.d., Iitaka conjecture is proved in dimension 3 and
char p > 5.

4.3. Further questions and comments. The argument of [Zha20a] highly relies
on the minimal model theory. For the reason why C3,m holds in positive characteris-
tic when Y is of m.A.d., we attribute to the relative minimal model over Y is in fact
minimal, hence we have the positivity. In fact if granted Cone Theorem, it is enough
to assume Y is non-uniruled, so in this case we [CEKZ20] expect subadditivity. If
the fibers are smooth, we also expect positivity results and subadditivity.

5. Effectivity of pluricanonical systems

By effectivity of pluricanonical systems we concerns

Question 5. For varieties with κ(X) ≥ 0, how to find numbers N1, N2 as small as
possible such that

• |N1KX | 6= ∅ (effective nonvanishing)
• effective Iitaka fibration: |N2KX | defines a rational map birationally equiv-

alent to the Iitaka fibration (effective Iitaka fibration problem).

These are classical problems in birational geometry.

5.1. Results and the strategies in characteristic zero. First we consider the
case the case that KX is big and collect several classical strategies frequently utilized
in the literature. More generally these strategies can treat adjoint linear system
KX + L where L is big.

• dim(X) = 2: Reider’s method ([Rei88];
• dim(X) ≤ 3: a combination of Riemann-Roch formula and dimension reduc-

tion ([CC10a,CC10b]);
• arbitrary dimensional case: a combination of Kawamata-Viehweg vanishing

and cutting isolated log canonical center ([HM06,Tak06])

For a smooth projective surface X of general type over an algebraically closed field
of arbitrary characteristic, it is known that |5KX | is birational ([Bom73,Rei88]). In
general, over the field of complex numbers C, there exists a number M(d) such that,
for any d-dimensional smooth projective varieties of general type, if m ≥M(d) then
|mKX | is birational ([HM06, Tak06]), and for threefolds we may take M(3) = 126
([CC10a,CC10b]).

For varieties with intermediate Kodaira dimension 0 ≤ κ(X) < dimX, the fol-
lowing are known
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• When dimX = 2, |12K| 6= ∅ which was known due to Castelnuovo and
Enriques more than 100 years ago, and |mK| defines Iitaka fibration for
m ≥ 96 and divisible by 12 [Iit72].
• When dimX = 3 and κ(X) = 0, there is a computable number n < 1000

such that nKX ∼ 0 [Kaw86].
• In general, there exists a number m(d, bF , βF ) where |bFKF | 6= 0, βF =
hdF (F̃ ) (F̃ is the canonical cover of F ), such that for N divisible by m,
|NK| defines a map birational to Iitaka fibration [BZ16].

5.2. Results in characteristic p. For curves and surfaces in char p, the classical
results are the same as the case in characteristic zero, non-general type case is due
to Bombieri-Mumford, refer to the book [Băd01]; the general type case is due to
[Eke88]. The key ingredients include

• Riemann-Roch formula;
• Result from topology, say, Noether’s formula;
• Classical geometric methods, for example, intersection of divisors, linear sys-

tem and dimension reduction;
• Reider’s method.

Remind that we should not expect the same result for the adjoint linear system.
For example, Fujita conjecture predicts that for a surface X and an ample line
bundle L, KX + 3L is base point free. This has been proved for surfaces in char 0
by Reider’s method. However, in char p for any large n there exist a generalized
Raynaud’s surfaces and ample line bundle L such that K + nL is not base point
free, see [GZZ20].

5.3. The inductive approaches in characteristic p. We briefly recall a classical
inductive strategy from characteristic zero as follows. For a smooth projective vari-
ety X over an algebraically closed field of characteristic zero, if given a natural num-
ber n1 such that dim |n1KX | ≥ 1, which induces a rational map f : X 99K Y with
generic fiber F , and given a number n2 such that |n2KF | defines birational map of F ,
then one can get a suitably bigger number M(n1, n2) such that for m ≥ M(n1, n2)
the linear system |mKX | is birational. The most important step to carry out this
strategy is to extend sections on a fiber to the whole variety, hence one needs van-
ishing results and weak positivity of the pushforward of (relative) pluricanonical
sheaves. To adapt this approach to characteristic p, the author [Zha20b] applies a
more strict Frobenius stable sections defined as follows. To treat a big divisor D,
we need to disturb D to be ample. First fix ∆ ≥ 0 and let

Se∆(X,KX +D) := Se(X,KX +D −∆)⊗ sE ⊆ Se(X,KX +D)

where E = pDq− pD −∆q, and respectively

S0
∆(X,KX +D) =

⋂
e≥0

Se∆(X,KX +D).
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Next assume D is nef and big. Let Θamp
D denote the set of effective divisors ∆ such

that D −∆ is ample and define

S0
−(X,KX +D) =

⋂
∆∈Θamp

D

(
⋃
t∈Q+

S0
t∆(X,KX +D) ⊆ S0(X,KX +D)).

To do induction, we have the following two theorems.

Theorem 5.1. Let f : X → Y be a fibration of normal projective varieties over
an algebraically closed field k of characteristic p, and let d = dimY . Let D be a
nef and big Q-Cartier Q-divisor on X, and H, H̃ two Q-Cartier Weil divisors on Y
such that |H| defines a generically finite map and |H̃| is birational.

(i) If S0
−(Xη, KXη +D|Xη) 6= 0 then S0

−(X,KX +D + f ∗sH) 6= 0 for any s ≥ d.
(ii) If S0

−(Xη, KXη +D|Xη) is birational then S0
−(X,KX +D+ f ∗sH) is birational

for s ≥ d+ 1; and if moreover S0
−(X,KX +D+ df ∗H − f ∗H̃) 6= 0 then S0

−(X,KX +
D + f ∗dH) is birational.

Next criterion is inspired by the idea of continuous global generation (CGG)
introduced by Pareschi and Popa [PP03], which is used to treat the case of irregular
varieties.

Theorem 5.2. Let X be a smooth projective variety over an algebraically closed field
k of characteristic p, and let a : X → A be a morphism to an abelian variety. Denote
by f : X → Y the fibration arising from the Stein factorization of a : X → A. Let
D,D1, D2 be three divisors on X. Assume that D is nef, big and Q-Cartier.

(i) If S0
−(Xη, KXη + Dη) 6= 0, then for any Pα ∈ Pic0(A), H0(X,KX + pDq +

a∗Pα)) 6= 0, and there exists some Pβ ∈ Pic0(A) such that S0
−(X,KX+pDq+a∗Pβ) 6=

0.
(ii) Assume that S0

−(Xη, KXη +Dη) 6= 0, D1 is integral and for any Pα ∈ Pic0(A),

|D1 + a∗Pα| 6= ∅. Then for any Pα0 ∈ Pic0(A), S0
−(X,KX +D +D1 + a∗Pα0) 6= 0.

(iii) Assume that S0
−(Xη, KXη +Dη) is birational, both D1 and D2 are integral and

for any Pα ∈ Pic0(A), |Di + a∗Pα| 6= ∅. Then for any Pα0 ∈ Pic0(A), S0
−(X,KX +

D +D1 +D2 + a∗Pα0) is birational.
(iv) Assume that S0

−(Xη, KXη +Dη) is birational, and D1, D2 are nef and big Q-

Cartier Q-divisors such that S0
−(Xη, KXη +(Di)η) 6= 0. Then for any Pα0 ∈ Pic0(A),

S0
−(X,KX +D + (KX + pD1q) + (KX + pD2q) + a∗Pα0)) is birational.

Theorem 5.3. Let X be a minimal terminal threefold of general type over an alge-
braically closed field of characteristic p.

(1) Assume q(X) > 0. Then S0
−(X,KX + nKX) 6= 0 if n ≥ 11, and S0

−(X,KX +
nKX) is birational if n ≥ 21; and if moreover p > 2, then S0

−(X,KX + nKX) 6= 0 if
n ≥ 9, and S0

−(X,KX + nKX) is birational if n ≥ 17.

(2) Assume q(X) = 0 and X has only Gorenstein singularities. Set n0(2) =
13, n0(3) = 10, n0(5) = 9, n0(p) = 8 if p ≥ 7. Then S0

−(X,KX + nKX) 6= 0 if
n ≥ 2n0(p) + 2 and S0

−(X,KX + nKX) is birational if n ≥ 3n0(p) + 3.

To apply RR formula, we need a Miyaoka-Yau type inequality.
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• The classical Miyaoka-Yau inequality for minimal surfaces of general type in
char 0, is

3c2(X)−K2
X ≥ 0.

• For minimal threefolds in char 0, Miyaoka proved that c2(X) is pseudo-
effective, hence KX · c2(X) ≥ 0.
• In char p, Miyaoka-Yau inequality does not hold for surfaces, for minimal

surfaces [GSZ19] proved

c2(X) +
5

8
c1(X)2 ≥ 0.

which is sharp!
• In dimension three, [Zha20b] proves

c2(Z) · ρ∗KX + AK3
X ≥ 0(1)

where A =
(54n2

0+9n0)p2+(9n0+ 3
2

)p

(p−1)2 and n0 is the Cartier index of KX .

5.4. Problems.

• It is expected that there is a constant M(v) such that for any threefold X
with volume v(KX) ≥ v and any n ≥M(v), |nKX | is birational.
• Seshadri constant: Is there a number ε(d) such that, for any smooth projec-

tive variety X of dimension d and any nef and big line bundle L on X, the
Seshadri constant at very general point x ∈ X

ε(L, x) = Sup{t|µ∗L− tE is nef} ≥ ε(d).

This will give a lower bound M(d) such that for n ≥ M(d), KX + nL is
birational. In char 0, we may take ε(d) = 1

d
[EKL95].

• Effectivity for surfaces over non-algebraically closed field, which is needed if
one wants to study effectivity of threefold by induction.
• Canonical bundle formula which will be discussed later.
• Miyaoka-Yau inequality for threefold.

6. Canonical bundle formula

The canonical bundle formula is developed to treat fibrations with relatively trivial
(log-) canonical class.

6.1. The formulation in characteristic zero. Let (X,∆) be a pair. A morphism
f : (X,∆) → Y to a normal projective variety Y is a klt-trivial, respectively lc-
trivial, fibration if:

(a) f is a surjective morphism with connected fibres,
(b) (X,∆) has klt, respectively log canonical, singularities over the generic point

of Y , (c) there exists a Q-Cartier Q-divisor D on Y such that KX + ∆ ∼Q f
∗D,

(d) there exists a log resolution µ : X ′ → X of (X,∆) such that, if E is the
set of all geometric valuations over X which are defined by a prime divisor E on
X ′ such that a(E,X,∆) > −1, and if we denote Ξ′ =

∑
E a(E,X,∆)E then rank

(f ◦ µ)∗OX′(pΞ′q) = 1.
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There is ϕ ∈ K(X) such that KX + ∆ + 1
r
div(ϕ) = D. For a prime divisor P

of Y , let rP = lct(X,∆, f ∗P ). Kawamata [Kaw98] defined the discriminant part
BY =

∑
P (1− rp)P and the moduli part MY by

KX + ∆ +
1

r
div(ϕ) = f ∗(KY +BY +MY ).

In fact BY ,MY are b-divisors, that is, they are compatible with base changes.
By [Kaw98,Amb04,Amb05], for lc trivial fibration, there exists a birational mor-

phism Y ′ → Y such that for any birational transformation ν : Y ′′ → Y we have that
MY ′′ = ν∗MY ′ and MY ′ is nef. Ambro [Amb04] also proved (Y,BY ) is klt iff (X,∆)
is klt. An important conjecture: MY is semiample. This has been proved
when fibers are elliptic curves, rational curves K3 surfaces or abelian varieties or if
MY ≡ 0 ([Pro09] [Fuj03]). Remark that most known progresses are based on the
explicit construction of moduli space.

The coefficient of the MY is of great significance to effectivity problems. [Flo14]
proved that there exists N(r, b) such that NMY is integral.

The main technical ingredients in the study of canonical bundle formula are vari-
ation of Hodge structure, and remark that the positivity of the moduli part also is
a consequence of the application of VHS.

6.2. The case in characteristic p. In characteristic p, based on the moduli space
of elliptic curves and marked pointed rational curves, we have similar canonical
bundle formula as in characteristic 0. But as the geometric fibers can be singular
(not even normal or reduced), it does not make sense to consider the discriminant
part or the moduli part. In fact, even for quasi-elliptic fibration, it is easy to
construct examples f : X → C, a quasi-elliptic fibration from a surface to a curve,
such that ωX/C ∼Q −D for some effective divisor D on C.

Witaszek [Wit17] proves that: for a fibration f : (X,∆) → Y from a lc pair,
which is fibred by rational curves and such that KX +∆ ∼Q D, assuming that p > 3
or p > 2 and ∆ is big, there exists a purely inseparable morphism π : Y ′ → Y , an
effective divisor ∆Y ′ on Y ′ and a rational number t ∈ [0, 1] such that

π∗D ∼Q tπ
∗KY + (1− t)(KY ′ + ∆Y ′).

This formula follows from base change and adjunction formula. Remark that the
above formula also holds for quasi-elliptic fibration by similar strategy.

In some cases, for example when Y is of m. A. d., this kind of formula implies
nonvanishing results. But it is not enough for the study of effectivity problems.

Question 6. Can we have a refined canonical bundle formula for quasi-elliptic fibra-
tion, which can be applied to prove abundance for threefolds in lower characteristic
and study the effectivity problem?

7. Varieties with KX ≡ 0

7.1. Results in characteristic zero. Over the field of complex numbers C, if X
is a smooth projective variety X with KX ≡ 0, then KX is semiample, namely
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KX ∼Q 0, and there exists an étale cover X̂ → X such that

X̂ ∼=
∏
v

Xv × T

where Xv is simply connected Calabi-Yau variety or hyperkähler variety, and A is
an abelian variety. The strategy is explained as follows, first use Yaus solution to
the Calabi conjecture in order to equip X with a Ricci-flat Kahler metric, and then
apply the splitting theorem of Cheeger-Gromoll to split a finite étale cover of X
according to its holonomy decomposition.

If X is a singular projective variety with klt singularities and numerically trivial
canonical divisor, in a series work [GKP16,GGK19,HP19,Dru18] the authors proved
the similar decomposition theorem, it is worth mentioning that the above decompo-
sition also holds by admitting quasi-étale covers. Let me explain the techniques as
follows.

[?GGK16]: for a canonical singularity X, (1) there exists a quasi-étale cover A ×
X̃ → X, with A being an abelian variety, and q̂(X̃) = 0, and (2) the tangent
sheaf of X̃ splits into direct sum of integrable stongly stable sheaves with trivial
determinants. Here

q̂(X) := max{dimPic0(X ′)|X ′ → X is a quasi− etale cover}
is called augmented irregularity and strongly stable means the stability preserved by
any quasi-étale cover π : X ′ → X̃. (1) is essentially proved by [Kawamata85]. The
decomposition (2) relies on recent extension results for differential forms on singular
spaces [GKKP11] and the non-degeneracy of the paring [GKP16]

H0(X,Ω
[p]
X )×H0(X,Ω

[n−p]
X ).

This paper leaves the splitting problem with respect to strongly stable decomposi-
tion.

Then Druel refines the above decomposition when dimX ≤ 5, which tells that
X̃ =

∏
Yi

∏
Zi where Yi has h0(Ωq

Yi
) = 0 for any 0 < q < dimYi and Zi is symplec-

tic. And finally HP proved the decomposition for arbitrary dimensional varieties.
The rough idea is first studying the splitting property of the tangent bundle, then
proving the integrability of the factors. Finally we remark that the arguments are
highly technical involving both deep results from differential geometry and algebraic
method.

7.2. Related results in characteristic p and further questions. In positive
characteristics, the structure of this kind of variety is still mysterious. Recently
[PZ19] proved a decomposition result with additional assumption that X is globally
F -split: there exists a quasi-étale cover Z → X such that Z is the quotient of Y ×A
by the group

∏
µpi where Y has Ŷ = 0 and A is an abelian variety.

7.3. Further questions. (1) For a threefold with KX ≡ 0 and klt singularities, is
KX semiample, moreover is there an effective bound m such that mKX ∼ 0?

(2) For a variety with KX ≡ 0 and klt singularities with q̂(X) = 0, is the funda-
mental group finite?

(3) Without F -splitting assumptions, is there a similar decomposition structure?
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8. Questions

The following is expected as we mentioned before.

Question 7. Assume KX/Y + ∆ is f -semiample and (Xη̄,∆η̄) is F -regular. Is
f∗OX(a(KX/Y + ∆)) WP for sufficiently divisible?

By Patakfalvi’s result Theorem 3.7, when dimY = 1, this is known to be true in
two extremal cases where KX/Y + ∆ is f -ample or is f -trivial.

It is of special significance to study Iitaka conjecture for fibrations induced from
Albanese maps.

Question 8. Let aX : X → A be the Albanese map. Assume that κ(X) = 0. Is aX
a surjective map?

This was proved by Kawamata [Kaw81] in char 0, which plays an important role
in the study of Albanese maps. In char p, if aX is generically finite then aX is a
birational map [?HPZ17]. If fibers of aX have higher dimension, we reduce to study
Iitaka conjecture.

9. Irregular varieties

9.1. Generic vanishing.

9.2. Characterization of abelian variety.
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47 (2014), no. 5, 991–1025.

[GNT19] Yoshinori Gongyo, Yusuke Nakamura, and Hiromu Tanaka, Rational points on log Fano
threefolds over a finite field, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 12, 3759–3795.

[GSZ19] Yi Gu, Xiaotao Sun, and Mingshuo Zhou, Slope inequalities and a Miyaoka-Yau type
inequality, to appear in J. Eur. Math. Soc., arXiv:1903.04158 (2019).

[GZZ20] Yi Gu, Lei Zhang, and Yongming Zhang, Counterexamples to Fujita’s conjecture on
surfaces in positive characteristic, arXiv: 2002. 04584 (2020).



BIRATIONAL CLASSIFICATION OF VARIETIES IN CHARACTERISTIC p > 0 19

[HM06] Christopher D. Hacon and James McKernan, Boundedness of pluricanonical maps of vari-
eties of general type, Invent. Math. 166 (2006), no. 1, 1–25, DOI 10.1007/s00222-006-0504-1.

[HPS18] Christopher Hacon, Mihnea Popa, and Christian Schnell, Algebraic fiber spaces over a-
belian varieties: around a recent theorem by Cao and Păun, Local and global methods in
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