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Origins in Classical Differential Geometry

Motivational framework: sets specified by nice equation systems
C = some “smooth manifold” ⊂ IRn curve, hypersurface . . .

Tangent subspace: TC (x) furnishes the linearization of C at x
w ∈ TC (x) ⇐⇒ ∃ξ : (−ε, ε) → C with ξ(0) = x , ξ′(0) = w

i.e., w is a tangent vector at x to a curve within C

Normal subspace: NC (x) = orthogonal complement of TC (x)
v ∈ NC (x) ⇐⇒ v ·w = 0 for all w ∈ TC (x)

i.e., v is ⊥ (orthogonal) to every tangent vector w at x

(these subspaces move “smoothly” as x moves in C )



Later Ideas in Convex Geometry

Motivational framework: sets given by linear inequality systems
C = some closed convex set ⊂ IRn maybe a polyhedron . . .

a one-sided approach to tangents and normals becomes essential

Tangent vectors: the elements of TC (x) as “feasible variations”
• consider first all w at x such that x + τw ∈ C for τ ∈ [0, ε)
• then pass to the vectors w in the closure of that set

Normal vectors: the elements of NC (x)
• all vectors v such that v ·x ′ ≤ v ·x for all x ′ ∈ C

v ·(x ′ − x) ≤ 0



Polarity Replaces Orthogonality in Convex Geometry

Cones: a set K ⊂ IRn is a cone ⇐⇒
0 ∈ K and τw ∈ K for all τ > 0 when w ∈ K

Polarity: the polar of K is K ∗ =
{
v
∣∣ v ·w ≤ 0, ∀w ∈ K

}
K ∗ is a closed convex cone, (K ∗)∗ = closed convex hull of K

Orthogonality as a special case: K ∗ = K⊥ if K is a subspace

Tangent-normal polarity for convex sets C

TC (x) and NC (x) are closed convex cones polar to each other
NC (x) = TC (x)

∗, TC (x) = NC (x)
∗



Aiming Beyond Classical and Convex Analysis

Challenges: can’t define tangent vectors using line segments
can’t define normal vectors by linear inequalities

Approach to “variations” in the early days of optimization:
obtain vectors w from “curves” ξ that enter C at x ,

∃ξ : [0, ε) → C such that ξ(0) = x , ξ′(0) = w

the set of such w = the cone of “derivable” tangent vectors

Status: this concept produces the right tangent cones for many
kinds of C (convex, smooth manifold, NLP feasible set)

but it has serious limitations in a larger framework of theory



Tangent Vectors: “General” and “Regular”

General tangent cone: TC (x) from “directional” convergence
w ∈ TC (x) ⇐⇒ ∃ τν ↘ 0, xν →C x , such that 1

τν [x
ν − x ] → w
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Regular tangent cone: T̂C (x) demanding local “stability”

w ∈ T̂C (x) ⇐⇒ ∀xν →C x , ∃wν ∈ TC (x
ν) with wν → w
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Equivalently: “T̂C (x) = lim inf
x ′→C x

TC (x
′)” “inner” set limit



Normal Vectors: “General” and “Regular”

Regular normal cone: N̂C (x) from local inequalities

v ∈ N̂C (x) ⇐⇒ v ·x ′ ≤ v ·x + o( |x ′ − x | ) for x ′ ∈ C

classical “o” notation: o(t)
t → 0 as t ↘ 0, | · | = euclidean norm

General normal cone: NC (x) absorbing nearby information
v ∈ NC (x) ⇐⇒ ∃ xν →C x , vν ∈ N̂C (x

ν), such that vν → v
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Equivalently: “NC (x) = lim sup
x ′→C x

N̂C (x
′)” “outer” set limit

important history to explain: Clarke, Mordukhovich,. . .



Fundamental Tangent-Normal Relations

Cone notation: TC general, T̂C regular, NC general, N̂C regular

Central theorem of first-order variational analysis

• T̂C (x) ⊂ TC (x) with T̂C (x) convex, both cones closed
• N̂C (x) ⊂ NC (x) with N̂C (x) convex, both cones closed

N̂C (x) = TC (x)
∗ (polar), T̂C (x) = NC (x)

∗ (polar)

T̂C (x) = TC (x) ⇐⇒ N̂C (x) = NC (x)

Variational regularity: the case where regular = general
• holds for C convex or smooth manifold or nice NLP feasible set
• a basic property of sets unknown before variational analysis!

Pioneers: Clarke on tangent side, Mordukhovich on normal side
“Clarke regularity” ⇐⇒ “Mordukhovich regularity”



Implication for Boundaries and Interiors

boundary points x̄ of C are signaled by ∃ nonzero v ∈ NC (x̄)

x̄ν → x̄ ∈ C , x̄ν /∈ C

xν = projC x̄ν , xν → x̄

vν = x̄ν−xν

|x̄ν−xν | ∈ NC (x
ν), |vν | = 1

Corresponcing characterization of set interiors

x̄ ∈ intC ⊂ IRn ⇐⇒ T̂C (x̄) = all of IRn

⇐⇒ the only normal v ∈ NC (x̄) is v = 0



Regular Normals From an Optimization Perspective

Consider: maximizing a C1 function h over a closed set C ⊂ IRn

local max at x̄?

suppose xν → x̄ in C and
∃ τν ↘ 0, 1

τν [x
ν − x̄ ] → w

i.e., w ∈ TC (x̄) =⇒ ∇h(x̄)·w ≤ 0
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=⇒ ∇h(x̄) belongs to the polar cone TC (x̄)
∗ = N̂C (x̄)

Local max characterization of regular normals

v ∈ N̂C (x̄) ⇐⇒ ∃h with local max on C at x̄ and ∇h(x̄) = v
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First-Order Optimality and Its Calculus

Basic necessary condition in minimization

If a C1 function f0 has a local minimum relative at x̄ relative to a
closed set C , then −∇f0(x̄) ∈ N̂C (x̄), hence −∇f0(x̄) ∈ NC (x̄)

How useful? there must be a good “calculus” of normal cones
general normals work better for this than regular normals

Example: normal cones to an intersection of closed sets

Let C = C1 ∩ · · · ∩ Cs and let x̄ ∈ C satisfy

vi ∈ NCi
(x̄), v1 + · · ·+ vs = 0 =⇒ v1 = · · · = vs = 0

(constraint qualification). Then

NC (x̄) ⊂ NC1
(x̄) + · · ·+ NCs

(x̄) =
{
v1 + · · · vs

∣∣ vi ∈ NCi
(x̄)

}
Moreover, if every Ck is variationally regular at x̄ , then C is
variationally regular at x̄ , and the inclusion holds as an equation



Connection With Lagrange Multipliers

Constraints: C =
{
x ∈ IRn

∣∣ (f1(x), . . . , fm(x)) ∈ D
}
, fi ∈ C1

NLP case: D = (−∞, 0]× · · · × (−∞, 0]× {0} × · · · × {0}
Multiplier vectors: y = (y1, . . . , ym) ∈ IRm

Constraint qualification (CQ): at a point x̄ ∈ C

only y = (0, . . . , 0) satisfies

{
y ∈ ND(f1(x̄), . . . , fm(x̄)) with
y1∇f1(x̄) + · · ·+ ym∇fm(x̄) = 0

Normal cone formula with multipliers, under (CQ)

Let D be variationally regular at the point (f1(x̄), . . . , fm(x̄))
(e.g., convex). Then C is variationally regular at x̄ and

v ∈ NC (x̄) ⇐⇒
{
∃ y ∈ ND(f1(x̄), . . . , fm(x̄)) with
y1∇f1(x̄) + · · ·+ ym∇fm(x̄) = v



Prospects

Key feature of variational geometry: great generality

Although inspired by the one-sided effects of constraints it
covers all closed sets, regardless of any special structure

Deep applicability: from “feasible sets” to much more

Tangent cones and normal cones can be employed in the study
of closed sets that are the epigraphs of extended-real-valued
functions, or on the other hand graphs of set-valued mappings

−→ generalized differentiation of such functions/mappings

Example: second-order variational geometry

Question: how can concepts of curvature of C be articulated
very generally? Answer: by means of tangent and normals to the
graph of the normal cone mapping NC : x(∈ C ) 7→ NC (x)



Further Study

• Basics about convexity, including topics like polar cones, are
available in the book Convex Analysis (1970). But although many
of the novel ideas of variational geometry came first from the study
of convex sets, they are somewhat hidden in that book, because it
focuses more on convex functions.

The polarity between NC (x) and TC (x) is embedded in a result
about subgradients and directional derivatives. Indeed, the
notation NC (x) and TC (x) came only later, and the term “tangent
cone” isn’t even included in the index of Convex Analysis.

• The main place to learn more about the variational geometry
in this lecture is Chapter 6 of the book Variational Analysis
(1998). Chapter 2 there offers support about convexity.

It’s not necessary to study Chapters 4 and 5 deeply before
getting into Chapter 6. To the extent that ideas in those chapters
are needed, they will be introduced in Lecture 4 of this overview.


