
Difference of convex algorithms for bilevel
programs with applications in hyperparameter

selection

Jane Ye

University of Victoria, Canada

Lecture 4 at the Forum on Developments and Origins of Operations
Research

November 27, 2021
Organizers: The Mathematical Programming Branch of OR Society

of China
& Southern University of Science and Technology

Jane Ye 1 / 40



Outline

Introduction to applications of bilevel programs in
hyperparameter selection

Difference of convex algorithms for difference of convex
program

Difference of convex algorithms for bilevel programs with
applications to support vector classification.

Jane Ye 2 / 40



Bilevel programs

Consider bilevel program:

(BP) min
x∈X

F (x , y)

s.t. y ∈ S(x)

where S(x) denotes the set of optimal solutions of the lower level
problem:

(Px) min
y∈Y

f (x , y),

s.t. g(x , y) ≤ 0.

Here the defining functions may be nonsmooth.
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Applications in machine learning

It was first introduced to the model selection in machine
learning by Bennett, Hu, Ji, Kunapuli and Pang in 2006.

One of the main tasks of Machine Learning (ML) is, from
given data, to design a model which can predict the future.
Most of ML models have parameters that need to be prefixed.
Such parameters are called hyperparameters. Prediction
performance of ML models significantly relies on the choice of
hyperparameters. It has been recognized that this matter is
one of the most crucial ones in ML.

Recently there are more and more works on hyperparameter
optimization and meta-learning via bilevel optimization.
Moore et al. (Mach Learn 2011); Franceschi et al. (ICML,
2017); Franceschi et al. (ICML, 2018);Okuno and Takada
(2018); MacKay et al.(2019);Rajeswaran et al. (2019); Zügner
and Günnemann (2019); Okuno and Kawana (2020); etc.
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Model selection

Let a ∈ Rn and b ∈ R be predictor and the response variables,
respectively. Suppose we have a data set containing ℓ
observations Ω := {(a1, b1), . . . , (aℓ, bℓ)}. We try to fit a
statistical model to study the relationship between a and b.
Assuming b ≈ aT θ, we try to estimate θ.
If n ≥ ℓ, i.e., the number of predictor variables are larger than
the number of samples, the classical linear regression problem
is ill-post. Some irrelevant variables may be included in the
fitted model.
Using lasso (Tibshirani 1996), for given λ > 0 the regularized
problem is solved:

min
θ

∑
(aj ,bj )∈Ω

(aTj θ − bj)
2 + λ∥θ∥1.

Bigger λ encourage sparser optimal solution for θ. But how to
select λ so that the model is correct?
The selection of λ is often performed via T-fold cross
validation.
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T-fold cross validation

Given a data set: Ω := {(a1, b1), . . . , (aℓ, bℓ)}.
Step 1: Randomly split the data set into T (e.g., T = 3, 5, 10)
disjoint blocks with approximately equal size:

Ω = Ω1 ∪ · · · ∪ ΩT .

Step 2: For t = 1, . . . ,T , use Ωt
val = Ωt as the test set and the

rest (T − 1) blocks as the training set Ωt
trn, and compute the fitted

value θt ∈ argminθ
∑

(aj ,bj )∈Ωt
trn
(aTj θ − bj)

2 + λ∥θ∥1.
Step 3, Compute the validation mean-squared-error on the
observations in Ωt

val, i.e., MSEt(θ) :=
∑

(aj ,bj )∈Ωt
val
(aTj θ − bj)

2,

and compute the cross validation error

CV (θ1, . . . , θT ) :=
1

T

T∑
t=1

MSEt(θt).

Step 4. Repeat Steps 2 and 3 for various values of λ > 0.
Step 5. Find λ∗ that minimize the cross validation error and in the
mean time θ∗ the best fitted value.
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Cross validation as a bilevel program

In statistics, either a grid search or a path following algorithm
is performed on λ values to select the value of λ for which the
cross-validation error is smallest. But these approaches do not
scale well and have a lot of limitations.

In essence the cross validation in lasso is the following bilevel
program:

min
λ,θ1,...,θT

1

T

T∑
t=1

MSEt(θt)

λ > 0 and for each t = 1, . . . ,T

θt ∈ argmin
θ

∑
(aj ,bj )∈Ωt

trn

(aTj θ − bj)
2 + λ∥θ∥1

If the above bilevel program can be solved, then we can
obtain the optimal penalty parameter λ∗ and the best fitted
value θ∗ at once!
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Nonsmooth bilevel programs

Question: How do we solve a nonsmooth bilevel program?
Almost all algorithms require the smoothness of defining functions.
Sometimes non-smoothness can be dealt with by introducing
auxiliary variables and constraints to reformulate a nonsmooth
lower level program as a smooth one but then the number of
variables or constraints would increase. Moreover, MPEC approach
is not reliable due to the extra variables from Lagrange multipliers.
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Convexity of the value function

We say that the the lower level program

(Px) min
y∈Y

f (x , y) s.t. g(x , y) ≤ 0

is completely convex if all functions f (x , y) and g(x , y) are convex
in both variables x and y and Y is a convex set. In this case the
value function is convex and the value function constraint becomes
a difference of convex (DC) constraint:

f (x , y)− V (x) ≤ 0.
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Difference of convex optimization

Let g and h are convex functions. Consider DC program:

min f (x) := g(x)− h(x).

Let xk be given. Take ξk ∈ ∂h(xk). Then by convexity of h,

f (x) ≤ g(x) −h(xk)− ⟨ξk , x − xk⟩.︸ ︷︷ ︸
linearization of the concave part

(1)

Solve xk+1 ∈ argmin
x
{g(x)− ⟨ξ,k x − xk⟩}. (2)

f (xk+1) ≤ g(xk+1)− h(xk)− ⟨ξk , xk+1 − xk⟩ by majorization (1)

≤ g(xk)− h(xk) by mimization (2)

= f (xk).

Hence the value of f decreases monotonically in each iteration!
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Difference of Convex Algorithms (DCA)

Many functions can be represented as a difference of convex (DC)
functions: lower C 2 functions and C 1+ functions are DC functions,
and the class of DC functions is closed under many operations.
The difference of convex algorithm (DCA) (cf. review paper by
Horst and Thoai 1999) can be used to solve a DC program:

(DC) min
z∈Σ

f0(z) := g0(z)− h0(z)

s.t. f1(z) := g1(z)− h1(z) ≤ 0,

where Σ is a closed convex subset of Rd and
g0(z), h0(z), g1(z), h1(z) : Σ → R are convex functions. DCA
linearizes the concave part of the DC function. DCA converges to
a KKT point provided that

all functions are convex and Lipschitz continuous.

the extended MFCQ (EMFCQ) holds.
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Definition

Let z̄ be a feasible solution of problem (DC). We say that z̄ is a
stationary/KKT point of problem (DC) if there exists a multiplier
λ ≥ 0 such that

0 ∈ ∂g0(z̄)− ∂h0(z̄) + λ(∂g1(z̄)− ∂h1(z̄)) +NΣ(z̄),

(g1(z̄)− h1(z̄))λ = 0.
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Definition

Let z̄ be a feasible point of problem (DC). We say that
NNAMCQ/MFCQ holds at z̄ for problem (DC) if either f1(z̄) < 0
or f1(z̄) = 0 but

0 ̸∈ ∂g1(z̄)− ∂h1(z̄) +NΣ(z̄). (3)

Let z̄ ∈ Σ, we say that ENNAMCQ/EMFCQ holds at z̄ for
problem (DC) if either f1(z̄) < 0 or f1(z̄) ≥ 0 but (3) holds.

Proposition

Let z̄ be a local solution of problem (DC). If NNAMCQ/MFCQ
holds at z̄ and all functions g0, g1, h0, h1 are Lipschitz around point
z̄ , then z̄ is a KKT point of problem (DC).

Jane Ye 13 / 40



inexact proximal difference of convex algorithm (iPDCA)

Given a current iterate zk ∈ Σ, select a subgradent
ξki ∈ ∂hi (z

k), i = 1, 2.

Compute zk+1 as an approximate minimizer of the following
strongly convex subproblem

min
z∈Σ

φ̃k(z) := g0(z) −h0(z
k)− ⟨ξk0 , z − zk⟩︸ ︷︷ ︸

linearization of −h0(z) at zk

+ βk max{g1(z) −h1(z
k)− ⟨ξk1 , z − zk⟩︸ ︷︷ ︸

linearization of −h1(z) at zk

, 0}+ ρ

2
∥z − zk∥2,

where βk is a penalty parameter and ρ > 0 is a given constant.
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Inexact conditions for subproblems of iPDCA and the rule
for the penalty parameter update

Note that zk+1 is an optimal solution if and only if

0 ∈ ∂φ̃k(z
k+1) +NΣ(z

k+1).

Condition 1: dist(0, ∂φ̃k(z
k+1)+NΣ(z

k+1)) ≤ ζk , for ζk ≥ 0 :∑∞
k=0 ζ

2
k < ∞,

Condition 2:
dist(0, ∂φ̃k(z

k+1) +NΣ(z
k+1)) ≤

√
2
2 ρ∥zk − zk−1∥.

Update parameter βk+1 by the rule:

βk+1 =

{
βk + δβ, if max{βk , 1/tk+1} < ∥zk+1 − zk∥−1,

βk , otherwise.

tk+1 := max{g1(zk+1)− h1(z
k)− ⟨ξk1 , zk+1 − zk⟩, 0}.
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Algorithm 1 iP-DCA

1: Take an initial point z0 ∈ Σ; δβ > 0; an initial penalty parameter
β0 > 0, tol > 0.

2: for k = 0, 1, . . . do

1. Compute ξki ∈ ∂hi (z
k), i = 0, 1.

2. Obtain an inexact solution zk+1 of the subproblem.
3. Stopping test. Compute

tk+1 := max{g1(zk+1)− h1(z
k)− ⟨ξk1 , zk+1 − zk⟩, 0}.

Stop if max{∥zk+1 − zk∥, tk+1} < tol .
4. Penalty parameter update. Set

βk+1 =

{
βk + δβ, if max{βk , 1/tk+1} < ∥zk+1 − zk∥−1,

βk , otherwise.

5. Set k := k + 1.

3: end for
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Theorem

Suppose f0 is bounded below on Σ and the sequences {zk} and
{βk} generated by iP-DCA are bounded. Moreover suppose
functions g0, g1, h1, h0 are locally Lipschitz on set Σ. Then every
accumulation point of {zk} is a KKT point of problem (DC).

Proposition

Suppose that the iterate sequence {zk} generated by iP-DCA is
bounded. Moreover suppose functions g0, g1, h1, h0 are Lipschitz
around at any accumulation point of {zk}. Assume that
ENNAMCQ/EMFCQ holds at any accumulation points of the
sequence {zk}. Then the sequence {βk} must be bounded.
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Difference of convex bilevel program

min
x ,y

F (x , y) := F1(x , y)− F2(x , y)

s.t. x ∈ X , y ∈ S(x) := arg min
y∈Y

{f (x , y) s.t.g(x , y) ≤ 0} ,

where X ⊆ Rn and Y ⊆ Rm are nonempty closed convex sets,
g : Rn × Rm → RI is convex on an open convex set containing the
set X × Y , and the functions F1,F2, f : Rn × Rm → R are convex
on an open convex set containing the set

C := {(x , y) ∈ X × Y : g(x , y) ≤ 0}.

By Lampariello and Sagratella (2020), if f (x , y) = f1(x , y1)+ f2(y2)
where f2 is convex, f1(·, y1) is convex for every y1 and f1(x , ·) is
uniformly strongly convex for every x , then by adding a term β

2 x
T x

with large β to f (x , y), the lower level problem can be
reformulated as one with a completely convex objective.
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Standing Assumptions

(I) S(x) ̸= ∅ for all x ∈ X . For all x in an open convex set
O ⊇ X , the feasible region F(x) := {y ∈ Y : g(x , y) ≤ 0} is
nonempty and f (x , y) is bounded below on F(x).

(II) Assume that the partial derivative formula holds for each of
the lower level objective and constraint functions:

∂ϕ(x , y) = ∂xϕ(x , y)× ∂yϕ(x , y).

Some sufficient conditions for the partial derivative formula:

ϕ(x , y) = ϕ1(x) + ϕ2(y).

ϕ(x , y) is C 1 respect to either x or y .
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lasso problem as a bilevel program with a completely
convex lower level program

By change of variable r := 1
λ , lasso problem can be equivalently

reformulated as:

min
r ,θ1,...,θT

CV (θ1, . . . , θT )

r > 0 and for each t = 1, . . . ,T

θt ∈ argmin
θ

∑
(aj ,bj )∈Ωt

trn

(aTj θ − bj)
2

r
+ ∥θ∥1.

Since a square over linear function

ϕ(x, r) = ∥x∥2/r

is completely convex, the lower level is a completely convex bilevel
program.
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Support vector (SV) classification

Consider the problem of separating the set of labeled training
vectors belonging to two separate classes. Given a data set
Ω := {(aj , bj)}ℓj=1 where aj ∈ Rn, with bj = ±1 indicating the

class membership using a hyperplane, aTw − c = 0.
Given λ > 0, SV classification is to solve

min
w, c


∑

(aj ,bj )∈Ω

max(1− bj(a
T
j w − c), 0)

︸ ︷︷ ︸
classification error

+
λ

2
∥w∥2︸ ︷︷ ︸

margin error


.

• SV classification is to minimize the trade off of the number of
misclassified points and the size of the margin.
• We can also add the box constraints to w , i.e., −w̄ ≤ w ≤ w̄.
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The bilevel model for support vector (SV) classification

Given a training set Ω := {(aj , bj)}ℓj=1 where aj ∈ Rn, and the
labels bj = ±1 indicate the class membership. The bilevel model
for SV classification using T-fold cross validation (Kunapuli,
Bennett, Hu and Pang, 2008):

min
λ,w̄,w1,...wT ,c

Θ(w1, . . . ,wT , c)

:=
1

T

T∑
t=1

∑
(aj ,bj )∈Ωt

val

max(1− bj(a
T
j w

t − ct), 0)

s.t. λlb ≤ λ ≤ λub, w̄lb ≤ w̄ ≤ w̄ub, and for t = 1, . . . ,T :

(wt , ct) ∈ argmin
−w̄ ≤ w ≤ w̄

c ∈ R

 ∑
(aj ,bj )∈Ωt

trn

max(1− bj(a
T
j w − c), 0) +

λ

2
∥w∥2

 .
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The bilevel model for SV classification (Kunapuli, Bennett,
Hu and Pang, 2008)

By changing the variable λ to µ := 1
λ we can reformulate the

above SV bilevel model selection equivalently as the following
bilevel program with a completely convex lower level program

(SVBP)

min
µ,w̄,w1,...,wT ,c

Θ(w1, . . . ,wT , c)

s.t.
1

λub
≤ µ ≤ 1

λlb
, w̄lb ≤ w̄ ≤ w̄ub,

(w1, . . . ,wT , c) ∈ S(µ, w̄),

where S(µ, w̄) is the set of optimal solutions of the lower level
problem

(Pµ,w̄) min
−w̄ ≤ wt ≤ w̄

ct ∈ R
t = 1, . . . ,T


T∑
t=1

∥wt∥2

2µ
+
∑
j∈Ωt

trn

max(1− bj(a
T
j w

t − ct), 0)

 .
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Reformulation of the bilevel program as a DC program

If both f and g are completely convex, and X ,Y are convex,
then the value function of the lower level program

V (x) := inf
y∈Y

{f (x , y) | g(x , y) ≤ 0},

must be convex.

The equivalent reformulation of the DC bilevel program from
the value function approach:

(VP)
min

(x ,y)∈C
F1(x , y)− F2(x , y)

s.t. f (x , y)− V (x) ≤ 0,

where C := {(x , y) ∈ X × Y | g(x , y) ≤ 0} is a DC program.

Jane Ye 25 / 40



Difficulties

Consider the DC bilevel program in the form:

(VP)
min

(x ,y)∈C
F1(x , y)− F2(x , y)

s.t. f (x , y)− V (x) ≤ 0,

where C := {(x , y) ∈ X ×Y | g(x , y) ≤ 0} To apply the difference
of convex algorithm (DCA), cf. review paper by Horst and Thoai
1999, we need to answer the following two questions.

(a) Is the value function convex and locally Lipschitz on the
convex set X and how to obtain one element from ∂V (x) in
terms of problem data?

(b) Under what condition, the constraint qualification EMFCQ
holds?
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Lipschitz continuity and the subdifferential of the value
function

Using the convex analysis in Rockafellar (1970), we can obtain:

Under Standing assumption (I), all functions F1, F2, f and g
are convex and locally Lipschitz continuous, and the value
function V (x) is convex and locally Lipschitz continuous on X ;

For any x ∈ X and y ∈ S(x)

⋃
γ∈KT (x ,y)

(
∂x f (x , y) +

l∑
i=1

γi∂xgi (x , y)

)
⊆ ∂V (x),

where KT (x , y) denotes the set of KKT multipliers of the
lower-level problem (Px),

KT (x , y)

:=
{
γ ∈ Rl

+

∣∣∣0 ∈ ∂y f (x , y) + ∂yg(x , y)
Tγ +NY (y), g(x , y)Tγ = 0

}
.
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Motivations for studying the approximate bilevel program

Due to the value function constraint, (VP) violates
MFCQ/NNAMCQ at each feasible point.

To deal with this issue, we consider the following approximate
DC bilevel program for ϵ ≥ 0,

(VP)ϵ min
(x ,y)∈C

F1(x , y)− F2(x , y)

s.t. f (x , y)− V (x) ≤ ϵ.

The solutions of (VP)ϵ approximate a true solution of the
original bilevel program as ϵ approaches zero (Lin, Xu and JY
(2014)).

For any ϵ > 0, we can prove that the approximate program
(VP)ϵ always satisfies EMFCQ/ENNAMCQ on

C := {(x , y) ∈ X × Y : g(x , y) ≤ 0}.
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EMFCQ/ENNAMCQ for (VP)ϵ with ϵ > 0

Definition

Let (x̄ , ȳ) ∈ C . We say that NNAMCQ holds at (x̄ , ȳ) for problem
(VP)ϵ if either f (x̄ , ȳ)− V (x̄) < ϵ or f (x̄ , ȳ)− V (x̄) = ϵ but

0 /∈ ∂f (x̄ , ȳ)− ∂V (x̄)× {0}+NC (x̄ , ȳ).
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(VP)ϵ with ϵ > 0 satisfies EMFCQ at (x̄ , ȳ)

Proof. If f (x̄ , ȳ)− v(x̄) < ϵ holds, then EMFCQ holds at (x̄ , ȳ).
Now suppose that f (x̄ , ȳ)− v(x̄) ≥ ϵ and EMFCQ does not hold,
i.e.,

0 ∈ ∂f (x̄ , ȳ)− ∂V (x̄)× {0}+NC (x̄ , ȳ).

It follows from the partial subdifferentiation formula that

0 ∈
[
∂x f (x̄ , ȳ)− ∂V (x̄)

∂y f (x̄ , ȳ)

]
+NC (x̄ , ȳ). (4)

NC (x̄ , ȳ) = ∂δC (x̄ , ȳ) ⊆ ∂xδC (x̄ , ȳ)×∂yδC (x̄ , ȳ) ⊆ Rn×NC(x̄)(ȳ),

where C (x̄) := {y ∈ Y | gi (x̄ , y) ≤ 0, i = 1, . . . , l}. Thus, it
follows from (4) that

0 ∈ ∂y f (x̄ , ȳ) +NC(x̄)(ȳ),

which further implies that ȳ ∈ S(x̄). This contradicts to the
assumption that f (x̄ , ȳ)− v(x̄) ≥ ϵ > 0.
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Inexact proximal difference of convex algorithm (iPDCA)

Given a current iteration point (xk , yk), solve the lower level
problem (Pxk ) with a global minimizer ỹk and a corresponding
multiplier denoted by λk .

Select

ξk0 ∈ ∂F2(x
k , yk), ξk1 ∈ ∂x f (x

k , ỹk)+∂xg(x
k , ỹk)Tλk ⊆ ∂V (xk).

Compute (xk+1, yk+1) as an approximate minimizer of the
strongly convex subproblem for (VP)ϵ given by

min
(x ,y)∈C

F1(x , y)−F2(x
k , yk)− ⟨ξk0 , (x , y)⟩︸ ︷︷ ︸

linearization of −F2 at (xk ,yk )

+
ρ

2
∥(x , y)− (xk , yk)∥2

+ βk max{f (x , y)−f (xk , ỹk)− ⟨ξk1 , x − xk⟩︸ ︷︷ ︸
linearization of −V (x) at xk

− ϵ, 0}.

Update penalty parameter βk+1.
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Convergence theorem

Definition

We say a point (x̄ , ȳ) is a KKT point of problem (VP)ϵ with ϵ ≥ 0
if there exists µ ≥ 0 such that

0 ∈ ∂F1(x̄ , ȳ)− ∂F2(x̄ , ȳ) + µ(∂f (x̄ , ȳ)− ∂V (x̄)× {0})
+NC (x̄ , ȳ),

f (x̄ , ȳ)− V (x̄)− ϵ ≤ 0, µ (f (x̄ , ȳ)− V (x̄)− ϵ) = 0.

Theorem

Assume that the upper level objective F is bounded below on C .
Let {(xk , yk)} be an iteration sequence generated by iPDCA .
Moreover assume that KT (xk , y) ̸= ∅ for all y ∈ S(xk). Suppose
that either ϵ > 0 or ϵ = 0 and the penalty sequence {βk} is
bounded. Then any accumulation point of {(xk , yk)} is an KKT
point of problem (VP)ϵ.
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Numerical experiments on SV bilevel model selection

We conduct numerical experiments on the SV bilevel model
selection problem (SVBP).

min
µ,w̄,w1,...,wT ,c

1

T

T∑
t=1

1

|Ωt
val |

∑
j∈Ωt

val

max(1− bj(a
T
j w

t
λ,w̄ − ctλ,w̄), 0)

s.t.
1

λub
≤ µ ≤ 1

λlb
, w̄lb ≤ w̄ ≤ w̄ub,

(w1, . . . ,wT , c) ∈ S(µ, w̄),

where S(µ, w̄) is the set of optimal solutions of the lower level
problem

(Pµ,w̄) min
−w̄ ≤ wt ≤ w̄

ct ∈ R
t = 1, . . . ,T


T∑
t=1

∥wt∥2

2µ
+
∑
j∈Ωt

trn

max(1− bj(a
T
j w

t − ct), 0)

 .
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Numerical experiments on SV bilevel model selection

Given current iterate xk := (µk , w̄k), solve (Pµk ,w̄k ) and

obtain a solution ỹk := (w̃1, . . . , w̃T , c̃) ∈ S(xk) and a
corresponding KKT multiplier

(γk1,1, . . . , γ
k
1,T , γ

k
2,1, . . . , γ

k
2,T ) ∈ KT (xk , ỹk).

Since F (x , y) is convex, we have ξk0 = 0. Since both f (x , y)
and g(x , y) are smooth in variable x := (µ, w̄), ξk1 ∈ ∂V (xk)
can be calculated by

ξk1 =

(
−

∑T
t=1 ∥w̃t∥2
2(µk )2

−
∑T

t=1 γ
k
1,t −

∑T
t=1 γ

k
2,t

)
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Numerical experiments on SV bilevel model selection

Table: Description of datasets used

Dataset ℓtrain ℓtest n T

australian scale 345 345 14 3
breast-cancer scale 339 344 10 3
diabetes scale 384 384 8 3
mushrooms 4062 4062 112 3
phishing 5526 5529 68 3

The numbers of the upper level variables = the number of
hyperparameters for the datasets are n + 1. The numbers of the
lower level variables = 3(n + 1).
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Numerical experiments on SV bilevel model selection

Table: Numerical results comparing iP-DCA and MPEC approach

Dataset Method CV error Test error Time(sec)

australian scale

iP-DCA(ϵ = 0, tol = 10−2) 0.28 ± 0.03 0.15 ± 0.01 73.7 ± 106.6
iP-DCA(ϵ = 0, tol = 10−3) 0.28 ± 0.03 0.15 ± 0.01 81.2 ± 110.8
iP-DCA(ϵ = 10−2, tol = 10−2) 0.28 ± 0.03 0.15 ± 0.01 10.7 ± 6.3
iP-DCA(ϵ = 10−2, tol = 10−3) 0.28 ± 0.03 0.15 ± 0.01 128.7 ± 74.4
iP-DCA(ϵ = 10−4, tol = 10−2) 0.28 ± 0.03 0.15 ± 0.01 74.2 ± 123.8
iP-DCA(ϵ = 10−4, tol = 10−3) 0.28 ± 0.03 0.15 ± 0.01 109.0 ± 141.0
MPEC approach 0.29 ± 0.04 0.15 ± 0.01 491.2 ± 245.1

breast-cancer scale

iP-DCA(ϵ = 0, tol = 10−2) 0.06 ± 0.01 0.04 ± 0.00 53.1 ± 67.2
iP-DCA(ϵ = 0, tol = 10−3) 0.06 ± 0.01 0.04 ± 0.00 78.3 ± 73.9
iP-DCA(ϵ = 10−2, tol = 10−2) 0.06 ± 0.01 0.04 ± 0.00 15.5 ± 2.1
iP-DCA(ϵ = 10−2, tol = 10−3) 0.06 ± 0.01 0.04 ± 0.00 108.9 ± 40.4
iP-DCA(ϵ = 10−4, tol = 10−2) 0.06 ± 0.01 0.04 ± 0.01 24.6 ± 17.5
iP-DCA(ϵ = 10−4, tol = 10−3) 0.06 ± 0.01 0.04 ± 0.01 86.8 ± 59.3
MPEC approach 0.08 ± 0.01 0.04 ± 0.01 294.5 ± 98.2

diabetes scale

iP-DCA(ϵ = 0, tol = 10−2) 0.56 ± 0.03 0.24 ± 0.02 12.0 ± 13.6
iP-DCA(ϵ = 0, tol = 10−3) 0.56 ± 0.03 0.24 ± 0.02 25.9 ± 33.2
iP-DCA(ϵ = 10−2, tol = 10−2) 0.57 ± 0.03 0.24 ± 0.02 3.1 ± 0.6
iP-DCA(ϵ = 10−2, tol = 10−3) 0.56 ± 0.03 0.24 ± 0.02 62.1 ± 31.7
iP-DCA(ϵ = 10−4, tol = 10−2) 0.56 ± 0.03 0.24 ± 0.02 12.7 ± 19.7
iP-DCA(ϵ = 10−4, tol = 10−3) 0.56 ± 0.03 0.24 ± 0.02 39.2 ± 45.7
MPEC approach 0.59 ± 0.03 0.25 ± 0.02 346.7 ± 216.9
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Numerical experiments on SV bilevel model selection

Table: Numerical results of iP-DCA on datasets “mushrooms” and
“phishing” with tol = 10−2

Dataset Method CV error Test error Time(sec)

mushrooms
iP-DCA(ϵ = 0) 6.36e-04 ± 5.94e-04 0 ± 0 334.3 ± 346.1
iP-DCA(ϵ = 10−2) 1.53e-03 ± 3.85e-03 3.57e-04 ± 1.34e-03 109.3 ± 35.2
iP-DCA(ϵ = 10−4) 6.38e-04 ± 6.08e-04 0 ± 0 162.9 ± 27.4

phishing
iP-DCA(ϵ = 0) 0.29 ± 0.00 0.09 ± 0.00 357.9 ± 95.2
iP-DCA(ϵ = 10−2) 0.29 ± 0.00 0.09 ± 0.00 222.1 ± 18.9
iP-DCA(ϵ = 10−4) 0.29 ± 0.00 0.09 ± 0.00 215.4 ± 46.5

The number of hyperparameters for the datasets “mushrooms”
and “phishing” are n + 1 = 112 and 69 respectively.
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An open source Python version of our algorithm on SV bilevel
model selection is provided on github.com/SUSTech-Optimization.

Jane Ye 39 / 40



- Thank You -

Jane Ye 40 / 40


