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Bilevel programs

(BP) min
x ,y

F (x , y)

s.t. y ∈ S(x)

where S(x) denotes the set of solutions of the lower level problem:

(Px) min
y∈Y (x)

f (x , y).

where Y (x) := {y |g(x , y) ≤ 0}.
In this talk we assume all functions F , f and g are smooth.
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Bilevel Programs

Suppose that for each x , the lower level problem (Px) has a unique
solution y(x). Then by substituting y(x) into the upper level, the
bilevel program becomes an one-level optimization problem

min
x

F (x , y(x)).

If y(x) is a “nice” function of x , then perhaps the above problem
can be solved.
But if the lower level problem has multiple solutions, then there are
two versions of the bilevel program: optimistic and pessimistic.

• Optimistic: min
x ,y

{F (x , y) : y ∈ S(x)}.

• Pessimistic: min
x

max
y∈S(x)

F (x , y).

In this talk we only deal with the optimistic case.
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Applications in economics

The first formulation of a simplier case of the bilevel program
was introduced by Stackelberg (1934). Hence it is known as a
Stackelberg game in economic game theory.

The classical principal-agent/moral hazard problem in
economics is a bilevel program: This is the situation where the
principal can only observe the outcome of the agent’s action
but not the action itself. How can the principal design a
contract in order to maximize the expected utility subject to
the optimizing behavior of the agent?

Nobel prize has been awarded twice for study of the moral
hazard problem. Vickrey and Mirrlees shared the 1996 Nobel
prize in economics which was awarded for their fundamental
contributions to the economic theory of incentives under
asymmetric information. Holmström and Hart shared the
2016 Nobel prize in economics which was awarded for their
fundamental contributions to contract theory.
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Applications in machine learning

The bilevel program was first introduced to the optimization
community by Bracken and McGill (1973).

It was first introduced to the model selection in machine
learning by Bennett, Hu, Ji, Kunapuli and Pang in 2006.

Recently there are more and more work on hyper-parameter
learning via bilevel optimization:

min
θ,λ

F (θ)

s.t. θ ∈ argmin
θ′

f (θ′) +
r∑

i=1

λiPi (θ
′)︸ ︷︷ ︸

lower level training problem

,

where Pi (θ) are penalty functions.

Jane Ye 6 / 34



Bilevel programs where the lower level is
unconstrained
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Bilevel program: lower level unconstrained case

(BP) minF (x , y) s.t. y solves min
y ′

f (x , y ′).

If f is convex and smooth in y , then (BP) is equivalent to the
single-level problem:

(SP) : min F (x , y)

s.t. 0 = ∇y f (x , y)

If around point (x̄ , ȳ), the solution of the lower level S(x) = {y(x)}
is a singleton, then locally around (x̄ , ȳ), (BP) is equivalent to
minx F (x , y(x)). If one can either solve y(x) explicitly or have an
expression for ∇y(x), then one may solve the problem (BP)
numerically. But these assumptions are usually not satisfied.
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The first order approach for nonconvex lower level case

Consider the case where f is not convex in

BP minF (x , y) s.t. y solves min
y ′

f (x , y ′).

The first order approach replaces the lower level problem by
its first order condition:

SP : min F (x , y)

s.t. 0 = ∇y f (x , y)

Question: Must an optimal solution of BP always be a
stationary point of SP?

If yes, we may use SP to find an candidate for the optimal
solution of BP. If not, then we may not be able to find a
solution of BP by solving SP.

The answer is no!
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Mirrlees’ example

(BP) min F (x , y) := (x − 2)2 + (y − 1)2

s.t. y solves min
y

f (x , y) := −xe−(y+1)2 − e−(y−1)2 .

The first order condition for minimization of the lower level
objective function with respect to y is

x(y + 1)e−(y+1)2 + (y − 1)e−(y−1)2 = 0.

Hence, each x and its stationary point of the lower level problem
are related by the equation

x =
1− y

1 + y
e4y ,

which is a smooth and connected curve.
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(1, 0.957) is the unique optimizer for (BP) while the three
stationary points are (1.99, 0.895), (2.19, 0.42), (1.98,−0.98).

The optimal solution of (BP) is not a stationary point of (SP)!
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Implicit function reformulation

Implicit function reformulation (Outrata 1990, Dempe 1992):
If S(x) = {y(x)} locally around (x̄ , ȳ), then locally

min
x ,y

F (x , y)

s.t. y ∈ S(x)
⇐⇒ min

x
F (x , y(x))

To derive a KKT condition or a numerical algorithm, the
solution map y(x) needs to be at least Lipschitz continuous.
Hence very strong conditions such as LICQ and the strong
second order sufficient condition for the lower level problem is
required.

Taking derivative respect to x and applying the chain rule to
0 = ∇y f (x , y), we have

0 = ∇2
xy f (x , y) +∇2

yy f (x , y)∇y(x).

So ∇y(x) = −∇2
yy f (x , y)

−1∇2
xy f (x , y) if ∇2

yy f (x , y) is
invertible.

Jane Ye 12 / 34



The value function approach: lower level unconstrained
case

Define the value function V (x) := inf
y
{f (x , y)}.

The following single level problem is equivalent to (BP):

(VP) min
x ,y

F (x , y)

s.t. f (x , y)− V (x) ≤ 0.

Difficulty 1: The value function V (x) is an implicitly defined
function. In general it is nonsmooth.

Difficulty 2: Even if all defining functions are smooth, (VP) is
still a nonsmooth optimization problem. Even if all functions
including the value function are Lipschitz continuous, the
usual constraint qualification such as the nonsmooth MFCQ
never hold (JY and Zhu 1995).
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Sensitivity analysis of the value function: unconstrained
case

Suppose the lower level problem is unconstrained:

(Px) : min
y

f (x , y)

and f is convex in y .

The first order condition 0 = ∇y f (x , y) is necessary and
sufficient for y ∈ S(x).

Let ȳ ∈ S(x̄). If the Hessian matrix ∇2
yy f (x , y) is nonsingular

at (x̄ , ȳ), then by the classical implicit function theorem, the
solution mapping S(x) = {y(x)} is single-valued around x̄
and y(x) is a C 1 function around x̄ . Hence

V (x) = f (x , y(x)) for all x around x̄ .

So by the chain rule,

∇V (x̄) = ∇x f (x̄ , ȳ)) +∇y f (x̄ , ȳ)︸ ︷︷ ︸
=0

∇y(x̄) = ∇x f (x̄ , ȳ).
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Sensitivity analysis of the value function: Danskin’s
Theorem

Suppose the lower level problem is:

(Px) : min
y∈Y

f (x , y),

where Y is a compact set. Then by Danskin’s Theorem, the value
function is Lipschitz continuous and the Clarke subdifferential of
the value function is

∂cV (x) = co{∇x f (x , y) : y ∈ S(x)}.
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The nonsmooth MFCQ for (VP) fails at each point of the
feasible region!

(VP) min
x ,y

F (x , y)

s.t. f (x , y)− V (x) ≤ 0

For any feasible solution (x̄ , ȳ), one always have
f (x̄ , ȳ)− V (x̄) = 0. In this case the nonsmooth LICQ is the same
as the nonsmooth MFCQ and is equivalent to

0 ̸∈ ∇f (x̄ , ȳ)− ∂cV (x̄)× {0}.

But a feasible solution (x̄ , ȳ) of (VP) must be a solution to the
following problem:

min
x ,y

{f (x , y)− V (x)}.

By the optimality condition, we must have

0 ∈ ∇f (x̄ , ȳ)− ∂cV (x̄)× {0}.
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The value function approach may fail!

Why?

minF (x , y) ⇐⇒ min F (x , y)

s.t. y ∈ argmin
y

f (x , y) s.t. f (x , y)− V (x) ≤ 0.

If V (x) is Lipschitz continuous at x̄ , then KKT condition is

0 ∈ ∇xF (x̄ , ȳ) + µ(∇x f (x̄ , ȳ)− ∂cV (x̄))

0 = ∇yF (x̄ , ȳ) + µ∇y f (x̄ , ȳ)︸ ︷︷ ︸
=0

which is true only if ∇yF (x̄ , ȳ) = 0.

It does not hold for Mirrlees’ problem since
F (x , y) = (x − 2)2 + (y − 1)2,Fy (x , y) = 2(y − 1), ȳ = 0.957!
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The combined approach (JY and Zhu, 2010) for the lower
level unconstrained case

(CP) : min F (x , y)

s.t. f (x , y)− V (x) ≤ 0

0 = ∇y f (x , y)

The KKT system holds for (CP) if there are µ ≥ 0, β s.t.

0 ∈ ∇xF (x̄ , ȳ) + µ(∇x f (x̄ , ȳ)− ∂cV (x̄))

+∇2
xy f (x̄ , ȳ)

Tβ,

0 = ∇yF (x̄ , ȳ) +∇2
yy f (x̄ , ȳ)

T︸ ︷︷ ︸
≥0

β,

The optimal solution for Mirrlees’ problems is a KKT point of
(CP) with µ = 2.05, β = 0.04918.
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The combined approach with second order condition (Ma,
Yao, JY and Zhu, 2021)

Adding the necessary optimality condition of the lower level
problem, (BP) is obviously equivalent to the combined program
with the second order condition:

(CPSOC ) min F (x , y)

s.t. f (x , y)− V (x) ≤ 0,

0 = ∇y f (x , y),

∇2
yy f (x , y) ∈ Sm+,

where Sm+ is the positive semi-definite matrix cone. It is obvious
that

KKT for (VP) =⇒ KKT for (CP) =⇒ KKT for (CPSOC ).
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Bilevel programs where the lower level is
constrained
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The MPEC approach for bilevel program with an inequality
constrained lower level problem

For each x , if the lower level problem

(Px) : min
y

f (x , y) s.t. g(x , y) ≤ 0

is convex and the Slater condition holds, then it is necessary
and sufficient for the KKT condition

∃λ ≥ 0, 0 = ∇y f (x , y) +∇yg(x , y)
Tλ, 0 ≤ λ ⊥ −g(x , y) ≥ 0

to hold at a solution y ∈ S(x).

It is popular to solve the mathematical program with
equilibrium/complementarity constraints (MPEC/MPCC):

(MPCC ) min
x ,y ,λ

F (x , y)

s.t. 0 = ∇y f (x , y) +∇yg(x , y)
Tλ,

0 ≤ λ ⊥ −g(x , y) ≥ 0.

instead.
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Three issues arised using this approach:

Issue (a): The approach is only applicable if the lower leve
problem are convex: counter example: Mirrlees’ example.

Issue (b): The condition

0 ≤ λ ⊥ −g(x , y) ≥ 0

is a complementarity constraint. If we treat it as equality and
inequality constraints

λ ≥ 0, g(x , y) ≤ 0, ⟨λ, g(x , y)⟩ = 0,

then the usual constraint qualification such as Mangasarian
Fromovitz constraint qualification (MFCQ) never hold.

Issue (c): If the lower level has multiple multipliers, then a
local solution of MPCC may not recover a local solution of
the original bilevel program (Dempe and Dutta (2012)).
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The value function approach

The following single level problem is equivalent to (BP):

(VP) min
x ,y

F (x , y)

s.t. f (x , y)− V (x) ≤ 0,

g(x , y) ≤ 0,

where V (x) := inf
y
{f (x , y) : g(x , y) ≤ 0} is the value function.

Difficulty 1: The value function V (x) is an implicitly defined
function. In general it is nonsmooth.

Difficulty 2: Even if all defining functions are smooth, (VP) is
still a nonsmooth optimization problem. Even if all functions
including the value function are Lipschitz continuous, the
usual constraint qualification such as the nonsmooth MFCQ
never hold (JY and Zhu 1995).
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Sensitivity analysis of value functions: constrained with
unique solution and unique multiplier case

If S(x) = {y(x)} and y(x) is C 1, then by the chain rule,

∇V (x) = ∇x f (x , y(x)) +∇y f (x , y(x))∇y(x).

Suppose KKT condition holds and the multiplier is unique and
is a smooth function λ(x). Then by differentiating the
complementary slackness condition, g(x , y)Tλ = 0 we can get

0 = ∇xg(x , y(x))
Tλ(x) +∇yg(x , y(x))

Tλ(x)︸ ︷︷ ︸
=−∇y f (x ,y(x))

∇y(x).

Hence

∇V (x) = ∇x f (x , y(x)) +∇xg(x , y(x))
Tλ(x).
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Sensitivity analysis of value functions: constrained case

Let KT(x , y) denotes the set of KKT multipliers for problem
(Px) at y .

By Gauvin (1979), if MFCQ holds at each y ∈ S(x) and the
feasible region is uniformly bounded, then the value function
is Lipschitz continuous at x and

∂cV (x) ⊆ co
⋃

y∈S(x),λ∈KT(x ,y)

{∇x f (x , y) +∇xg(x , y)
Tλ},

where KT(x , y) denotes the set of KKT multipliers at
y ∈ S(x).

Shaper estimates under weaker assumptions are given in Guo,
Lin, JY and Zhang (2014).
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NNAMCQ for (VP) fails at each point of the feasible
region!

Any feasible solution (x̄ , ȳ) of (VP) must be a solution to the
following problem:

min
x ,y

f (x , y)− V (x) s.t.g(x , y) ≤ 0.

By the optimality condition, we must have η ≥ 0 such that

0 ∈ ∂(f − V )(x̄ , ȳ) +∇g(x̄ , ȳ)Tη, g(x̄ , ȳ)Tη = 0.

This means that (1, η) is a nonzero abnormal multiplier for (VP).
So NNAMCQ for (VP) fails.
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The combined approach

Combined program with KKT condition (JY-Zhu (2010)):

(CP) min
x ,y ,u

F (x , y)

s.t. f (x , y)− V (x) ≤ 0,

∇y f (x , y) + u∇yg(x , y) = 0,

g(x , y) ≤ 0, u ≥ 0, uTg(x , y) = 0.

Combined program with Fritz John condition or Bouligand
(B)-condition (Ke, Yao, JY and Zhang, 2021) or the second
order condition (Ma, Yao, JY and Zhang, 2021).

By B-condition, we mean 0 ∈ ∇y f (x , y) + N̂Y (x)(y).

It is easier for the resulting KKT condition to hold than the
one based on the value function approach.
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Since the value function constraint f (x , y)− V (x) ≤ 0 is actually
an equality constraint (the strict inequality f (x , y)− V (x) < 0
never hold),

NNAMCQ/nonsmooth MFCQ fails for (VP)
and (CP)!
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Partial calmness condition

Definition (JY and Zhu (1995)): (BP) is said to be partially
calm at (x̄ , ȳ) if (x̄ , ȳ) is a local solution to the partially
penalized problem for some µ ≥ 0:

min
x ,y

F (x , y) + µ(f (x , y)− V (x))

s.t. g(x , y) ≤ 0.

JY and Zhu (1995) proved that if the lower level objective
function and the constraints are jointly linear then BP is
partially calm.

Some sufficient conditions for partial calmness have been
derived such as uniform weak sharp minimum, uniform
parametric error bounds (JY, Zhu and Zhu 1997 and JY
1998), Directional quasi-/pseudo-normality (Bai, JY and
Zhang 2019), Relaxed constant positive linear dependence
constraint qualification (Xu and JY 2020).
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Partial calmness condition

Basic features of the partial calmness condition:

the partial calmness condition allows one to partially penalize
the value function constraint f (x , y)− V (x) ≤ 0 to the
objective function. Consequently, the usual constraint
qualifications can be applied to the rest of the constraints.

proposed for the value function reformulation (JY-Zhu
(1995)), the combined program with KKT condition (JY-Zhu
(2010)), and the combined program with FJ condition and
B-condition (Ke-Yao-JY-Zhang (2021)) and the combined
program with second order condition (Ma, JY, Yao and Zhang
(2021)).

How stringent is the partial calmness condition?

Recently in Ke-Yao-JY-Zhang (2021), we have shown that at
least for the case where x is one-dimensional, the partial
calmness for the combined program is a generic condition
while the one for the value function reformulation is not.
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Semi-infinite programming reformulation

y ∈ S(x) ⇐⇒ g(x , y) ≤ 0 and f (x , z)− f (x , y) ≥ 0 ∀z ∈ Y (x)

• When all functions are polynomials and KKT condition holds at
each y ∈ S(x), we can find a multiplier of the lower level problem
as a polynomial or rational function of (x , y), denoted by λ(x , y).
• The bilevel program is equivalent to the generalized SIP:

(SIP) min
x ,y

F (x , y)

s.t. f (x , z)− f (x , y) ≥ 0 ∀z ∈ Y (x),

∇y f (x , y) + λ(x , y)∇yg(x , y) = 0,

g(x , y) ≤ 0, λ(x , y) ≥ 0, λ(x , y)Tg(x , y) = 0.

• Based on this reformulation recently we have proposed a
numerical algorithm to globally solve the polynomial bilevel
program in Nie, Wang, JY and Zhong, (2021) .
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- Thank You -
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