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CONTROLLED SWEEPING PROCESS

Denote by (P ) the following optimal control problem

minimize J[x, u] := ϕ
(
x(T )

)
over pairs (x(·), u(·)) of measurable controls u(t) and absolutely
continuous trajectories x(t) on the time interval [0, T ] satisfying
the perturbed controlled sweeping/Moreau differential inclusion

ẋ(t) ∈ −N
(
x(t);C

)
+ g

(
x(t), u(t)

)
a.e. t ∈ [0, T ], x(0) := x0 ∈ C ⊂ IRn

subject to the pointwise constraints on control functions

u(t) ∈ U ⊂ IRd a.e. t ∈ [0, T ]

The sweeping set C is a convex polyhedron given by

C :=
s⋂

j=1

Cj with Cj :=
{
x ∈ IRn

∣∣∣ 〈xj∗, x〉 ≤ cj}
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and the normal cone to it in any x ∈ IRn is understood in the
classical sense of convex analysis

N
(
x;C

)
:=

{
v ∈ IRn

∣∣∣ 〈v, y − x〉 ≤ 0, y ∈ C
}

if x ∈ C
N
(
x;C

)
:= ∅ otherwise

The latter yields the pointwise state constraints

〈xj∗, x(t)〉 ≤ cj for all t ∈ [0, T ], j = 1, . . . , s

Problem (P ) belongs to the most difficult one in control theory
being governed by discontinuous differential inclusions with the
simultaneous presence of hard/pointwise constraints on both
state and control functions

Some partial results on necessary optimality conditions for (P )
were obtained during very recent years in the cases where either
U = IRd with absolutely continuous controls (Cao-BM 2016-
19), or when C is strictly convex and smooth of higher order
(Arround-Colombo 2018, de Pinho et al. 2019)



FEASIBLE AND LOCALLY OPTIMAL SOLUTIONS

By a feasible solution to (P ) we understand a pair (u(·), x(·))
such that u(·) is measurable and that x(·) ∈ W1,2([0, T ], IRn)
subject to the above constraints. The set of feasible solutions
is nonempty under mild assumptions.

DEFINITION A feasible pair (x̄(·), ū(·)) for (P ) is a W1,2×L2-
local minimizer for this problem if there is ε > 0 such that
J[x̄, ū] ≤ J[x, u] for all the feasible pairs (x(·), u(·)) satisfying∫ T

0

(
‖ẋ(t)− ˙̄x(t)‖2 + ‖u(t)− ū(t)‖2

)
dt < ε

It is clear that this notion of local minimizers for (P ) includes, in
the framework of sweeping control problems, strong C×L2-local
minimizers and occupies an intermediate position between the
conventional notions of strong and weak minima in the calculus
of variations and optimal control

2



STANDING ASSUMPTIONS

The listed assumptions are essentially simplified in comparison

be those in [Colombo-BM-Nguyen 2020]

(H1) The control set U is compact and convex in IRd, and the

image set g(x, U) is convex in IRn

(H2) The cost function ϕ : IRn → IR is C1-smooth around x̄(T )

(H3) The perturbation mapping g : IRn×IRd → IRn is C1-smooth

around (x̄(·), ū(·)) and satisfies the sublinear growth condition

‖g(x, u)‖ ≤ β
(
1 + ‖x‖

)
for all u ∈ U with some β > 0
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(H4) The vertices xj∗ of the polyhedron satisfy the linear inde-

pendence constraint qualification[ ∑
j∈I(x̄)

αjx
j
∗ = 0, αj ∈ IR

]
=⇒

[
αj = 0 for all j ∈ I(x̄)

}
along the trajectory x̄ = x̄(t) as t ∈ [0, T ], where I(x̄) := {j ∈
{1, . . . , s} | 〈xj∗, x̄〉 = cj}



DISCRETE APPROXIMATIONS OF FEASIBLE SOLUTIONS

Given any m ∈ IN := {1,2, . . .}, consider the discrete mesh

∆m :=
{

0 = t0m < t1m < . . . < t2mm = T
}

with hm := t(k+1)m−tkm
on [0, T ] and the sequence of discrete-time inclusions approxi-

mating the controlled sweeping process

x(k+1)m ∈ xkm+hm
(
g(xkm, ukm)−N(xkm;C)

)
as k = 0, . . . ,2m−1

over discrete pairs (xm, um) = (x1m, . . . , x2mm, u0m, u1m, . . . , u(2m−1)m)

with x0m = x0 ∈ C and the control constraints

um =
(
u0m, u1m, . . . , u(2m−1)m

)
∈ U

Denote by Ikm := [t(k−1)m, tkm) for k = 1, . . . ,2m the corre-

sponding subintervals of [0, T ]
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STRONG CONVERGENCE FOR FEASIBLE SOLUTIONS

Let (x(·), u(·)) be a feasible solution to (P )

THEOREM Assume that ū(·) is of bounded variation (BV)
with a right continuous representative on [0, T ]. Then there
exist sequences of unit vectors sequences z

jk
m → x

j
∗, vectors

c
jk
m → cj as m→∞, and state-control pairs (x̄m(t), ūm(t)), 0 ≤
t ≤ T , for which we have:

(a) The sequence of controls ūm : [0, T ] → U , which are con-
stant on each interval Ikm, converges to ū(·) strongly in L2([0, T ]; IRd)

(b) The sequence of continuous state mappings x̄m : [0, T ] →
IRn, which are affine on each interval Ikm, converges strongly
in W1,2([0, T ]; IRn) to x̄(·) and satisfy the inclusions

x̄m(tkm) = x̄(tkm) ∈ Ckm for each k = 1, . . . ,2m with x̄m(0) = x0
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where the perturbed polyhedra Ckm are given by

Ckm :=
s⋂

j=1

{
x ∈ IRn

∣∣∣ 〈zjkm , x〉 ≤ cjkm}, k = 1, . . . ,2m, C0m := C

(c) For all t ∈ (t(k−1)m, tkm) and k = 1, . . . ,2m we have

˙̄xm(t) ∈ −N
(
x̄m(tkm);Ckm

)
+ g

(
x̄m(tkm), ūm(t)

)



DISCRETE APPROXIMATIONS OF OPTIMAL SOLUTIONS

THEOREM Let (x(·), u(·)) be a W1,2 × L2-local minimizer
to (P ) in the framework of the previous theorem. Then for
each m ∈ IN the pair (x̄m(·), ūm(·)) can be chosen so that its
restriction on the discrete mesh ∆m is an optimal solution to
the discrete sweeping control problem (Pm) of minimizing the
cost functional

Jm[xm, um] : = ϕ
(
xm(T )

)
+

1

2

2m−1∑
k=0

∫ t(k+1)m

tkm

(∥∥∥∥x(k+1)m − xkm
hm

− ˙̄x(t)
∥∥∥∥2

+
∥∥∥ukm − ū(t)

∥∥∥2
)
dt

over all pair (xm, um) satisfying the above constraints and the
W1,2 × L2-localization constraint

2m−1∑
k=0

∫ t(k+1)m

tkm

(∥∥∥∥x(k+1)m − xkm
hm

− ˙̄x(t)
∥∥∥∥2

+
∥∥∥ukm − ū(t)

∥∥∥2
)
dt ≤

ε

2
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NECESSARY CONDITIONS FOR SWEEPING PROCESSES

THEOREM Let (x̄(·), ū(·)) be a W1,2 × L2-local minimizer

for (P ). Then there exist a multiplier λ ≥ 0, a measure γ =

(γ1, . . . , γn) ∈ C∗([0, T ]; IRn), adjoint arcs p(·) ∈W1,2([0, T ]; IRn),

q(·) ∈ BV ([0, T ]; IRn) such that λ+ ‖q(0‖+ ‖p(T )‖ > 0 and the

following conditions are satisfied

• Primal velocity representation

− ˙̄x(t) =
s∑

j=1

ηj(t)xj∗ − g
(
x̄(t), ū(t)

)
for a.e. t ∈ [0, T ]

where ηj(·) ∈ L2([0, T ]; IR+) is uniquely determined by and well

defined at t = T

• Adjoint system

ṗ(t) = −∇xg
(
x̄(t), ū(t)

)∗
q(t) for a.e. t ∈ [0, T ]

7



where the dual arcs q(·) and p(·) are precisely connected by

q(t) = p(t)−
∫

(t,T ]
dγ(τ)

which holds for all t ∈ [0, T ] except at most a countable subset
• Maximization condition〈
ψ(t), ū(t)

〉
= max

{〈
ψ(t), u

〉∣∣∣ u ∈ U} with ψ(t) := ∇ug
(
x̄(t), ū(t)

)∗
q(t) for a.e. t ∈ [0, T ]

• Complementarity conditions〈
x
j
∗, x̄(t)

〉
< cj =⇒ ηj(t) = 0 and ηj(t) > 0 =⇒

〈
x
j
∗, q(t)

〉
= cj

for a.e. t ∈ [0, T ] including t = T and for all j = 1, . . . , s
• Right endpoint transversality conditions

−p(T ) = λ∇ϕ
(
x̄(T )

)
+

∑
j∈I(x̄(T ))

ηj(T )xj∗,
∑

j∈I(x̄(T ))

ηj(T )xj∗ ∈ N
(
x̄(T );C

)
• Measure nonatomicity condition: If t ∈ [0, T ) and 〈xj∗, x̄(t)〉 <
cj for all j = 1, . . . , s, then there is a neighborhood Vt of t in
[0, T ] such that γ(V ) = 0 for all the Borel subsets V of Vt



CONTROLLED MOBILE ROBOT MODEL WITH OBSTACLES

This model concerns n mobile robots (n ≥ 2) identified with
safety disks in the plane of the same radius R. A simula-
tion/uncontrolled version of it was suggested by Hedjar and
Bounkhel (2014). The goal of each robot is to reach the tar-
get by the shortest path during a fixed time interval [0, T ] while
avoiding the other n−1 robots that are treated by as obstacles
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SWEEPING CONTROL DESCRIPTION OF ROBOT MODEL

minimize J[x, u] :=
1

2

∥∥∥x(T )
∥∥∥2

subject to the constraints{
−ẋ(t) ∈ N

(
x(t);C

)
− g

(
x(t), u(t)

)
x(0) = x0 ∈ C, u(t) ∈ U a.e. on [0, T ]

where x = (x1, . . . , xn) ∈ IR2n, u = (u1, . . . , un) ∈ IRn,

g
(
x(t)

)
:= −

(
s1 cos θ1, s1 sin θ1, . . . , sn cos θn, sn sin θn

)
∈ IR2n

where si denotes the speed of robot i under the crucial noncol-

lision condition in contact

‖xi − xj‖ ≥ R for all i, j ∈ {1, . . . , n}
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The sweeping set C is defined by

C :=
{
x ∈ IR2n

∣∣∣ 〈xj∗, x〉 ≤ cj, j = 1, . . . , n− 1
}

with cj := −2R and with the n− 1 vertices of the polyhedron

x
j
∗ := ej1 + ej2 − e(j+1)1 − e(j+1)2 ∈ IR

2n, j = 1, . . . , n− 1

where eji are the vectors in the form

e :=
(
e11, e12, e21, e22, . . . , en1, en2

)
∈ IR2n

with 1 at only one position of eji and 0 at all the other positions

The obtained necessary optimality conditions allow us to derive

verifiable relationships for optimal controls and trajectories in

generality and then completely solve the model in the case of

one obstacle



CONTROLLED MODEL OF PEDESTRIAN TRAFFIC FLOWS

Now we formulate a continuous-time, deterministic, and opti-
mal control version of the pedestrian traffic flow model through
a doorway for which a stochastic, discrete-time, and simula-
tion (uncontrolled) counterpart was originated by Lovas (1994).
Here we formalize the dynamics via a perturbed sweeping pro-
cess with constrained controls in perturbations that should be
determined to ensure the desired performance

In the model we have n pedestrians xi ∈ IR, i = 1, . . . , n as n ≥ 2
that are identified with rigid disks of the same radius R going
through a doorway
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DESCRIPTION VIA A CONTROLLED SWEEPING PROCESS

Sweeping dynamics

ẋ(t) ∈ −N(x;Q0) + S(x) for a.e. t ∈ [0, T ], x(0) = x0

where Q0 is the set of admissible configurations given via nonover-
lapping conditions by

Q0 :=
{
x =

(
x1, . . . , xn

)
∈ IRn

∣∣∣ xi+1 − xi ≥ 2R for all i, j ∈ {1, . . . , n}
}

and where S(x) is the spontaneous velocity of the pedestrians
at x ∈ Q0

S(x) :=
(
S0(x1), . . . , S0(xn)

)
with x;S0(x) = s0∇D(x), x ∈ Q0

with D(x) standing for the distance from the position x =
(x1, . . . , xn) ∈ Q0 to the doorway and with s0 = ‖S0(x)‖. The
additive control term is described by

g
(
x(t), u(t)

)
:=

(
s1u

1(t), . . . , snu
n(t)

)
, t ∈ [0, T ]
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where si denotes the speed of the pedestrian i ∈ {1, . . . , n}. The

main difference from the crowd motion model is the presence

of constraints on controls in the form

u(t) ∈ U a.e. on [0, T ] (1)

defined via a specified convex and compact set U ⊂ IRn. The

The cost functional is

minimize J[x, u] :=
1

2
‖x(T )‖2

meaning the minimization of the distance from all the pedes-

trians to the doorway at the origin

The obtained necessary optimality conditions involving the new

Maximum Principle provide verifiable relationships in the gen-

eral model which allow us to fully calculate optimal controls for

models with two and three participants
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