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NEWTONIAN METHODS FOR SMOOTH FUNCTIONS

First consider the unconstrained optimization problem

minimize φ(x) subject to x ∈ IRn

with C2-smooth objective function φ. The classical Newton method

exhibits the local convergence with a quadratic rate provided that

∇2φ(x̄) is positive-definite. To achieve the global convergence, var-

ious line search procedures are used

xk+1 := xk + τkd
k with −∇φ(xk) = Hkd

k

where Hk is an appropriate approximation of the Hessian ∇2φ(x̄) for

quasi-Newton methods. The Levenberg-Marquardt method

Hk := ∇2φ(xk) + µkI with µk := c∥∇φ(xk)∥

works when ∇2φ(xk) is merely positive-semidefinite.
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MAJOR GOALS

Replacing the Hessian ∇2φ by its coderivative-based generalized

Hessian (second-order subdifferential) ∂2φ, pursue the following:

• Design and justify the globally convergent generalized damped

Newton method with the backtracking line search for unconstrained

problems of C1,1 optimization.

• Design and justify the globally convergent Levenberg-Marquardt

method with the backtracking line search for unconstrained prob-

lems of C1,1 optimization.

• Using forward-backward envelopes, extend both coderivative-based

generalized Newton methods to problems of convex composite op-

timization encompassing problems with constraints.

• Solving Lasso problems by the developed generalized Newton al-

gorithms with numerical experiments and comparison with other

first-order and second-order algorithms of optimization.
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NORMALS, CODERIVATIVES, SUBGRADIENTS

See [M06,M18,RW98] for more details and references.
The (limiting) normal cone to Ω ⊂ IRn at x̄ ∈ Ω from

NΩ(x̄) :=
{
v
∣∣∣ ∃xk → x̄, αk ≥ 0, wk ∈ ΠΩ(xk), α(xk − wk) → v

}
where ΠΩ stands for the Euclidean projection. The coderivative

of F : IRn ⇒ IRm at (x̄, ȳ) ∈ gphF

D∗F (x̄, ȳ)(v) :=
{
u ∈ IRn

∣∣∣ (u,−v) ∈ NgphF (x̄, ȳ)
}
, v ∈ IRm.

When F : IRn → IRn is C1-smooth, then

D∗F (x̄)(v) =
{
∇F (x̄)∗v

}
, v ∈ IRm,

via the adjoint/transpose Jacobian matrix. The (first-order) subd-

ifferential of φ : IRn := (−∞,∞] at x̄ ∈ domφ [M76]

∂φ(x̄) :=
{
v ∈ IRn

∣∣∣ (v,−1) ∈ Nepiφ

(
x̄, φ(x̄)

)}
.

Despite their nonconvexity these constructions enjoy full calculus
based on the variational/extremal principles of variational analysis.
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GENERALIZED HESSIANS

The second-order subdifferential, or generalized Hessian of φ : IRn →
IR at x̄ ∈ domφ for v̄ ∈ ∂φ(x̄) is defined as [M92]

∂2φ(x̄, v̄)(u) :=
(
D∗∂φ

)
(x̄, ȳ)(u), u ∈ IRn.

If φ is C2-smooth around x̄, then

∂2φ(x̄)(u) =
{
∇2φ(x̄)u

}
, u ∈ IRn.

If φ of class C1,1(C1 with Lipschitz gradient) around x̄, then

∂2φ(x̄)(u) = ∂
〈
u,∇φ(x̄)

〉
, u ∈ IRn.

It is realized that the generalized Hessian ∂2φ enjoys well-developed

second-order calculus and can be viewed as an appropriate replace-

ment of the Hessian ∇2φ for nonsmooth problems. ∂2φ is fully

computed in terms of the given data for broad classes of problems

in optimization and variational analysis.
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DAMPED NEWTON METHOD IN C1,1 OPTIMIZATION

Algorithm 1 Coderivative-based damped Newton algorithm for C1,1

Input: x0 ∈ IRn, σ ∈
(
0, 12

)
, β ∈ (0,1)

1: for k = 0,1, . . . do

2: If ∇φ(xk) = 0, stop; otherwise go to the next step

3: Choose dk ∈ IRn such that −∇φ(xk) ∈ ∂2φ(xk)(dk)

4: Set τk = 1.

5: while φ(xk + τkd
k) > φ(xk) + στk⟨dk,∇φ(xk)⟩ do

6: set τk := βτk
7: end while

8: Set xk+1 := xk + τkd
k

9: end for

The main assumption for the well-posedness and global convergence

(PD) generalized Hessian ∂2φ is positive-definite on IRn.
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TILT STABILITY IN OPTIMIZATION

DEFINITION (Pol-Roc98) For φ : IRn → IR, a point x̄ ∈ domφ is a

tilt-stable local minimizer with modulus ℓ if there is γ such that

Mγ : v 7→ argmin
{
φ(x)− ⟨v, x⟩

∣∣∣ x ∈ IBγ(x̄)
}

is single-valued and Lipschitz continuous around the origin in IRn

with constant ℓ and such that Mγ(0) = {x̄}.
Theorem (Pol-Roc98) Let φ : IRn → IR is prox-regular and subd-

ifferentially continuous [RW98] at x̄ for v̄ ∈ ∂φ(x̄) (this holds, in

particular, for C1,1 and for convex functions). Then x̄ is tilt stable

local minimizer of φ for v̄ if and only if

∂2φ(x̄, v̄) is positive-definite.

By now we have complete characterizations of tilt stability with

precise formulas for computing the best modulus bounds for major

classes problems in constrained optimization and optimal control.
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WELL-POSEDNESS AND CONVERGENCE OF ALGORITHM 1

Theorem[KMPT21] Let φ : IRn → IR be of class C1,1 under the

fulfillment of (PD). Then whenever ∂φ(x) ̸= 0 there is d ̸= 0 with

−∇φ(x) ∈ ∂2φ(x)(d) and ⟨φ(x), d⟩ < 0.

Thus for each σ ∈ (0,1) there exists δ > 0 such that

φ(x+ τd) ≤ φ(x) + στ⟨∇φ(x), d⟩ whenever τ ∈ (0, δ).

Furthermore, for any starting point x0, each limiting point x̄ of

the sequence of iterates {xk} is a tilt-stable local minimizer of φ

satisfying the following conditions:

• The convergence rate of the sequence {φ(xk)} is at least Q-linear.

• The convergence rates of both sequences {xk} and {∥∇φ(xk)∥}
are at least R-linear.
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SUPERLINEAR GLOBAL CONVERGENCE OF ALGORITHM 1

Definition [Gfrerer-Outrata21] A mapping F : IRn ⇒ IRm is semismooth∗

at (x̄, ȳ) ∈ gphF if

⟨u∗, u⟩ = ⟨v∗, v⟩ for all (v∗, u∗) ∈ gphD∗F
(
(x̄, ȳ); (u, v)

)
.

For single-valued and locally Lipschitzian mappings, this reduces to

the semismooth property if F is directionally differentiable.

Theorem [KMPT21] In the setting of the previous theorem, sup-

pose that ∇φ(x̄) is semismooth∗ at x̄. Then {xk} Q-superlinearly

converges to x̄ provided that either ∇φ is directionally differentiable

at x̄, or σ ∈ (0,1/(2ℓκ)), where κ is a modulus of tilt stability of

x̄ and ℓ is a Lipschitz constant of ∇φ around x̄. Moreover, in this

case the sequence {φ(xk)} converges Q-superlinearly to φ(x̄), and

the sequence {∇φ(xk)} convergesQ-superlinearly to 0 as k → ∞.
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LEVENBERG-MARQUARDT METHOD IN C1,1 OPTIMIZATION

The (PD) assumption is now replaced by

(PSD) generalized Hessian ∂2φ is positive-semidefinite on IRn.

Algorithm 2 Levenberg-Marquardt algorithm for C1,1 functions

Input: x0 ∈ IRn, c > 0, σ ∈
(
0, 12

)
, β ∈ (0,1)

1: for k = 0,1, . . . do

2: If ∇φ(xk) = 0, stop; else let µk := c∥∇φ(xk)∥ and go to Step 3

3: Choose dk ∈ IRn such that −∇φ(xk) ∈ ∂2φ(xk)(dk) + µkd
k

4: Set τk = 1

5: while φ(xk + τkd
k) > φ(xk) + στk⟨∇φ(xk), dk⟩ do

6: set τk := βτk
7: end while

8: Set xk+1 := xk + τkd
k

9: end for
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WELL-POSEDNESS AND CONVERGENCE OF ALGORITHM 2

Theorem[KMPT21] Let φ be of class C1,1 under the fulfillment of

(PSD). If ∂φ(x) ̸= 0 and ε > 0, then there is d ̸= 0 with

−∇φ(x) ∈ ∂2φ(x)(d) + εd and ⟨φ(x), d⟩ < 0.

Thus for each σ ∈ (0,1) there exists δ > 0 such that

φ(x+ τd) ≤ φ(x) + στ⟨∇φ(x), d⟩ whenever τ ∈ (0, δ).

Furthermore, any starting point x0 produces iterates {xk} such that

the sequence of values {φ(xk)} is monotonically decreasing and all

the limiting points of {xk} satisfy the stationary condition.
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METRIC REGULARITY

DEFINITION [M93,RW98] A mapping F : IRn ⇒ IRm is metrically

regular around (x̄, ȳ) ∈ gphF if there exist µ > 0 and neighborhoods

U of x̄ and V of ȳ such that

dist
(
x;F−1(y)

)
≤ µdist

(
y;F (x)

)
for all (x, y) ∈ U × V,

where F−1(y) := {x ∈ IRn | y ∈ F (x)}.
Coderivative/Mordukhovich criterion: If a set-valued mapping

F : IRn ⇒ IRm is of closed-graph around (x̄, ȳ), then its metric regu-

larity around this point is equivalent to

D∗F (x̄, ȳ)(0) = {0}.
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RATES OF CONVERGENCE FOR ALGORITHM 2

THEOREM [KMPT21] Let x̄ be a limiting point of the sequence

of iterates in Algorithm 2. In addition to (PSD), suppose that

∇φ is metrically regular around this point. Then x̄ is a tilt-stable

local minimizer of φ, and Algorithm 2 converges to x̄ with the

convergence rates as follows:

• The sequence {φ(xk)} converges to φ(x̄) at least Q-linearly.

• The sequences {xk} and {∇φ(xk)} converge at least R-linearly to

x̄ and 0, respectively.

• The convergence rates of {xk}, {φ(xk)}, {∇φ(xk)} are at least Q-

superlinear if ∇φ is semismooth∗ at x̄ and either one of the following

two conditions holds:

(a) ∇φ is directionally differentiable at x̄,

(b) σ ∈ (0,1/(2ℓκ)), where κ > 0 and ℓ > 0 are moduli of metric

regularity and Lipschitz continuity of ∇φ around x̄, respectively.
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PROBLEMS OF CONVEX COMPOSITE OPTIMIZATION

Consider the class of optimization problems

minimize φ(x) := f(x) + g(x), x ∈ IRn,

where f : IRn → IR is convex and smooth, while the regularizer

g : IRn → IR is convex and extended-real-valued. This class en-

compasses problems of constrained optimization. For each γ > 0

consider the proximal mapping of the regularizer g by

Proxγg(x) := argmin
y∈IRn

{
g(y) +

1

2γ
∥y − x∥2

}
and define [PB13] the forward-backward envelope (FBE) of φ

φγ(x) := inf
y∈IRn

{
f(x) + ⟨∇f(x), y − x⟩+ g(y) +

1

2γ
∥y − x∥2

}
.

If f is C2-smooth with the Lipschitz continuous ∇f , then

∇φγ(x) = γ−1
(
I − γ∇2f(x)

)(
x− Proxγg(x− γ∇f(x))

)
.
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DAMPED NEWTON FOR CONVEX COMPOSITE OPTIMIZATION

Algorithm 3 Coderivative-based damped Newton algorithm for con-

vex composite optimization with f(x) := 1
2⟨Ax, x⟩+ ⟨b, x⟩+ α

Input: x0 ∈ IRn, γ > 0 such that B := I − γA ≻ 0, σ ∈
(
0, 12

)
,

β ∈ (0,1), and φγ is FBE

1: for k = 0,1, . . . do

2: If ∇φγ(xk) ̸= 0, set uk := xk − γ(Axk + b), vk := Proxγg(uk)

3: Find dk as −1
γ(x

k − vk)−Adk ∈ ∂2g
(
vk, 1γ(u

k − vk)
)
(xk − vk + dk)

4: Set τk = 1

5: while φγ(xk + τkd
k) > φγ(xk) + στk⟨∇φγ(xk), dk⟩ do

6: set τk := βτk
7: end while

8: Set xk+1 := xk + τkd
k

9: end for
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TWICE EPI-DIFFERENTIABILITY

The second subderivative [RW98] of φ : IRn → IR at x̄ for v, w is

d2φ(x̄, v)(w) := lim inf
τ↓0, u→w

∆2
τφ(x̄, v)(u) where

∆2
τφ(x̄, v)(u) := φ(x̄+τu)−φ(x̄)−τ⟨v,u⟩

1
2τ

2 .

The function φ is twice epi-differentiable at x̄ for v if for every w

and τk ↓ 0 there exists a sequence wk → w such that

φ(x̄+ τkw
k)− φ(x̄)− τk⟨v, wk⟩

1
2τ

2
k

→ d2φ(x̄, v)(w).

A general and verifiable condition for twice epi-differentiability is

provided by parabolic regularity, which covers a large territory in

second-order variational analysis and optimization [MMS21].
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SUPERLINEAR CONVERGENCE OF ALGORITHM 3

THEOREM [KMPT21] If A is positive-definite, then Algorithm 3

generates a sequence {xk} such that it globally R-linearly converges

to x̄, which a tilt-stable local minimizer of φ with modulus κ :=

1/λmin(A). Furthermore, the convergence rate of {xk} is at least

Q-superlinear if ∂g is semismooth∗ at (x̄, v̄), where v̄ := −Ax̄ − b,

and if either one of two following conditions is satisfied:

• σ ∈ (0,1/(2LK)), where L := 2
(
1− γλmin(A)

)
/γ and

K := κ+ γ∥B−1∥.
• g is twice epi-differentiable at x̄ for v̄.
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LEVENBERG-MARQUARDT FOR CONVEX OPTIMIZATION

Algorithm 4 Coderivative-based Levenberg-Marquardt algorithm

for convex composite optimization

Input: x0 ∈ IRn, γ > 0 such that B := I − γA ≻ 0, λ > 0, σ ∈
(
0, 12

)
,

β ∈ (0,1), and φγ is FBE

1: for k = 0,1, . . . do

2: Set uk := xk − γ(Axk + b), vk := Proxγg(uk), µk := λ∥∇φγ(xk)∥
3: Set dk = Bzk, where zk is from −1

γ(x
k−vk)−(µkI+AB)zk ∈

∂2g
(
vk, 1γ(u

k − vk)
) (

xk − vk + (B + γµkI)z
k
)

4: Set τk = 1

5: while φγ(xk + τkd
k) > φγ(xk) + στk⟨∇φγ(xk), dk⟩ do

6: set τk := βτk
7: end while

8: Set xk+1 := xk + τkd
k

9: end for

17



GLOBAL CONVERGENCE OF ALGORITHM 4

THEOREM [KMPT21] Let A be positive-semidefinite. Then:

• Any limiting point x̄ of iterates {xk} of Algorithm 4 is an optimal

solutions to φ.

• If ∂φ is metrically regular ar (x̄,0) with modulus κ > 0, then the

sequence {xk} globally R-linearly converges to x̄, and x̄ is a tilt-

stable local minimizer of φ with modulus κ.

• The rate of convergence of {xk} is at least Q-superlinear if ∂g

is semismooth∗ at (x̄, v̄), where v̄ := −Ax̄ − b, and if either one of

following two conditions holds:

(a) σ ∈ (0,1/(2LK)), where L := 2
(
1− γλmin(A)

)
/γ and K :=

κ+ γ∥B−1∥.
(b) g is twice epi-differentiable at x̄ for v̄.

18



SOLVING LASSO PROBLEMS

The basic Lasso problem appeared in statistic [T86] as

minimize φ(x) :=
1

2
∥Ax− b∥22 + µ∥x∥1, x ∈ IRn,

where A is an m× n matrix and µ > 0. All the parameters of Algo-

rithms 3 (GDNM) and Algorithm 4 (GLMM) are computed entirely

in terms of given data of the Lasso problem.

Numerical experiments are conducted for GDNM and GLMM by us-

ing random data with µ := 10−3 and compare with the performance

of ADMM [BPCPE10], FISTA [BT09] and SSNAL [LST18].

The conducted experiments show that both GDNM and GLMM

behave better (exhibiting the Q-superlinear convergence) than the

other algorithms for m ≥ n. It may not be the case for m < n when

GLMM behaves better than GDNM and often better than FISTA

and ADMM but usually worse than SSNAL.
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SOLVING LASSO ON RANDOM INSTANCES
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