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NEWTONIAN METHODS FOR SMOOTH FUNCTIONS

First consider the unconstrained optimization problem

minimize o(x) subject to z € IR"

with C2-smooth objective function ¢. The classical Newton method
exhibits the local convergence with a quadratic rate provided that
V%p(f) is positive-definite. To achieve the global convergence, var-
lous line search procedures are used

Tl =gk 4 dP with — Vp(2®) = Hpd”

where H; is an appropriate approximation of the Hessian Vng(:E) for
quasi-Newton methods. The Levenberg-Marquardt method

Hy, := V2p(2") + ] with ;= || V()|

works when V2¢(z%) is merely positive-semidefinite.



MAJOR GOALS

Replacing the Hessian Vzgp by its coderivative-based generalized
Hessian (second-order subdifferential) 92¢, pursue the following:

e Design and justify the globally convergent generalized damped
Newton method with the backtracking line search for unconstrained
problems of C¢1:1 optimization.

e Design and justify the globally convergent Levenberg-Marquardt
method with the backtracking line search for unconstrained prob-
lems of ¢1:1 optimization.

e Using forward-backward envelopes, extend both coderivative-based
generalized Newton methods to problems of convex composite op-
timization encompassing problems with constraints.

e Solving Lasso problems by the developed generalized Newton al-
gorithms with numerical experiments and comparison with other
first-order and second-order algorithms of optimization.



NORMALS, CODERIVATIVES, SUBGRADIENTS

See [M06,M18,RW98] for more details and references.
The (limiting) normal cone to 2 C IR" at x € Q2 from

No(x) = {fu ‘ dzp, =, ap > 0, wi € No(xr), alx, —w) — fu}

where o stands for the Euclidean projection. The coderivative
of I': R" = IR™ at (z,y) € gph F

D*F(z,9)(v) := {u € R" \ (u,—v) € Ngpn p(Z,7)}, v € R™
When F: IR" — IR"™ is Cl-smooth, then
D*F(Z)(v) = {VF(Z)*v}, veR™

via the adjoint/transpose Jacobian matrix. The (first-order) subd-
ifferential of p: IR" := (—o0,00] at T € dom p [M76]

0p(z) :={v e R" \ (v, —1) € Nepio(Z, (@) }.

Despite their nonconvexity these constructions enjoy full calculus
based on the variational/extremal principles of variational analysis.
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GENERALIZED HESSIANS

T he second-order subdifferential, or generalized Hessian of ¢ IR" —
IR at x € dom for v € Op(Z) is defined as [M92]

0%¢(z,7)(u) 1= (D*0p)(z,9)(v), u€ R"
If © is C2-smooth around Z, then
Pp(x)(u) = | VZp(D)uf, ueR"
If © of class ¢1:1(c! with Lipschitz gradient) around z, then
(@) (u) = 0{u, Ve(D)), u € R"

It is realized that the generalized Hessian 82gp enjoys well-developed
second-order calculus and can be viewed as an appropriate replace-
ment of the Hessian V2¢ for nonsmooth problems. 82¢ is fully
computed in terms of the given data for broad classes of problems
in optimization and variational analysis.



DAMPED NEWTON METHOD IN ¢!’ OPTIMIZATION

Algorithm 1 Coderivative-based damped Newton algorithm for ¢1:1
Input: z% ¢ R", o ¢ (O,%), 5 e (0,1)

1. for k=0,1,... do

2 If Vgo(a:k) — 0, stop; otherwise go to the next step
3 Choose dF € IR™ such that —Vo(aF) € 92p(2F) (dF)
4: Set T — 1.

5: while o(zF 4+ 7.dF) > (k) 4+ o1 (dF, V() do

6 set 7. 1= BT

7 end while

38 Set ghtl .=~ -+ dek

9: end for

The main assumption for the well-posedness and global convergence

(PD) generalized Hessian 9%y is positive-definite on IR".
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TILT STABILITY IN OPTIMIZATION

DEFINITION (Pol-Roc98) For ¢: IR"® — IR, a point T € domy is a
tilt-stable local minimizer with modulus ¢ if there is v such that

My:v— argmin{gp(ac) — (v, ) ‘ T € Bv(f)}

is single-valued and Lipschitz continuous around the origin in IR"
with constant ¢ and such that M,(0) = {z}.

Theorem (Pol-Roc98) Let ¢: IR® — IR is prox-regular and subd-
ifferentially continuous [RW98] at z for v € dp(x) (this holds, in
particular, for C1'1 and for convex functions). Then Z is tilt stable
local minimizer of ¢ for v if and only if

0% (z,v) is positive-definite.

By now we have complete characterizations of tilt stability with
precise formulas for computing the best modulus bounds for major
classes problems in constrained optimization and optimal control.
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WELL-POSEDNESS AND CONVERGENCE OF ALGORITHM 1

Theorem[KMPT21] Let ¢: R* — IR be of class ¢b'1 under the
fulfillment of (PD). Then whenever d¢p(x) %= O there is d %= 0 with
~Vo(z) € 0%p(2)(d) and (¢(z),d) < O.

Thus for each ¢ € (0,1) there exists § > 0 such that

o(x+ 7d) < p(x) + o7(Ve(x),d) whenever 7 € (0,9).
Furthermore, for any starting point :130, each limiting point z of
the sequence of iterates {z*} is a tilt-stable local minimizer of ¢
satisfying the following conditions:
e [ he convergence rate of the sequence {go(xk)} is at least Q-linear.

e The convergence rates of both sequences {zF} and {||Ve(z®)|}
are at least R-linear.



SUPERLINEAR GLOBAL CONVERGENCE OF ALGORITHM 1

Definition [Gfrerer-Outrata21] A mapping F': IR" = IR™ is semismooth*
at (z,7y) € gph F if

(u*,u) = (v*,v) for all (v*,u"™) € gph D*F((f,g); (u,v)).

For single-valued and locally Lipschitzian mappings, this reduces to
the semismooth property if F' is directionally differentiable.

Theorem [KMPT21] In the setting of the previous theorem, sup-
pose that Ve(Z) is semismooth* at z. Then {z*} Q-superlinearly
converges to x provided that either Vi is directionally differentiable
at x, or o € (0,1/(2¢k)), where k is a modulus of tilt stability of
x and £ is a Lipschitz constant of Ve around z. Moreover, in this
case the sequence {¢(zF)} converges Q-superlinearly to ¢(z), and
the sequence {Vgo(a:k)} convergesQ-superlinearly to 0 as k — oo.



LEVENBERG-MARQUARDT METHOD IN ¢! OPTIMIZATION

The (PD) assumption is now replaced by

(PSD) generalized Hessian 82go is positive-semidefinite on IR".

Algorithm 2 Levenberg-Marquardt algorithm for ¢1:1 functions

Input: z°c R", ¢ >0, o € (O,%), B e (0,1)
1: for k=0,1,... do
> If Vo(zF) = 0, stop; else let uy := ¢||Vp(z®)|| and go to Step 3
3 Choose d* € IR™ such that —V(zF) € 82p(2F)(dF) + ppdF
4 Set T = 1

5: while p(zf + 7.d*) > o(zF) + o, (Ve (aF), dF) do
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9:

set 7. 1= 57%
end while
Set 1 .= gk 4 1,.dF
end for




WELL-POSEDNESS AND CONVERGENCE OF ALGORITHM 2

Theorem[KMPT21] Let ¢ be of class C1:1 under the fulfillment of
(PSD). If Op(x) = 0 and € > 0, then there is d # 0 with

—V(z) € 82p(z)(d) +ed and (o(z),d) < O.
Thus for each ¢ € (0,1) there exists § > 0 such that
o(x+ 7d) < p(x) + or(Ve(x),d) whenever 7 € (0,9).
Furthermore, any starting point z° produces iterates {:Uk} such that

the sequence of values {¢(z%)} is monotonically decreasing and all
the limiting points of {z*} satisfy the stationary condition.
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METRIC REGULARITY

DEFINITION [M93,RW98] A mapping F: IR" = IR™ is metrically
regular around (z,y) € gph F' if there exist u > 0 and neighborhoods
U of x and V of y such that

diS’E(a:; F_l(y)) < ,udiS’E(y; F(:c)) for all (z,y) € U xV,

where F~1(y) :={z € R" |y € F(z)}.
Coderivative/Mordukhovich criterion: If a set-valued mapping
F: IR™ = IR™ is of closed-graph around (z,%y), then its metric regu-
larity around this point is equivalent to

D*F(z,7)(0) = {0}.
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RATES OF CONVERGENCE FOR ALGORITHM 2

THEOREM [KMPT21] Let z be a limiting point of the sequence
of iterates in Algorithm 2. In addition to (PSD), suppose that
Ve is metrically regular around this point. Then x is a tilt-stable
local minimizer of ¢, and Algorithm 2 converges to x with the
convergence rates as follows:

e The sequence {p(2*)} converges to ¢(Z) at least Q-linearly.

e The sequences {z*} and {Vy(z")} converge at least R-linearly to
x and 0O, respectively.

e The convergence rates of {z*}, {o(zF)}, {Ve(2F)} are at least Q-
superlinear if Vy is semismooth* at x and either one of the following
two conditions holds:

(a) Vo is directionally differentiable at z,

(b) 0 € (0,1/(2¢r)), where k > 0 and ¢ > 0 are moduli of metric
regularity and Lipschitz continuity of Ve around x, respectively.
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PROBLEMS OF CONVEX COMPOSITE OPTIMIZATION

Consider the class of optimization problems

minimize o(z) ;= f(z) +g(x), x¢€ R",

where f: IR™ — IR is convex and smooth, while the regularizer
g: IR — IR is convex and extended-real-valued. This class en-
compasses problems of constrained optimization. For each v > 0O
consider the proximal mapping of the regularizer g by

_ 1
Proxsg() := argmin {g<y> + o lly - w\lz}
yeIR" 2

and define [PB13] the forward-backward envelope (FBE) of ¢

. B T
pry(z) 1= nt {f(:v) + (Vf(z),y —z) + g9(y) + szy z|| }
If fis C2-smooth with the Lipschitz continuous V f, then
Vipy(a) =771 =7 V2f(@)) (2 — Proxyg(z — 7V f(2))).
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DAMPED NEWTON FOR CONVEX COMPOSITE OPTIMIZATION

Algorithm 3 Coderivative-based damped Newton algorithm for con-
vex composite optimization with f(z) := %(Aw,x} + (b, x) + «

Input: 20 € R", v > 0 such that B := I —~4 = 0, o € (0,3),
B € (0,1), and ¢y is FBE
1: for k=0,1,... do
. k ko ok k k. k
2: If Vo, (27) # 0, set u” :=z" — v(Az" 4 b), v 1= Prox,g(u”)

3: Find df as —%(mk — k) — Adk € §%¢ (fuk, %(uk - fuk)) (zF — oF 4 dF)

4 Set . =1

5 while o~ (xF + 7.d%) > ¢ (2F) + o1, (Ve (2F), d*) do
6 set 7. 1= BT

7 end while

8: Set 1 .= gk 4 1,.dF

9: end for
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TWICE EPI-DIFFERENTIABILITY

The second subderivative [RW98] of ¢: IR" — IR at x for v, w is

d*p(Z,v)(w) = liminf A2p(z,v)(u) where
T , U—W ~
AZ2p(Z,0)(u) = SO(EJ”“)—%%;?)—TWW

The function ¢ is twice epi-differentiable at x for v if for every w

and 71 | O there exists a sequence w® — w such that
= k = k
p(Z + Tw”) — p(Z) — 7 (v, w _
i > k ) s d2o(Z,v) (w).
27k

A general and verifiable condition for twice epi-differentiability is
provided by parabolic regularity, which covers a large territory in
second-order variational analysis and optimization [MMS21].
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SUPERLINEAR CONVERGENCE OF ALGORITHM 3

THEOREM [KMPT21] If A is positive-definite, then Algorithm 3
generates a sequence {z*} such that it globally R-linearly converges
to x, which a ftilt-stable local minimizer of ¢ with modulus sk =
1/Aminca)- Furthermore, the convergence rate of {zF} is at least
Q-superlinear if 0g is semismooth* at (z,v), where v := —AZ — b,
and if either one of two following conditions is satisfied:

o 0 €(0,1/(2LK)), where L :=2 (1 = yApinca)) /v and

K :=k+~|B 1.

e g is twice epi-differentiable at x for v.

16



LEVENBERG-MARQUARDT FOR CONVEX OPTIMIZATION

Algorithm 4 Coderivative-based Levenberg-Marquardt algorithm
for convex composite optimization

Input: 2 ¢ R®, v >0 suchthat B:=T—-~vA >0, A>0,0¢ (O,%),

B € (0,1), and ¢~ is FBE

1. for k=0,1,. do

2:
3:

Set uf 1= 2k — ~(AxF —|— b), vk = Proxw(u ), g 1= )\||Vg0y(a:k)||
Set d* = B2k, where z* is from —%(az vk — (upl + AB)zF €

029 (v, 2(uk — M) (% — vk + (B + yupD)F)

Set T — 1

while gm(ack + m.dF) > goy(:ck) + aTk(Vgpy(xk), d*) do
set 7, 1= BTk

end while

Set a1 .= gk 4 1,.dF

end for
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GLOBAL CONVERGENCE OF ALGORITHM 4

THEOREM [KMPT21] Let A be positive-semidefinite. Then:
e Any limiting point z of iterates {z*} of Algorithm 4 is an optimal
solutions to .

e If Op is metrically regular ar (z,0) with modulus x > 0, then the
sequence {xk} globally R-linearly converges to x, and x is a tilt-
stable local minimizer of ¢ with modulus k.

e The rate of convergence of {xk} is at least Q-superlinear if g
is semismooth* at (z,v), where v := —Ax — b, and if either one of
following two conditions holds:

(@) o € (0,1/(2LK)), where L := 2(1 = yApinca)) /v and K :=
k=4 ~[B7H].

(b) g is twice epi-differentiable at x for v.
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SOLVING LASSO PROBLEMS

The basic Lasso problem appeared in statistic [T86] as

. 1
minimize ¢ (v) = _ || Az - bl|3 + pl|lz|l1, =€ R,

where A is an m x n matrix and u > 0. All the parameters of Algo-
rithms 3 (GDNM) and Algorithm 4 (GLMM) are computed entirely
in terms of given data of the Lasso problem.

Numerical experiments are conducted for GDNM and GLMM by us-
ing random data with p 1= 103 and compare with the performance
of ADMM [BPCPE10], FISTA [BT09] and SSNAL [LST18].

The conducted experiments show that both GDNM and GLMM
behave better (exhibiting the Q-superlinear convergence) than the
other algorithms for m > n. It may not be the case for m < n when
GLMM behaves better than GDNM and often better than FISTA
and ADMM but usually worse than SSNAL.
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SOLVING LASSO ON RANDOM INSTANCES

Problem size and 1D iter CPU time

1D m n SSNAL FISTA ADMM GLMM GDNM SSNAL FISTA ADMM GLMM GDNM
1 400 800 25 37742 22873 1813 Error 0.45 145.52 10.89 45.62 Error
2 4000 8000 153 19173 19173 2499 Error 847.87 10000.00 2359.36 10000.00 Error
3 2000 2000 43 239701 12785 59 12 78.38 8138.94 158.12 11.07 2.24

4 4000 4000 246 73374 5970 59 218 1253.45 10000.00 320.81 48.16 178.91
5 2000 2000 22 3619 90501 394 292 18.11 123.38 1141.64 65.60 58.80
6 4000 4000 24 3629 103868 520 555 231.40 462.53 5166.16  369.27 474.74
7 800 400 4 430 10 6 3 0.14 0.86 0.02 0.11 0.08

8 8000 4000 13 487 11 7 3 18.80 117.92 3.67 8.46 4.39

9 800 400 11 245 426 31 7 0.18 0.53 0.12 0.23 0.11
10 8000 4000 11 238 411 72 9 8.37 59.18 32.17 56.37 8.88
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