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1 Preliminaries

Recall that a proper lower semicontinuous function ¢ on a real Banach space X
is Frechet differentiable at £ € dom () if there exists * € X™* such that

p(x) = (@) = (2", 2 = 7) = o([|lz — z)).

Frechet subdifferential:

0p(z) = {z" € X*: () — () — (2", — 7) 2 o ||z — 2|)}-

A

¥ € 0p(T) <= Ve>03§>0 s.t.

Home Page

("2 —2) < p(z) — (@) +¢e||lz—2| Vze B(z,0).

e e

o(Z) = min o(z) = 0 € dp(2).

x€B(z,0) iR

Viscosity subdifferential:
B2 RE R

0V o(z) = {¢'(%) : ¢ — gattainsitslocal minimum at z}. 2

If X is a smooth space, then 0" (7)) = ().
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Proximal subdifferential: * € Pp(Z) <= J 7,6 € (0, +00) s.t.

(x*,2 — %) < o(x) — p(Z) + 0|z — Z||* Vz € B(z,9).

Limit subdifferential: 9 (Z) := Limsup,_,;0p(x)
z* € 0p(Z) <= Jz, — T &It S ¥ st 2t € dp(xy,) (Vn € N).

Home Page

Clarke subdifferential: 0p(Z) := {z* € X*: (2%, h) < ©°(Z,h) Vh € X},

o) —
©°(Z,h) ;== lim limsup inf p(x 4 tv) — p(z)

e—0%t z—¢Z,t—07F vEB(he) t EITH 0T

1B

Local Lipschitz property of ¢ => ©°(Z, h) = limsup 90(””;)_90(9”).
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1. 9°p(z) C 0V () C dp(z) C dp(T) C dp(X).
2. If ¢ is smooth around Z, then dp(z) = dp(z) = {¢'(Z)}

3. If ¢ is smooth around Z and x — ¢'(z) is locally Lipschiz at z, then

0"p(Z) = 0p(7) = {¢'(2)}.
4. If ¢ is convex, then
NPo(z) =0p(x)={2" € X*: (", 2 —T) < p(x) — p(ZT) Vr e X}.

5. If dim(X) < oo and ¢ is locally Lipschitz at z € dom(p), then

Jp(T) = co { lim ¢/(x,) : x, — x, @ is Frechet differentiable at each xn} :

n—oo
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Theorem 1. Let X be a Banach space and ¢, : X — R U {400} be proper
lower semicontinuous functions. The following statements hold:

(i) dom(0Dy) is dense in dom(yp).

(ii) If ¢ is locally Lipschitzat & € dom(yp), then

Ao+ ¥)(T) C dp(z) + 0Y(T).

If o(x) = —||z|| for all z € ¢, then dom(dp) = dom () = 0.

Theorem II. Let X be an Asplund space and let p,v : X — R U {+o0} be
proper lower semicontinuous functions. The following statements hold:

(i) dom (D) is dense in dom(¢).

(ii) If 1 is locally Lipschitz at & € dom(y), then for any x* € O(¢ + 1)(Z) and
any £ > 0 there exist x1, x5 € B(Z,¢€) such that

z* € Op(x1) + OY(x2) + eBx- and |p(z1) — o(T)| < €

and 50 O(ip + ) () C Dp(T) + ().
(iii) Op(Z) = I (co (Op(T) + 0%¢(T))).
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A—a closed set in a Banach space X, a € A.

Bouligand tangent cone:

T(Aya)={heX: 3}, — 0"&3Ih, - hst.a+t,h, € A Vn € N}.

Clarke tangent cone:

TC(A7 a’) o— {h & X Van é) a& \V/Sn — O+ Elhn — h Home Page
s.t. a,+ sph, € A Vn € N} 18 R

T(j(A, CL) C T(A, a)

E7RHE 0T

Clarke normal cone: B E
EH2REE R
Ne(Aya) =Te(A,a)’ ={z" € X*: (", h) <0 Vh € Te(A,a)}.
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Frechet normal cone: A g™
R ) ) . <x*’ v — a> uNw
N(Aja) :=<z" € X*: limsup——= <0 ‘
oA, Nz —adl
. LN . ; Preliminaries
If X is an Asplund space, {a € A: N(A,a) # {0}} is dense in bd(A). oo oo,

Convex case
Well solvability of .. .
Proximal normal cone:

NP(A7CL) = [L’* -~ X* : limsupw_? < _|_OO Home Page
Ao 17— al

If X is a Hilbert space, 2* € NP (A, a) & a € Py(a + tz*) forsome t > 0,
and {a € A: NP(A, a)+# {0}} is dense in bd(A).
Proximal point: a point a is called a proximal point of A if a € P4(x) for some

FomHEOR

r e X\ A
In 2010, Borwein [1] asked the following “most striking” open question: Is it Bt & B 5
possible that in every reflexive Banach space, the proximal points on bd(€2) are %

o
ml |® A
3

dense in bd(€2)? t
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Limit normal cone: N(A4,a) := LimsupmiaN(A, x)

" € N(A,a) < 3z, A a& 3z, Y 7* st t* e N(A, z,) (Vn e N).
N(A,a) C N(A,a) C No(4,a).

If X is an Asplund space, then N¢(A4, a) = ¢l (co (N(4,a))).

ANB(a,r) = BNB(a,r) = N(A,a) = N(B,a) & Nc(A,a) = No(B, a).

N(A,a) = 854(a), N(A,a) = dds(a), No(A,a) = 8d4(a).
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If A is convex, then

T(A,a)=Tc(A,a) =cl(R (A —a))

N(A,a) = No(A,a) = {z* € X*: (z*,a) = sup(z*,z)}.

z€A

¢ : X — R U {+400}—a proper lower semicontinuous function
= {z* € X*: (2%,-1) € N(epi(p), (z, p(2)))}
= {z* e X*: (z*,—1) € N(epi(p), (z, o(x)))}
= {z* e X*: (z",—1) € Ne(epi(yp), (z, p(x)))},

©)
©)

where epi(p) = {(z,t) € X xR : p(x) < t}.
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2 Fuzzy separation theorems for disjoint
closed sets

Extremal point: A common point Z of closed sets Ay, - - - , A, in a normed space
is called an extremal point of these closed sets if there exist a neighborhood V

of * and m sequences xi, — 0,--- , xr — 0 such that

m

(J(Ai—za)NV =0 VkeN.

=1

Extremal Principle: Let T be an extremal point of closed sets Ay, --- , A, in an
Asplund space X. Then for any € > 0 there exist a; € A; N B(Z, €) such that

z} € N(Aj, ) + €Bxe, i=1,---,m, Y a} =0 and Y _|lz]l| =1.
p=ll =1l
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Corollary. Let x be an extremal point of closed sets Ay, - -- , A, in an Asplund
space X, and suppose that all but one of Ay, - - - , A, are sequentially normally

compact at T. Then there exist x; € N(A;,Z),i=1,---,m, such that

ri 4wy, =0 and [lay]| + - flag, )| = 1.

Corollary. Let T be an extremal point of closed sets A1 and As in an Asplund
Home Page

space X, and suppose that Ay is sequentially normally compact at x. Then there

exist x* € X* such that wE R

|z*|| =1 and x* € N(A1,Z) N —N(Ag, 7).

F2RHE 50

B
If A; and A, are convex,

BH£REER

" € N(A;,Z) N —N(A3,T) <= (2*,7) = sup(z*,z) = inj (x*, x). =
r€A; reA2
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Non-intersection index: For closed sets A, --- , A, let

m—1

Y(Aq, - Ap) = inf{ZHxi—me: r, €Ay, i=1,---

1=1
"}/(Al, Az) = d(Al, Ag)

(A # 0= 7(A1, -+, Ap) =0.
1=1

V(A Ag) > 0= (A = 0.

1=1
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Theorem 2.1 ([Zheng-Ng, SIOPT, 2011]). Let Ay,--- , A, be closed sets in a
Banach space X such that (| A; = 0. Lete > 0 and a; € A; (1 < i < m) be

i=1
such that
m—1
> llai — amll < Y(A1,-- -, Ap) + €.
i=1
Then, for any \ > 0, there exist a; € A; and a7 € N.(A;,a;) + gB/\X* such that fiome Page
the following properties hold:
m
) Y- llai — aill < A
1=1 .
b * _ *
(ii)  Jnax |lat|| =1 andi;1 al = 0. P
m—1 ~ ~ m—1 ~ ~ -
(i) Y (al, am —a;) = > ||a; — aml|-
i=1 =1

BH£REER
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Theorem 2.2. Let X be an Asplund space and Ay, - - - , A,, be closed nonempty

subsets of X such that () A; = (. Lete > 0 and a; € A; (1 < i < m) be such
i=1
that

m—1
D llai — anll < ¥(A1,- - Ap) + €. 2.1)
i=1
Then, for any A\ > 0 and any p € (0, 1) there exist a; € A; and
af € N(A;,a) + dix* (i = 1,---,m) such that the following properties
hold:
. m ~
1) > f|a; — ail]| < A
i=1
(ii)  Jmax |at]| =1 cma?i:z:1 a’ = 0.
m—1

m—1
(i) p 3 (16 — ll < X (0t — @),
=1 p=ill

1

(1) and (11) of Theorem 2.2—>Extremal Principle.
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Corollary 2.1. Let A and B be closed nonempty sets in a Banach space X such
that AN B = (). Then, for any € > 0 there exista € A, b € B and a* € X* with
|la*|| = 1 such that

a* € No(A,a) N (— N(B,b) + eBx-)

and
la —b|| = (a*,b—a) < d(A, B) +e.

Corollary 2.2. Let A be a closed nonempty set in a Banach (resp. Asplund)
space X. Then, for any x € X \ A and any ¢ > 0, there exist a € A and
a* € N,(A,a) (resp. a* € N(A,a)) such that

|la*]| =1 and (1 —¢)||z — a|| < min{(a*,z —a),d(z, A)}.

Home Page
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Corollary 2.3. Let A and B be closed sets in a Banach (resp. Asplund) space
X such that AN B = (. Suppose that B is bounded and convex. Then, for any
e > 0, there exist a € A and a* € N (A, a) (resp. a* € N(A, a)) such that

|la*|| =1 and d(A, B) — e < inf (a*,x) — (a*, a).

zeB

Home Page
. . . B8R
If, in addition, A is convex, then

d(A,B) —e < ig{;(a*, ) — rg{leaj<<a*,sc>.
F 17507
B o
EHERE R
8

B



http://192.9.200.1

Proof of Theorem 2.2. Define ¢ : X" — R U {+00} as follows

m—1

O(T1, -+ Tpy) 1= Z |Zi—Tm||+04,xxa,, (X1, - Tm) V(X1 ,2) € X™.
i=1

Then ¢ is a proper lower semicontinuous function on X" equipped with the

¢1-norm
m

Iy, o) =) llaill Yz, zm) € X™

1=1

and (2.1) can be rewritten as

olay, - ,ap) <inf{p(xy,-- ,zn): (v1,- ,2n) € X} +e.
Take ¢’ € (0, ¢) such that

olay, - ,an) <inf{o(zy, - zm): (x1, - ,2m) € X"} +£.

Then there exists ' € (0, \) such that §; < $. By the Ekeland variational

principle, there exists (ay, - - - , a,,) € X" such that

Preliminaries
Fuzzy separation. . .
Convex case

Well solvability of .. .
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(@1, am) — (a1, ,an)|| <N (2.2)

and

) ) £ — _ .
‘70(&17"'7am)§‘p(x17"'axm)—i__/znxi_a’i“ ‘v’(xl,---,xm)GX :
A 1=1

— . o . . /
Hence (G1,---,a,) € Ay X --- x A, is a minimizer of ¢ + & -

m—1
—(ay, Q)| xm. It follows that 0 := > ||a; — a,,|| > 0 and
i=1

~ g
) a(w—n.—(al,---,am>||xm) @1, )

= O(f + 04, xnn, ) @1, Gm) (2.3)

where

m—1 ;) m
€ _
fl@y, - om) =) o — zmll + yz lz; — @il V(z1,-e2m) € X™
i=1 =1

Home Page
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Thus, by (2.3) and Theorem II, for any 3 € (O, min{§ — f\—/,, A— N, %}) there

exist

(-/El) e 7jm): (&17 e 7&771) S BXm((ah e ,C_I,m),ﬁ) (24)

such that

: ,./Em) —I_ é(sAlxxAm(&lj e 7ger) + ﬂB?*
o B) + N(A X X A, (@1, L)) + BB
e Tm) 4+ N(A1,81) X -+ X N(Ap, @m) + BBR..  (2.5)

Home Page
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Exact Separation

Theorem 2.3. Let Ay, --- , A, be closed sets in a Banach space X such that

m

N A; = 0, and suppose that there exist a; € A; (i = 1,--- ,m) such that
i=1

m—1
Z ”al - am” - 7("417 T 7Am)
1=1

Then there exist a; € X* (1 < i < m) with the following properties:
m

(i) max ) laf| =1, Y af =0and af € N.(A;,a;) (i=1,---,m).
i=1

1<i<m—

. m—1 m—1
(i) Y- {af,am —a;) = > |lam — aill.
i=1 =il
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Theorem 2.4. Let Ay, --- , A, be closed sets in an Asplund space X such that
m

(| A; = (. Further suppose that A, is compact. Let ¢ > 0 and a; € A;
i=1

(1 <1 < m)be such that

m—1
D llai — amll < ¥(Ar,-- -, Am) + £
1=1

Then, for any X > 0 and any p € (0, 1) there exist a; € A; and o} € X* with
the following properties:

m
i=1
n A

(i) max |af||=1 > af=0anda; € N(A;,a;) (i=1,---,m).

1§z§m—1 ! =1 L L
o m—1 ~ ~ m—1 ~ ~
(i) p 3 [lai — am| < X2 (af, am — @)

i=1 i=1

Home Page
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3 Convex case

Theorem S1. Let A and B be convex sets in a normed space X such that
int(B) # 0 and AN int(B) = (. Then there exists * € X* \ {0} such
that

inf (z*, x) > sup(z*, ). (3.7)
x€A z€B

Theorem S2. Let A be a compact convex set in a normed space X and let B be
a closed convex set in X such that AN B = (). Then there exists x* € X* such
that

inf (2, x) > sup(z™, z). (3.8)
zed zeB
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Strict separation property: a closed convex set A in a normed space X

is said to have strict separation property if for every closed convex set
B in X with AN B = () there exists x* € X* such that (3.8) holds.

A compact convex set has trivially the strict separation property.

Theorem GW ([Gau-Wong, PAMS, 1996]). Let A be a bounded closed
convex subset of a normed space such that int(A) # (). Then A has the
strict separation property if and only if A is weakly compact.
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Theorem GK ([Gale-Klee, Math. Scan., 1959]). Let A be a closed
convex set in R". Then A has the strict separation property if and only
if A is continuous, that is,

ga(x”) =sup(x™,z) = lim ou(u*) Vz* € R"\ {0},

* *
€A U*—x

Theorem ETZ ([Ernst-Théra-Zalinnescu, JFA, 2005]). Let A be a
closed convex set in a reflexive Banach space. Then A has the strict
separation property if and only if A is slice-continuous (i.e., for every

closed subspace Y of X, ANY is a continuous setinY).

Home Page

Fos5TWHE 5O

1B

BH£REER

*x #



http://192.9.200.1

From the view point of optimization, it should be interesting to consider
whether or not the linear functional x* in either (3.7) or (3.8) can attain
its infimum and supremum over A and B, respectively. However, even
in Euclidean space R?, there exist two disjoint closed convex sets A
and B with int(B) # () such that they cannot be separated attainably,
namely there exists no y* € (R?)* \ {0} satisfying

(y*,a) = ini(y*,@ > sup(y”, x) = (y*, b) for some (a,b) € A x B.
Te z€B

Preliminaries
Fuzzy separation. . .
Convex case

Well solvability of .. .
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Two kinds of attainable separation properties
Definition 3.1. A closed convex set A in a normed space X is said to
have attainable separation property if for every closed convex subset
B of X with int(B) # () and ANint(B) = ) there exist * € X*\ {0},
a € Aandb € B such that

(x*,a) = inf (z*, x) > sup(z*, x) = (x*,b). (3.9)

Definition 3.2. A closed convex set A in a normed space X is said
to have attainable strict separation property if for every closed convex
nonempty subset B of X with AN B = () there exist v* € X*, a € A
and b € B such that

(x*,a) = inf (2, ) > sup(z™, z) = (=", b). (3.10)

(x) (3.9) <= [:c* € N(B,b)N—=N(A,a) & (z*;a — b) > O].

Preliminaries
Fuzzy separation. ..
Convex case

Well solvability of .. .
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Proposition 3.1. Let A be a bounded closed convex set in a Banach space X.
Then the following statements are equivalent:

(i) A has the attainable separation property.

(ii) A has the attainable strict separation property.

(iii) A has the strict separation property.

(iv) A is weakly compact.

To consider the unbounded case , we adopt the following notion of an asymptotic
hyperplane of A: a hyperplane P(z*,a) := {x € X : (z*,x) = «} with
(%, a) € (X*\{0}) xR is called an asymptotic hyperplane of A if (z*,z) < «
forall x € A(i.e, oa(x*) < «) and there exists a sequence {a,} in A such that

7};120 |an|| = oo and Jirgod(an,P(a: ,a)) = 0.

Preliminaries
Fuzzy separation. ..
Convex case

Well solvability of .. .
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Theorem 3.1. Let X be a reflexive Banach space and A an unbounded closed
convex subset of X. Then the following statements are equivalent:

(i) A has the attainable strict separation property.

(ii) For every closed convex set B in X with ANB = () there exista € A, b € B
and z* € N(B,b) N —N(A, a) such that ||z*|| = 1 and

(x*,a) — (z*,b) = ||la — b|| = d(A, B).

(iii) A has no asymptotic hyperplane and int(A) is nonempty.
(iv) A is continuous and int(A) is nonempty.

(v) A — B is closed for any closed convex set B disjoint with A.

Home Page
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Theorem 3.2. Let X be a Banach space. Then the following statements are
equivalent.

(i) X is reflexive.

(ii) Every closed convex subset of X having no asymptotic hyperplane has the
attainable separation property.

(iii) Every unbounded continuous closed convex subset of X having a nonempty
interior has the attainable strict separation property.

(iv) There exist a closed subspace Y of X with codim(Y) = 1 and an element e
in X \'Y such that

AY,e) ={y+te: (y,t) €Y xRand ||y||* <t} (3.11)

has the attainable separation property.
(v) For any closed subspace Y of X with codim(Y') = 1 and any element e in
X \Y, A(Y, e) defined by (3.11) has the attainable strict separation property.

Preliminaries
Fuzzy separation. ..
Convex case

Well solvability of .. .
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Proposition 3.2. Let X be a finite-dimensional normed space and let A be a
closed convex nonempty subset of X. Then the following statements are equiv-
alent:

(i) S(A, z*) is a bounded nonempty set for each z* € bar(A) \ {0}.

(ii) A has no asymptotic hyperplane.

(iii) A is continuous.

(iv) A has the attainable strict separation property.

(v) A has the attainable separation property.

(vi) A has the strict separation property.

(vii) A — B is closed for every closed convex subset B of X.

(viii) A — B is closed for every closed convex subset B of X with int(B) # ()
and AN B = ().
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4 Well solvability of convex optimization
problems

Theorem ETZ2 ([Ernst-Théra-Zalinescu, JFA, 2005]). Let X be a reflexive
Banach space and f : X — R be a nonconstant continuous convex function
such that f(xy) = gjrél)r(l f(x) for some xq € X. Then for any closed convex set A
in X there exists a € A such that f(a) = gleifll f(x) ifand only if f~1(—o0, A
is slice-continuous for all A > gg)ff f(x).

Remark. In Theorem ETZ2, the objective f is a fixed continuous convex func-
tion, while the constrained sets are all closed convex sets in the concerned
space.
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Next, we will consider, from a different angle than Theorem ETZ2, a fixed

closed convex set A in a Banach space X such that for every continuous (even

lower semicontinuous) convex function f : X — R with in£1 f(z) > —oo the
HAS

corresponding optimization problem
Pa(f) minimize f(x) subject tox € A

is well solvable in the sense of various well-posedness.

Tychnov’s well-posedness: a proper lower semicontinuous extended-real func-
tion f on a normed space X is said to have the well-posedness property if every
minimizing sequence {x,} of f (i.e. nh_)rglo flz,) = xlg)f( f(x)) is convergent,
while f is said to have the generalized well-posedness property if every mini-

mizing sequence {x,} of f has a convergent subsequence.

The well-posedness and generalized well-posedness have been recognized to be

useful in optimization and studied extensively.

Preliminaries
Fuzzy separation. . .
Convex case

Well solvability of .. .
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Definition 4.1 Given a closed convex set A in a normed linear space X and
a proper lower semicontinuous convex function f : X — R U {+oo} with
;Ielg f(z) > —o0, the corresponding constrained optimization problem Pa(f) is
said to be

(i) well-posed-solvable if every minimizing sequence {x,} of Pa(f) (i.e.,
{z,} C Aand f(x,) — irelgf(x)) is convergent;

(1) g -well-posed—solvablz if every minimizing sequence of Pa(f) has a conver-
gent subsequence;

(iii) W-well-posed-solvable if every minimizing sequence {x,} of Pa(f) is
weakly convergent;

(iv) WG-well-posed-solvable if every minimizing sequence of Pa(f) has a
weakly convergent subsequence;

(V) boundedly solvable if the solution set S(A, f) == {a € A : f(a) =
;I€l£ f(x)} is bounded and nonempty.
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Proposition 4.1 Let A be a closed convex set in a normed linear space
X and let f : X — R U {+oo} be a proper lower semicontinuous
continuous convex function. Then the following statements hold.:

(i) Pa(f) is G-well-posed-solvable if and only if the solution set
S(A, f) is a compact nonempty set and d(x,,S(A, f)) — 0 for ev-
ery minimizing sequence {x,} of Pa(f).

(ii) Pa(f) is WG-well-posed-solvable if and only if S(A, f) is a weak-
compact nonempty set and every minimizing sequence {x,} of Pa(f)
converges to S(A, f) with respect to the weak topology, that is, for any
weak neighborhood U of 0 there exists N such that x,, € S(A, f) + U
foralln > N.
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The main aims of this talk are to study the following two topics:

(T1) Characterize a given closed convex set A in a Banach space X such that
for every convex continuous function f : X — R with ;Ielg f(x) > —o0 the cor-
responding optimization problem P4(f) is well-posed solvable, G-well-posed
solvable or WG-well-posed solvable.

(T2) Find some conditions on a given real-valued continuous convex function

f on a Banach space X such that for every closed convex subset A of X the

corresponding optimization problem P 4( f) is solvable or well-posed solvable.
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4.1. Slice property, continuity and differentiability

Let A be a closed convex set in a normed space X. Recall that the support
functional and the bar cone of A are respectively defined by

oa(z") :=sup{z*,x) Vz*e X"
xeA

and
bar(A) := dom(oy) = {z" € X*: o4(z") < +o0}.

For x* € bar(A) and € > 0, the corresponding support set and slice of A are
defined as
S(A,z"):={x e A: (2" x) =04(x")}

and
S(A,z%e) ={x e A: (x*,2) > 0o4(z") — e}

It is clear that S(A, z*) = (] S(A, x*, ¢).

e>0
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Definition 4.2 A closed convex set A in a normed space X is said to have

(i) bounded slice property if for each x* € bar(A) \ {0} there exists ¢ > 0 such
that S(A, x*,€) is bounded, and

(ii) strong slice property ifgli)r(l)rl+ diam(S(A, x*,¢)) = 0forall z* € bar(A)\{0},
where diam(S(A, z*, ¢)) := sup{||x1 — xo|| : 21,22 € S(A,x*,¢)}.

Lemma 4.1 Let A be a closed convex set in a normed space X. The following
statements hold: rlome Page
(i) S(A,x*,€) C Doa(B(x*,1/€)) + /eBx~ V(x* &) € bar(A4) x (0, +00),
where Bx+ denotes the unit ball of the bidual space X**.

(ii) For any x* € bar(A) \ {0} there exist ey, Ly € (0, +00) such that

* FE s HE 50

doa(B(z*,¢)) C S(A,z*, Lye) Ve € (0, &).

B E

Consequently lim diam(doa(B(z*,¢)) = lim diam(S(A, z*,¢)) for all x* €

e—0* e—07*

bar(A) \ {0}.
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Proposition 4.2. Let A be a closed convex set in a normed space X and let
xj € bar(A) \ {0}. Then the following statements are equivalent.

(i) S(A, z}, €) is bounded for all € € (0, 4+00).

(ii) There exists €g > 0 such that S(A, x§, ) is bounded.

(iii) x} € int(bar(A)).

(iv) o 4 is continuous at .

(v) There exist €, 6y € (0, +00) such that

sup [zl € ) S(4,27) ¢ < +oc.

x*eB(x§,00)
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Proposition 4.3. Let A be a closed convex set in a finite-dimensional normed
space X and let x§ € bar(A) \ {0} be such that the support set S(A,x}) is
bounded and nonempty. Then the slice S(A, x§, €) is bounded for all ¢ > 0, and

lim sup d(z,S(A,x5)) =0.

e=0% zeS(Axk )

Consequently, S(A, x})) is a singleton if and only if 611{(1)5r diam(S(A4, zj,¢)) = 0.
Theorem 4.1 Let A be a closed convex set in a normed space X. Then the
following statements are equivalent:

(i) A is continuous.

(ii) bar(A) \ {0} is open.

(iii) A has the bounded slice property.
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Definition 4.3 A closed convex set A in a normed space X is said to be differen-

tiable if its support functional o 4 is differentiable at each point of dom (o 4)\{0}.

Every closed ball in a Hilbert space is differentiable.

Example 4.1. Let X be a Hilbert space. Then, for any e € X \ {0} and
p € (1, +00), Ale,p) = {x +te: x € et & ||z||P < t} is differentiable,
where e = {z € X : (z,e) =0}

Proposition 4.4 Let A be a closed convex set in a normed space X. Then A has

the strong slice property if and only if A is differentiable.
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Recall that A is said to be a Chebychev set (or to have the Chebychev property)
if for each z € X there exists a € A such that d(z,A) = ||z — a|. To
characterize further the strong slice property, we adopt the following notion: A
is said to have the S-Chebychev property if for every closed convex set B with
d(A, B) > O there exists a unique a € A such that d(a,B) = d(A, B) and
7}1_)11(;10 |a, — a|| = 0 for any sequence {a,} C A with nh_)rglo d(a,, B) = d(A, B).
Proposition 4.5 Given a closed convex set A in a Banach space X, the following
statements hold:

(i) A is differentiable if and only if A has the S-Chebychev property.

(ii) If, in addition, int(A) # 0, then A is differentiable if and only if for ev-
ery closed convex set B disjoint with A there exists a unique a € A such that
d(a, B) = d(A, B) and 7}1_{210 |a, — al|| = 0 for any sequence {a,} C A.
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Proposition 4.6 Let X be a Banach space and Y be a closed subspace of X such
that codim(Y) = 1. Fore € X \ Y andp € (1, +00), let

A,(Y,e):={y+te: ye€Y and ||y|’ < t}. (4.12)

Then the following statements hold:
(i) A,(Y, e) has the bounded slice property and int(A,(Y, e)) # (.
(ii) If, in addition, X is reflexive and locally uniformly convex, A,(Y, e) has the

strong slice property.
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4.2. Main Results

For a closed convex set A in a normed space X, we adopt the following notation

L(X|A) :={u" € X*\ {0} : inf(u*, x) > —o0}.

zeA

Let €(X|A) denote the family of all continuous convex functions f : X — R
satisfying inf f(x) > inf f(x).
z€A zeX

£(X]A) C €(X]A).

Lemma 4.2. Let A be a closed convex set in a normed space X. Then, for each
f € €(X|A), there exists u} € £(X|A) such that every minimizing sequence of
the convex optimization problem P4(f) is a minimizing sequence of the linear

optimization problem P4 (u}).
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Theorem 4.2. Let A be a closed convex set in a Banach space X. Then the
following statements are equivalent:

(i) A is differentiable.

(ii) For any u* € L£(X|A), the corresponding linear optimization problem
P 4(u*) is well-posed-solvable.

(iii) For any f € €(X|A), the corresponding convex optimization problem
Pa(f) is well-posed-solvable.

Theorem 4.3 Let A be a closed convex set in a finite dimensional normed space
X. Then the following statements are equivalent:

(i) A is differentiable.

(ii) For any u* € L£(X|A), the corresponding linear optimization problem
Pa(u*) has a unique solution.

(iii) For every proper lower semicontinuous convex function f : X —
R U {400} with ;22 f(x) > ;él)f( f(x), the corresponding convex optimiza-

tion problem P 4(f) is well-posed-solvable.
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Theorem 4.4 Let A be a closed convex set in a reflexive Banach space X. Then
the following statements are equivalent:

(i) A is continuous.

(ii) For any v* € L£(X|A), the corresponding linear optimization problem
Pa(u*) is WG-well-posed-solvable.

(iii) For any f € €(X|A), the corresponding convex optimization problem
Pa(f) is WG-well-posed-solvable.

James Theorem ([Ann. Math. 1957] and [Trans. Amer. Math. Soc. 1964]). Let
X be a Banach space X. Then X is reflexive if and only if the closed unit ball
Bx is weakly compact if and only if for any bounded closed convex set A C X
and any x* € X, the linear optimization problem P 4(x*) is solvable.
Theorem 4.5. Let X be a reflexive Banach space and let A be an unbounded
closed convex subset of X such that int(A) # (). Then A is continuous if and on-
ly if for every proper lower semicontinuous convex function f : X — RU{+o0}
with ;IGlg flx) > ;g)f( f(x), the corresponding convex optimization problem
Pa(f) is WG-well-posed-solvable.
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Theorem 4.6. Let A be a closed convex subset of a finite dimensional normed
space X. Then the following statements are equivalent:

(i) A is continuous.

(ii) For each u* € £(X|A), the corresponding linear optimization problem
Pa(u*) is boundedly solvable.

(iii) For every proper lower semicontinuous convex function f : X — R U
{+o0} with ;.22 f(x) > ;g{ f(x), the corresponding convex optimization prob-
lem P4(f) is G-well-posed-solvable.
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4.3. Differtiabilty and continuity of conjugate functions

Recall the conjugate function f* of f defined by

fo(a*) = sup((a®, ) — f(@)) Va* € X"

It is well known that the conjugate function f* is always lower semicontinu-

ous with respect to the weak™ topology on X * and useful in convex optimization.

Theorem 4.7. Let X be a Banach space and f : X — R be a continuous
convex function such that f* is Fréchet differentiable dom( f*). Then, for every

closed convex subset A of X with —oo < inf1 f(x), the corresponding convex
e

optimization problem P 4(f) is well-posed solvable.
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Theorem 4.8. Let X be a reflexive Banach space and f : X — R be a
continuous convex function such that f* is is continuous on dom(f*). Then, for

every closed convex subset A of X with in£ f(x) > —oo, the corresponding
xTe

optimization problem P 4( ) is WG-well-posed solvable.

Proposition 4.7. Let X be a normed space and f : X — R be a continuous
convex function. Then epi(f) is differentiable if and only if f* is Fréchet
differentiable on dom( f*).

Proposition 4.8. Let X be a normed space and [ : X — R be a continuous
convex function. Then the following statements are equivalent:

(i) epi( f) is continuous.

(ii) f* is continuous on dom( f*).

(iii) dom( f*) is open.
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