### Metric subregularity

Xi Yin Zheng

Department of Mathematics, Yunnan University

运筹学基础与发展论坛

DOOR #1: 变分分析-基础理论与前沿进展







Metric regularity

Metric subregularity

Convex case

Home Page

标题页





第1页共18页

返 回

退出全屏显示

关 闭



1. Metric regularity

2. Metric subregularity

3. Convex case

Metric regularity

Metric subregularity

Convex case

Home Page

标 题 页





第 2 页 共 18 页

返 回

退出全屏显示

关 闭

# 1 Metric regularity

X, Y—Banach spaces,  $F: X \rightrightarrows Y$ —a multifunction,  $(\bar{x}, \bar{y}) \in \text{gph}(F) := \{(x, y) \in X \times Y : y \in F(x)\}$ 

Metric regularity of F at  $(\bar{x}, \bar{y})$ : there exist  $\kappa, \delta \in (0, +\infty)$  such that

$$d(x, F^{-1}(y)) \le \kappa d(y, F(x)) \quad \forall (x, y) \in B(\bar{x}, \delta) \times B(\bar{y}, \delta). \tag{1.1}$$

Strong metric regularity of F at  $(\bar{x}, \bar{y})$ : there exist  $\kappa, \delta \in (0, +\infty)$  such that (1.1) holds and  $F^{-1}(y) \cap B(\bar{x}, \delta)$  is a singleton for all  $y \in B(\bar{y}, \delta)$ .

- 1. Strong metric regularity of F at  $(\bar{x}, \bar{y}) \iff F^{-1}$  is a locally Lipschitz single-valued function around  $(\bar{x}, \bar{y})$ .
- 2. Metric regularity of F at  $(\bar{x}, \bar{y}) \iff F^{-1}$  is pseudo-Lipschitz around  $(\bar{x}, \bar{y})$ .
- 3. Metric regularity of F at  $(\bar{x}, \bar{y}) \iff F$  is locally linear-open around  $(\bar{x}, \bar{y})$ .



Metric regularity

Metric subregularity

Convex case

Home Page

标 题 页



**>>** 

第3页共18页

返 回

退出全屏显示

关 闭

**Theorem I (Banach).** Let F be a continuous linear operator between Banach spaces X and Y. Then the following statements are equivalent.

- (i) F(X) = Y.
- (ii) F is an open mapping.
- (iii) F is metrically regular at any point in gph(F).

**Theorem II (Lyusternik-Graves).** Let F be a smooth single-valued function between two Banach spaces such that the derivative  $\nabla F(\bar{x})$  is surjective for some  $\bar{x}$ . Then F is metrically regular at  $(\bar{x}, F(\bar{x}))$ .

**Theorem III (Robinson-Ursescu).** Let F be a closed convex multifunction between two Banach spaces, and let  $(\bar{x}, \bar{y}) \in gph(F)$  be such that  $\bar{y}$  is an interior point of F(X). Then F is metrically subregular at  $(\bar{x}, \bar{y})$ .



Metric regularity

Metric subregularity

Convex case

Home Page

标 题 页





第 4 页 共 18 页

返 回

退出全屏显示

关 闭

Coderivatives  $\hat{D}^*F(x,y)$ ,  $\bar{D}^*F(x,y)$ ,  $D^*F(x,y):Y^* \Rightarrow X^*$ 

$$D^*F(x,y)(y^*) = \{x^* \in X^* : (x^*, -y^*) \in N(\operatorname{gph}(F), (x,y))\}$$
  

$$\bar{D}^*F(x,y)(y^*) = \{x^* \in X^* : (x^*, -y^*) \in \bar{N}(\operatorname{gph}(F), (x,y))\}$$
  

$$\hat{D}^*F(x,y)(y^*) = \{x^* \in X^* : (x^*, -y^*) \in \hat{N}(\operatorname{gph}(F), (x,y))\}$$

for all  $y^* \in Y^*$ .

**Theorem IV** (Mordukhovich, TAMS 1996). Let X, Y be finite dimensional spaces and let  $F: X \rightrightarrows Y$  be a closed multifunction. Then F is metrically regular at  $(\bar{x}, \bar{y})$  if and only if  $\bar{D}^*F(\bar{x}, \bar{y})^{-1}(0) = \{0\}$ .

**Theorem V(Dontchev et al, TAMS 2004).** Let F be metrically regular at  $(\bar{x}, \bar{y})$ . Then, there exists  $\delta > 0$  such that for any single-valued Lipschitz function  $g: X \to Y$  with  $\text{lip}(g, \bar{x}) < \delta$ , F + g is metrically regular at  $(\bar{x}, \bar{y} + g(\bar{x}))$ .



Metric regularity

Metric subregularity

Convex case

Home Page

标 题 页





第 5 页 共 18 页

返回

退出全屏显示

关 闭

## 2 Metric subregularity

Metric subregularity of F at  $(\bar{x}, \bar{y})$ : there exist  $\tau, \delta \in (0, +\infty)$  such that

$$d(x, F^{-1}(\bar{y})) \le \tau d(\bar{y}, F(x)) \qquad \forall x \in B(\bar{x}, \delta), \tag{2.2}$$

where  $F^{-1}(\bar{y})$  can be regarded as the solution set of the following generalized equation

$$\bar{y} \in F(x)$$
.

In the special case when  $F(x) = [\varphi(x), +\infty)$  and  $\bar{y} = 0$  (resp.  $\bar{y} = \inf_{x \in X} \varphi(x)$ ), the metric regularity of F at  $(\bar{x}, \bar{y})$  reduces to that  $\varphi$  has an error bound (weak sharp minimum) at  $\bar{x}$ .



Metric regularity

Metric subregularity

Convex case

Home Page

标 题 页



**>>** 



返 回

退出全屏显示

关 闭

**Theorem VI (Hoffman, 1952).** Let  $F : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$  be a polyhedral multifunction (i.e.,gph(F) is a polyhedron in  $\mathbb{R}^m \times \mathbb{R}^n$ ). Then there exists  $\tau > 0$  such that

$$d(x, F^{-1}(y)) \le \tau d(y, F(x)) \quad \forall (x, y) \in \mathbb{R}^m \times F(\mathbb{R}^m).$$

**Theorem VII (Robinson, 1979).** Let  $F : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$  be a piecewise polyhedral multifunction (i.e., gph(F) is the union of finitely many polyhedra in  $\mathbb{R}^m \times \mathbb{R}^n$ ). Then F is metrically subregular at each  $(\bar{x}, \bar{y}) \in \text{gph}(F)$ .

**Theorem VIII (Zheng-NG, SIOPT, 2014).** Let F be a piecewise polyhedral multifunction between two normed spaces X and Y, and let  $\bar{y} \in F(X)$ . The following statements hold:

(1) F is always boundedly metrically subregular at  $\bar{y}$ , that is, for any r > 0 there exists  $\tau > 0$  such that

$$d(x, F^{-1}(\bar{y})) \le \tau d(\bar{y}, F(x)) \quad \forall x \in B(0, r).$$

(2) F is globally metrically subregular at  $\bar{y}$  if and only if  $\lim_{d(x,F^{-1}(\bar{y}))\to\infty}d(\bar{y},F(x))=\infty.$ 



Metric regularity

Metric subregularity

Convex case

Home Page

标 题 页





第7页共18页

返 回

退出全屏显示

关 闭

**Theorem IX (Ioffe, TAMS, 1984).** Let f be a locally Lipschitz function X and let  $\bar{x} \in S(f) = f^{-1}(-\mathbb{R}_+)$ . Suppose that there exist  $\eta, \delta \in (0, +\infty)$  such that

$$\eta \le d(0, \partial f(x)) \quad \forall x \in B(\bar{x}, \delta) \setminus S(f).$$

Then the multifunction  $F(x) = [f(x), +\infty)$  is metrically subregular at  $(\bar{x}, 0)$ .

$$J(y) := \partial \| \cdot \| (y) = \{ y^* \in S_{Y^*} | \langle y^*, y \rangle = \| y \| \} \quad \forall y \in Y \setminus \{ 0 \}.$$

For any  $\varepsilon > 0$ , let

$$J_{\varepsilon}(y) := \{ y^* \in S_{Y^*} | d(y^*, J(y)) < \varepsilon \} \quad \forall y \in Y \setminus \{0\}.$$

For a subset A of Y and  $\bar{y} \in Y$ ,

$$P_A(\bar{y}) := \{ y \in A | \|\bar{y} - y\| = d(\bar{y}, A) \}$$

and

$$P_A^{\varepsilon}(\bar{y}) := \{ y \in A | \|y - \bar{y}\| < d(\bar{y}, A) + \varepsilon \}.$$



Metric regularity

Metric subregularity

Convex case

Home Page

标 题 页





第 **6** 页 <del>页</del> 1**6** 页

返回

退出全屏显示

关 闭

**Theorem 1** Let F be a closed multifunction between Banach spaces X and Y and let  $(\bar{x}, \bar{y}) \in gph(F)$ . The following statements hold:

(i) Let  $\varepsilon, \eta, \delta \in (0, +\infty)$  be such that

$$d(0, D_c^* F(x, y)(J_{\varepsilon}(y - \bar{y}))) \ge \eta$$

for all  $x \in B(a, \delta) \setminus F^{-1}(\bar{y})$  and all  $y \in P_{F(x)}^{\varepsilon}(b) \cap B(\bar{y}, \delta)$ . Then

$$d(x, F^{-1}(\bar{y})) \le \frac{1}{\eta} d(\bar{y}, F(x)) \quad \forall x \in B\left(a, \frac{\delta}{2+\eta}\right).$$

(ii) If F is convex, then F is metrically subregular at  $(\bar{x}, \bar{y})$  if and only if there exist  $\varepsilon \in (0, 1)$  and  $\eta, \delta \in (0, +\infty)$  such that

$$d(0, D_c^* F(x, y)(J_{\varepsilon}(y - \bar{y}))) \ge \eta$$

for all  $x \in B(a, \delta) \setminus F^{-1}(\bar{y})$  and all  $y \in P_{F(x)}^{\varepsilon}(b) \cap B(\bar{y}, \delta)$ .

In the case when  $F(x) = [f(x), +\infty)$ ,  $D_c^* F(x, y) (J_{\varepsilon}(y - \bar{y})) = \partial_c f(x)$  (resp.  $= \emptyset$ ) for y = f(x) (resp. y > f(x)).



Metric regularity

Metric subregularity

Convex case

Home Page

标 题 页





第 9 页 共 18 页

返 回

退出全屏显示

关 闭

For convenience, we adopt  $\mathcal{N}(F, \bar{x}, \bar{y}, \tau, \delta)$  defined by

$$\mathcal{N}(F, \bar{x}, \bar{y}, \tau, \delta) := \{ x \in B(\bar{x}, \delta) \setminus F^{-1}(\bar{y}) : d(x, F^{-1}(\bar{y})) > \tau d(\bar{y}, F(x)) \}.$$

Clearly, F is metrically subregular at  $(\bar{x}, \bar{y})$  with constants  $\tau$  and  $\delta$  if and only if  $\mathcal{N}(F, \bar{x}, \bar{y}, \tau, \delta)$  is empty. Therefore, if  $\mathcal{N}(F, \bar{x}, \bar{y}, \tau, \delta) \neq \emptyset$  then F is not metrically subregular at  $(\bar{x}, \bar{y})$  with the constants  $\tau$  and  $\delta$ , but F is possibly metrically subregular at  $(\bar{x}, \bar{y})$  with larger constant  $\tau'$  and smaller constant  $\delta'$ . This motivates us to establish sufficient conditions for the metric subregularity of F at  $(\bar{x}, \bar{y})$  only concerning with x in  $\mathcal{N}(F, \bar{x}, \bar{y}, \tau, \delta)$ .

**Theorem 2** Let F be a closed multifunction between Banach spaces X and Y and let  $(\bar{x}, \bar{y}) \in gph(F)$ , and let  $\varepsilon, \eta, \delta \in (0, +\infty)$  be such that

$$d(0, D_c^* F(x, y)(J_{\varepsilon}(y - \bar{y}))) \ge \eta$$

for all  $x \in \mathcal{N}(F, \bar{x}, \bar{y}, \tau, \delta)$  and all  $y \in P_{F(x)}^{\varepsilon}(b) \cap B(\bar{y}, \delta)$ . Then F is metrically subregular at  $(\bar{x}, \bar{y})$ .



Metric regularity

Metric subregularity

Convex case

Home Page

标 题 页



**>>** 

第 10 页 共 18 页

返 回

退出全屏显示

关 闭

Adopting an admissible function  $\varphi$  (namely an increasing  $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$  such that  $\varphi(0)=0$  and  $[\varphi(t)\to 0\Rightarrow t\to 0]$ ), consider the following more general metric subregularity: F is said to be metrically  $\varphi$ -subregular at  $(\bar{x},\bar{y})\in \mathrm{gph}(F)$  if there exist  $\tau,\delta\in(0,+\infty)$  such that

$$\varphi(d(x, F^{-1}(\bar{y}))) \le \tau d(\bar{y}, F(x)) \quad \forall x \in B(\bar{x}, \delta).$$

In the special case when  $\varphi(t)=t^p$ , the metric  $\varphi$ -subregularity reduces to the so-called Hölder metric subregularity.

For 
$$\varepsilon, \delta, \beta \in (0, +\infty)$$
, let

$$\mathcal{B}(F, \bar{x}, \bar{y}, \varepsilon, \delta) := \{(x, y) : x \in B(\bar{x}, \delta) \setminus F^{-1}(\bar{y}), y \in P_{F(x)}^{\varepsilon}(\bar{y}) \cap B(\bar{y}, \delta)\}$$

and

$$K_{\beta}(\bar{x}, \bar{y}) := \{(x, y) \in X \times Y : ||y - \bar{y}|| \le \beta ||x - \bar{x}||\}.$$



Metric regularity

Metric subregularity

Convex case

Home Page

标 题 页



**>>** 

44

第 11 页 共 18 页

返 回

退出全屏显示

关 闭

**Theorem 3** Let  $\varphi$  be a convex admissible function and F be a closed multifunction between two Banach spaces X and Y. Let  $\alpha \in (0,1), \ \varepsilon, \delta \in (0,+\infty), \ \beta \in (0,+\infty]$  and  $(\bar{x},\bar{y}) \in \operatorname{gph}(F)$  be such that

$$\frac{1}{\alpha}\varphi'_{+}\left(\frac{d(x,F^{-1}(\bar{y}))}{1-\alpha}\right) \leq d(0,D^{*}F(x,y)(J_{\varepsilon}(y-\bar{y})))$$

for all  $(x,y) \in \mathcal{B}(F,\bar{x},\bar{y},\varepsilon,\delta) \cap K_{\beta}(\bar{x},\bar{y})$ . Let

$$\delta' := \min \left\{ \frac{\delta}{1+\alpha}, \varphi^{-1}(\delta) \right\} \text{ and } \kappa := \max \left\{ 1, \frac{\varphi'_{+}(\delta')}{\alpha\beta} \right\}.$$

Then

$$\varphi(d(x, F^{-1}(\bar{y}))) \le \kappa d(\bar{y}, F(x)) \quad \forall x \in B_X(\bar{x}, \delta').$$



Metric regularity

Metric subregularity

Convex case

Home Page

标 题 页





第 12 页 共 18 页

返 回

退出全屏显示

关 闭

#### 3 Convex case

Let  $f: \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$  be a proper lower semicontinuous convex function and C is a closed convex subset of  $\mathbb{R}^m$ . In the case that

$$F(x) := \left[ \max\{f(x), d(x, C)\}, +\infty \right) \quad \forall x \in \mathbb{R}^m,$$

Lewis and Pang (1997) proved that if  $f(\bar{x}) = 0$  and  $\partial f(\bar{x}) \neq \emptyset$  then

metric subregularity of 
$$F$$
 at  $(\bar{x}, 0) \Longrightarrow N(F^{-1}(0), \bar{x}) = \overline{N(C, \bar{x}) + \mathbb{R}_+ \partial f(\bar{x})}$ 

Lewis and Pang's open problem: find a useful converse of the abobe implication (characterize the metric regularity via the normal cone identity).



Metric regularity

Metric subregularity

Convex case

Home Page

标 题 页





返回

退出全屏显示

关 闭

Let  $\varphi$  be a proper lower semicontinuous extended real convex function on a Banach space X and consider the following convex inequality

(CIE) 
$$\varphi(x) \le 0.$$

Let S denote the solution set of (CIE), that is,  $S := \{x \in X : \varphi(x) \le 0\}$ . In the special case when  $\varphi$  is a continuous convex function, recall that (CIE) satisfies basic constraint qualification (BCQ) at  $a \in \mathrm{bd}(S)$  if

$$N(S,a) = \mathbb{R}_+ \partial \varphi(a). \tag{3.3}$$

To solve Lewis and Pang's open problem, using the singular subdifferential  $\partial^{\infty}\varphi$ , we introduce the following notions:

(BCQ) 
$$N(S, a) = \partial^{\infty} \varphi(a) + \mathbb{R}_{+} \partial \varphi(a),$$

(SBCQ) 
$$N(S, a) \cap B_{X^*} \subset \partial^{\infty} \varphi(a) + [0, \tau] \partial \varphi(a).$$



Metric regularity

Metric subregularity

Convex case

Home Page

标 题 页



**>>** 

第 14 页 共 18 页

返回

退出全屏显示

关 闭

**Theorem 4** Let  $\varphi$  be a proper lower semicontinuous convex function on a Banach space X and  $F(x) := [\varphi(x), +\infty)$  for all  $x \in X$ . Then F is metrically subregular at  $(\bar{x}, 0)$  with  $\varphi(\bar{x}) = 0$  if and only if there exist  $\tau, \delta \in (0, +\infty)$  such that the convex function  $\varphi$  has strong BCQ at each  $x \in \mathrm{bd}(F^{-1}(\bar{y})) \cap B(\bar{x}, \delta)$  with the same constant  $\tau$ .

**Theorem 5** Let F be a closed convex multifunction between Banach spaces X and Y and  $(\bar{x}, \bar{y}) \in gph(F)$ . Then F is metrically subregular at  $(\bar{x}, \bar{y})$  if and only if there exists  $\delta > 0$  such that F has strong BCQ at each  $x \in bd(F^{-1}(\bar{y})) \cap B(\bar{x}, \delta)$  with the same constant, that is, there exists  $\tau \in (0, +\infty)$  such that

$$N(F^{-1}(\bar{y}), x) \cap B_{X^*} \subset \tau D^* F(x, \bar{y})(B_{Y^*}) \quad \forall x \in \mathrm{bd}(F^{-1}(\bar{y})) \cap B(\bar{x}, \delta).$$



Metric regularity

Metric subregularity

Convex case

Home Page

标 题 页





第 15 页 共 18 页

返 回

退出全屏显示

关 闭

**Theorem 6** Let F be a closed convex multifunction between Banach spaces X and Y. Then F is globally metrically subregular at  $\bar{y} \in F(X)$  (i.e., there exists  $\tau \in (0, +\infty)$  such that  $d(x, F^{-1}(\bar{y})) \leq \tau d(\bar{y}, F(x))$  for all  $x \in X$ ) if and only if there exist  $\tau \in (0, +\infty)$  such that

$$N(F^{-1}(\bar{y}), x) \cap B_{X^*} \subset \tau D^* F(x, \bar{y})(B_{Y^*}) \quad \forall x \in C,$$

where C is some recession core of  $F^{-1}(\bar{y})$  in the sense  $F^{-1}(\bar{y}) = C + F^{-1}(\bar{y})^{\infty}$ . If, in addition,  $F^{-1}(\bar{y})$  is a polyhedron, then F is globally metrically subregular at  $\bar{y}$  if and only if

$$N(F^{-1}(\bar{y}), x) = D^*F(x, \bar{y})(Y^*) \quad \forall x \in C.$$



Metric regularity

Metric subregularity

Convex case

Home Page

标 题 页





第 16 页 共 18 页

返 回

退出全屏显示

关 闭

**Theorem 7** Let F be a closed multifunction between Banach spaces X and Y and let  $(\bar{x}, \bar{y}) \in gph(F)$ . Then the following statements hold:

(i) If F is metrically subregular at  $(\bar{x}, \bar{y})$ , then there exist  $\eta, \delta \in (0, +\infty)$  such that

$$\hat{N}(F^{-1}(\bar{y}), x) \cap B_{X^*} \subset \eta D^* F(x, \bar{y})(B_{Y^*}) \quad \forall x \in F^{-1}(\bar{y}) \cap B(\bar{x}, \delta).$$

(ii) If F is subsmooth at  $(\bar{x}, \bar{y})$ , F is metrically subregular at  $(\bar{x}, \bar{y})$  if and only if there exist  $\eta, \delta \in (0, +\infty)$  such that

$$N(F^{-1}(\bar{y}), x) \cap B_{X^*} \subset \eta D^* F(x, \bar{y})(B_{Y^*}) \quad \forall x \in F^{-1}(\bar{y}) \cap B(\bar{x}, \delta).$$



Metric regularity

Metric subregularity

Convex case

Home Page

标 题 页





第 17页 共 18页

返 回

退出全屏显示

关 闭

#### References

- [1] A. L. Dontchev, A. S. Lewis and R. T. Rockafellar, The radius of metric regularity, Transactions of the American Mathematical Society, 355 (2003), pp.493-517.
- [2] A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings, Springer, New York, 2009.
- [3] A. D. Ioffe, Metric regularity and subdifferential calculus. Russ. Math. Surveys 55 (2000), pp.501-558.
- [4] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, Springer-Verlag, New York, 2006.
- [5] B. Zhang and X.Y. Zheng, Well-posedness and generalized metric subregularity with respect to an admissible function, Science China Mathematics, 62(2019), pp.809-822.
- [6] X. Y. Zheng and K. F. Ng,, Metric regularity and constraint qualifications for convex inequalities in Banach spaces, SIAM J. Optim., 14(2004).pp.757-772.
- [7] X. Y. Zheng and K. F. Ng, Metric Subregularity and Constraint qualifications for Convex Generalized equations in Banach spaces, SIAM J. Optim., 18(2007), pp.437-460.
- [8] X. Y. Zheng and K. F. Ng, Calmness for L-subsmooth multifunctions in Banach spaces, SIAM J. Optim., 19(2009), 1648-1673.
- [9] X. Y. Zheng and K. F. Ng, Metric subregularity and calmness for nonconvex generalized equations in Banach spaces, SIAM J. Optim., 20(2010), pp.2119-2136.



Metric regularity

Metric subregularity

Convex case

Home Page

标 题 页





第 18 页 共 18 页

返 回

退出全屏显示

关 闭

退 出