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ABSTRACT
We introduce a new high-resolution well-balanced central-upwind
scheme for two-dimensional rotating shallow water equations with
horizontal temperature/density gradients – thermal rotating shal-
lowwater equations. The schememaintains the equilibrium states in
the presence of topography and temperature/density variations, and
allows for high-resolution tracking of the active scalar field together
with velocity andpressure fields.Weuse thenewscheme tohighlight
both the similarities and differences in the predictions of the thermal
and isothermal shallowwatermodels for the fundamental dynamical
processes: evolution of isolated vortices in themidlatitudeβ-plane in
the presence of topography and relaxation of localised pressure and
temperature perturbations in the equatorial β-plane.
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1. Introduction

Rotating shallow water (RSW) equations, in spite of their simplicity, capture essential fea-
tures of the dynamics of large-scale motions in the atmosphere and oceans, and allow
for efficient and computationally low-cost modelling. Major dynamical phenomena can
be understood with this model (Zeitlin 2018), in particular large-scale vortex and wave
dynamics. However, an important element is lacking in the the RSWmodel, as it does not
allow for gradients of the mean temperature and/or density, which are ubiquitous in the
atmosphere and oceans. In particular, in the context of vortex dynamics, oceanic eddies
are typically warm- or cold-core (see, e.g. Sun et al. 2019), and archetypal atmospheric
vortices, the tropical storms, are warm-core (see, e.g. Halverson et al. 2006). An improved
in this respect thermal rotating shallow water (TRSW) model was multiply reinvented
both in the meteorological and oceanographic literature, in the context of the boundary
layer in the atmosphere (Lavoie 1972, Salby 1989), and of the mixed layer in the ocean
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(McCreary et al. 1993, Young 1994, Ripa 1995). More recently, it was applied to planetary
atmospheres (Cho et al. 2008, Warnerford and Dellar 2014), and was rediscovered again
in the context of testing the general circulation models (Zerroukat and Allen 2015). The
TRSWmodel has some specific properties whichwill be addressed below. These properties
will be highlighted with the help of a new high-resolution well-balanced central-upwind
scheme, which is derived in this paper. To the best of our knowledge, this is the first
well-balanced scheme (in the sense that it is capable of preserving on the discrete level
thermo-geostrophic equilibria) for the TRSW equations. In the absence of rotation, well-
balanced schemes for thermal shallow water equations have been recently developed by
Chertock et al. (2014) and Sánchez-Linares et al. (2016). The importance of well-balanced
numerical schemes is obvious, as large-scale dynamical features in the atmosphere and
ocean are usually close to the geostrophic equilibrium and usually evolve in the presence
of non-flat bathymetry/topography. Adequate numerical schemes should be also able to
resolve sharp temperature fronts, since a description of such fronts was part of the initial
motivation to introduce this type of models (see, e.g. Dempsey and Rotunno 1988, Young
and Chen 1995).

Recently, we have proposed and successfully tested a well-balanced central-upwind
scheme for the one-dimensional (1D) version of the TRSWmodel, in fact, the “one-and-a-
half” dimensional as, due to rotation, both components of velocity should be present even
if there is no dependence on one of the spatial coordinates (see Kurganov et al. 2020). The
scheme is derived using the flux globalisation approach originally proposed in Chertock
et al. (2018c) and then used for the Saint-Venant system of shallow water equations with
Manning friction terms (Cheng et al. 2019) and Euler equations of gas dynamics with grav-
itation (Chertock et al. 2018a). In this approach, the source terms are incorporated into the
fluxes, which become global. The obtained systemof conservation lawswith global fluxes is
then numerically solved using the Riemann-problem-solver-free central-upwind scheme,
which was derived for general multidimensional hyperbolic systems of conservation laws
in a series of works (see, e.g. Kurganov and Tadmor 2000, Kurganov et al. 2001, Kurganov
and Tadmor 2002, Kurganov and Lin 2007, Kurganov 2016). The resultingmethod is guar-
anteed to be well-balanced thanks to the reconstruction of equilibrium variables, which is
needed in order to construct a high-order scheme, and special well-balanced evolution (in
some of the numerical flux components, a part of the numerical diffusion is switched off
when the solution is at or near the equilibrium).

In this paper, we show how the above-cited method can be generalised to the full
two-dimensional (2D) model, and use it to determine differences and new elements
appearing in TRSW, as compared to the “ordinary” RSW model, in the representation
of fundamental dynamical processes: evolution of the isolated vortices on the mid-
latitude β-plane and relaxation of localised perturbations on the equatorial β-plane.
Our paper is organised as follows. In section 2, we introduce the model and describe
its basic properties. In section 3, we sketch the numerical method, the details being
relegated to the Appendices A and B. In section 4, we present the results of the com-
parative analysis of the evolution of localised vortices on the mid-latitude β-plane with
a non-flat bottom topography in the TRSW and RSW models. In section 5, we give the
results of the comparative analysis of the relaxation (adjustment) of localised pressure
and temperature anomalies on the equatorial β-plane. Finally, section 6 contains brief
conclusions.
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2. TRSWmodel and its fundamental properties

2.1. Equations of themodel and their interpretation

The equations of the model, in the absence of dissipation, are written for the horizontal
velocity v(x, y, t) = (u(x, y, t), v(x, y, t)), the thickness of the fluid layer h(x, y, t), and the
field b(x, y, t) related to temperature/density variations

vt + v·∇v + f (y)ẑ ∧ v = −b∇(h + Z)− 1
2h∇b, (1a)

ht + ∇·(vh) = 0, (1b)

bt + v·∇b = 0. (1c)

Here, x and y are spatial variables, t is the time, Z(x, y) is the bottom topography, ∇ :=
(∂/∂x, ∂/∂y), ẑ is the unit vector in the vertical direction, and f (y) = f0 + βy is the Coriolis
parameter in the β-plane approximation.

These equations hold both in the oceanic and atmospheric contexts, b being related
to the density anomaly in the former case and to the potential temperature anomaly in
the latter case. The model can be derived by vertical averaging of the primitive equa-
tions under the columnarmotion hypothesis, like the standard RSW equations which arise
from (1) in the limit of constant b, with the only difference in the derivation consisting
in relaxation of the hypothesis of constant mean density (Chapter 14 Zeitlin 2018). We
would like to emphasise that the physical meaning of b depends on the interpretation of
the TRSW model. In the oceanic context, if the model is understood as purely barotropic
and is obtained by vertical averaging through the whole depth (as in Zeitlin 2018), then
b = gρ/ρ0, where ρ and ρ0 are the variable and constant parts of the water density, respec-
tively. This means that b is a decreasing function of height. If the model is understood as
describing the baroclinicmotions in the two-layer oceanwith an infinitely deep lower layer
(as in Warneford and Dellar 2013), then b = g(ρ0 − ρ)/ρ0, where ρ and ρ0 = Const are
densities of the upper and lower layers, that is, b is an increasing function of height. How-
ever, introducing the non-flat bottom topography with such interpretation does not make
much sense. In the atmospheric context, the density ρ should be replaced with the poten-
tial temperature θ , and the fluid layer is upside-down, with the free surface at the ground,
and pseudo-height used as the vertical coordinate (Zeitlin 2018).

Beforemoving forward, let us recall a crucial observationmade byGouzien et al. (2017).
It is well-known that the standardRSWmodel is equivalent to the compressible Euler equa-
tions for rotating isentropic gas with density h and the equation of state P = gh2/2 for
pressureP. Similarly, the TRSWmodel (1) can be interpreted as dynamics of a compressible
gas under the influence of the Coriolis force with density h, entropy b, and the equation of
state P = bh2/2. An additional observation is that the latter becomes the standard equation
of state of a polytropic gas with polytropic index 2, density h, and entropy s under the
change of variable b = es (under this change the equation of advection of b reduces to the
equation of advection of s). It should be pointed out that the potential temperature θ has
precisely the required expression in terms of entropy: θ = es. This interpretation shows the
internal consistency of the model in spite of its unusual properties to be discussed below.
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2.2. Conservation laws, forcing and dissipation

An important difference between the TRSW and standard RSW model is that the poten-
tial vorticity (PV) Q = (ζ + f )/h, where ζ = vx − uy is the relative vorticity, is not a
Lagrangian invariant of the system (1) as follows from the direct calculation

dQ
dt

= Qt + v·∇Q = 1
h

[(
h
2

+ Z
)
x
by −

(
h
2

+ Z
)
y
bx

]
= 1

h
J
(
h
2

+ Z, b
)
,

whereJ (φ,ψ) := φxψy − φyψx is the 2D Jacobian. Instead, a global conservation law for
the PV integrated over a domain Sb, delimited by an advected isentrope b = const., can be
established (Warneford and Dellar 2013), namely

d
dt

∫
Sb
hQ dx dy = 0. (2)

One could be surprised by the apparent violation of the Ertel potential vorticity theorem,
especially in view of the above interpretation of the TRSWmodel as polytropic gas dynam-
ics. The resolution of this paradox is simple: while in the Ertel general potential vorticity
formula, the vorticity is projected onto the gradient of entropy, in the present quasi 2D
model they are orthogonal (the vorticity is vertical and the gradients of b are horizontal).

It follows from (1) that the buoyancy is a Lagrangian invariant and the mass is locally
conserved. As usual, combining the first two equations gives a local momentum conser-
vation, while combining the last two equations gives a local conservation of the buoyancy
integrated over the layer hb (recall that b is the average buoyancy of the layer). In thiswaywe
arrive at the equations of motion in the form of balance laws, which would be conservation
laws in the absence of rotation and bottom topography. They are

ht + (hu)x + (hv)y = 0, (3a)

qt + (hu2 + 1
2bh

2)
x + (huv)y = fp − hbZx, (3b)

pt + (huv)x + (hv2 + 1
2bh

2)
y = −fq − hbZy, (3c)

(hb)t + (hub)x + (hvb)y = 0, (3d)

where q: = hu and p: = hv are zonal and meridional momentum densities, respectively.
These balance laws will be used for constructing the numerical scheme presented below.

It is easy to check that the total energy of the system, which is the sum of the kinetic and
potential energies,

E =
∫ ∞

−∞

[
h
(
u2 + v2

2

)
+ b(h + Z)2

2

]
dx dy

is conserved.
For the purposes of modelling specific oceanic and atmospheric phenomena, the

momentum equations (3b) and (3c) can be subject to body forces and the entropy con-
servation equation (3c) can be subject to diabatic cooling/heating. Apart from molecular
viscosity and diffusion, which can be introduced in a standard way on the right-hand sides
of (3a-d) as being proportional to the Laplacians of the corresponding quantities, a bottom
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drag of the form −K(|v|)q and −K(|v|)p can be introduced on the right-hand side of (3b)
and (3c), and diabatic relaxation to an equilibrium potential temperature distribution of
the form −(h/τ)(θ − θe) can be added on the right-hand side of (3d), when θ replaces b
in atmospheric applications.

2.3. The thermo-(cyclo)geostrophic equilibrium and quasi-geostrophic
approximation

It is of common knowledge that Coriolis and pressure forces are usually approximately
balanced in large-scale atmospheric and oceanic motions. This is the geostrophic balance.
Written in terms of the gas dynamics analogy explained above it looks rather standard,
but if expressed in terms of the original variables, it becomes unusual compared with the
standard RSWmodel

f ẑ ∧ v = −h−1∇P = −h−1∇( 12bh2) = −b∇h − 1
2h∇b. (4)

This is the thermo-geostrophic balance (Gouzien et al. 2017) which means that the same
velocity distribution can be obtained either by pure “normal” hydrostatic pressure gradient
at constant b (geostrophic balance), by pure buoyancy (temperature) gradient at constant h
(thermal balance), or by a combination of both. In order to understand the meaning of this
fact and an apparent contradiction with the classical notion of the thermal wind, as in the
case of thermal balance we have a horizontal density/temperature gradient and no vertical
shear of velocity, we should recall that the TRSWmodel is derived by vertically averaging
the primitive equations. By construction, the vertical shear is averaged out in the result-
ing TRSW equations, leaving only the mean. Therefore, the thermal balance between the
Coriolis and density/temperature gradient terms can be understood as vertically averaged
thermal wind balance, and an admixture of “thermal” balance in the “normal” geostrophic
balance in (4) can be interpreted as a proxy for the baroclinicity of the mean flow. In this
terms, one can understand a surprising instability of the plane-parallel flowmaintained by
an across-flow temperature gradient (see, e.g. Zeitlin 2018), which was already reported in
the early papers as a proxy of the classical symmetric instability (Stone 1966).

In what follows, we will be using axisymmetric stationary vortex solutions of the sys-
tem (1) on the f -plane, that is, with f (y) ≡ f0 = const., with zero radial velocity, azimuthal
velocity V, thickness h and buoyancy b as functions of the radial coordinate r only. After
rewriting (1) in polar coordinates, it is easy to see that in order to provide an exact solution,
these fields should be in thermo-cyclogeostrophic equilibrium

r−1V2(r)+ f0V(r) = b(r)h′(r)+ 1
2b

′(r)h(r). (5)

A given velocity profile V(r) can be, thus, obtained by adjusting the profile h(r) with flat
b (“normal” vortex), or by adjusting the profile b(r) with flat h (“thermal” vortex), or with
non-trivial profiles for both h and b (“mixed” vortex) (see Gouzien et al. 2017).

Quasi-geostrophic (QG) approximation of the TRSW equations, see (Warneford and
Dellar 2013), can be obtained along the same lines as in the standard RSW case. Consid-
ering fluid motions with a typical spatial and velocity scales Ls and U, respectively, and
introducing unperturbed thicknessH0 and reference buoyancy B0, we define in a standard
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way the Rossby and Burger numbers,

Ro = U
f0Ls

and Bu = B0H0

f 20 L2s
≡ R2d

L2s
,

respectively. Here, Rd denotes the deformation radius. We then put ourselves in the QG
regime by supposing Bu = O(1), Ro � 1, and using the following scaling

x = Ls̃x , t = (Ls/U) t̃ , u = Uũ , v = Uṽ , (6a–d)

h = H0
(
1 + (Ro/Bu)η

)
, b = B0

(
1 + 2(Ro/Bu)θ

)
, (6e,f)

where x̃, t̃, ũ, ṽ, η and θ are the non-dimensional variables and η(r) and θ(r) represent
deviations from the values of respective fields at infinity.

We then substitute (6) into (4) and obtain in the leading order in Ro (for simplicity, we
take Bu = 1, and assume, as usual in the QG regime, that non-dimensional meridional
gradient of the Coriolis parameter β is of the order of Ro)

ẑ ∧ v = −∇(η + θ) = −∇ψ ,
where ψ := η + θ is the geostrophic streamfunction. At the next order, we obtain(∇2ψ − ψ + θ

)
t + J (ψ ,∇2ψ)+ ψx = 0, (7a)

θt + J (ψ , θ) = 0. (7b)

Simultaneously, using the scaling (6), we can rewrite the thermo-cyclogeostrophic
equilibrium (5) in non-dimensional variables as(

1 + Ro
V(r)
r

)
V(r) =

(
1 + 2

Ro
Bu
θ(r)

)
η′(r)+

(
1 + Ro

Bu
η(r)

)
θ ′(r). (8)

3. Well-balanced semi-discrete central-upwind scheme for two-dimensional
TRSW equations

Solving the TRSW system (3) numerically is quite challenging. First, the solutions of this
hyperbolic system of balance laws admit non-smooth solutions and therefore one needs to
develop a shock-capturing scheme. In the absence of rotation and topography, existence of
shocks becomes obvious already from the gas dynamics analogy explained in section 2.1.
The Rankine-Hugoniot conditions across a shock moving in the x-direction with velocity
C in such system readily follow from (3)

−C[h] + [hu] = 0, (9a)

−C[hu] + [hu2 + 1
2bh

2] = 0, (9b)

−C[hb] + [hub] = 0, (9c)

where, here and only here, square brackets denote, as usual, a jump of the corresponding
quantity across the shock. Existence of shocks in the presence of rotationwas demonstrated
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in the model of Kurganov et al. (2020). Second, a delicate balance between the flux and
source terms should be maintained in order to be able to capture small perturbations of
physically relevant thermo-geostrophic equilibria on practically affordable and thus rea-
sonably coarse grids. Therefore, one needs to develop a well-balanced scheme, which is
capable of exactly preserving two particular thermo-geostrophic equilibria, the so-called
jets in the rotating frame,

q ≡ 0, py ≡ 0, hy ≡ 0, by ≡ 0, Zy ≡ 0, K ≡ const.

and

p ≡ 0, qx ≡ 0, hx ≡ 0, bx ≡ 0, Zx ≡ 0, L ≡ const.,

where K and L are global quantities defined below in (12), on a discrete level. This can be
achieved using a flux globalisation approach originally proposed byChertock et al. (2018c).

Following Chertock et al. (2018a, 2018c) and Cheng et al. (2019), we first incorporate
the source terms into the fluxes and rewrite the system (3) in the following equivalent form

U t + F(U ,Z)x + G(U ,Z)y = 0, (10)

where

U =

⎛⎜⎜⎝
h
q
p
hb

⎞⎟⎟⎠ , F(U ,Z) =

⎛⎜⎜⎝
q
K

pq/h
qb

⎞⎟⎟⎠ , G(U ,Z) =

⎛⎜⎜⎝
p

pq/h
L
pb

⎞⎟⎟⎠ , (11a–c)

and K and L are global fluxes given by

K = hu2 + b
2
h2 −

∫ x [
f (y)p(ξ , y, t)− h(ξ , y, t)b(ξ , y, t)Zx(ξ , y)

]
dξ , (12a)

L = hv2 + b
2
h2 +

∫ y [
f (ξ)q(x, ξ , t)+ h(x, ξ , t)b(x, ξ , t)Zy(x, ξ)

]
dξ , (12b)

where the integrals represent the anti-derivatives with respect of x and y, respectively.
The system (10)–(12) is a hyperbolic system of conservation laws with global fluxes,

which makes it hard to develop upwind schemes, which are based on (approximately)
solving ( generalised) Riemann problems.We therefore apply the 2D semi-discrete second-
order central-upwind scheme to the system (10)–(12). Central-upwind schemes belong to
the class of Riemann-problem-solver-free Godunov-type non-oscillatory central schemes
(see, e.g. Kurganov 2016). A special version of the central-upwind schemes for systems
obtained using the flux globalisation approach was proposed by Chertock et al. (2018a)
in the context of Euler equations of gas dynamics with gravitation and then improved
by Kurganov et al. (2019), where the numerical dissipation switch was introduced. The
central-upwind scheme for the 1D version of the TRSW system has been recently intro-
duced by Kurganov et al. (2020).

In this section, we briefly describe a well-balanced semi-discrete second-order central-
upwind scheme for the 2D TRSW system (3). To this end, we use a Cartesian mesh with
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the uniform cellsCj,k := [xj− 1
2
, xj+ 1

2
] × [yk− 1

2
, yk+ 1

2
] of size |Cj,k| = �x�y, and denote the

discrete solutions by its computed cell averages

U j,k(t) :≈ 1
�x�y

∫∫
Cj,k

U(x, y, t) dx dy,

which are assumed to be available at a certain time t. These cell averages are evolved in
time using the following semi-discretisation

d
dt

U j,k(t) = −
F j+ 1

2 ,k
(t)− F j− 1

2 ,k
(t)

�x
−

G j,k+ 1
2
(t)− G j,k− 1

2
(t)

�y
, (13)

where F j+ 1
2 ,k
(t) and G j,k+ 1

2
(t) are the central-upwind numerical fluxes, which depend on

the reconstructed point values of U at the cell interfaces and one-sided local speeds of
propagation.

The point values are reconstructed using a piecewise linear interpolant and they are
denoted by

UE
j,k ≈ U(xj+ 1

2
, yk), UW

j,k ≈ U(xj− 1
2
, yk),

UN
j,k ≈ U(xj, yk+ 1

2
), US

j,k ≈ U(xj, yk− 1
2
).

The details on the reconstruction are provided in Appendix 1. An important ingredient
of the new method which we present here, relegating all other details to the Appendix 2,
are the one-sided local speeds of propagation in the x- and y-directions. They are obtained
using the eigenvalues of the corresponding Jacobians ∂F/∂U and ∂G/∂U with the mod-
ification that switches off a part of the numerical dissipation near contact discontinuities
and shears

a+
j+ 1

2 ,k
= max

{
uEj,k + αj+ 1

2 ,k

√
hEj,kb

E
j,k, u

W
j+1,k + αj+ 1

2 ,k

√
hWj+1,kb

W
j+1,k, 0

}
, (14a)

a−
j+ 1

2 ,k
= min

{
uEj,k − αj+ 1

2 ,k

√
hEj,kb

E
j,k, u

W
j+1,k − αj+ 1

2 ,k

√
hWj+1,kb

W
j+1,k, 0

}
, (14b)

a+
j,k+ 1

2
= max

{
vNj,k + αj,k+ 1

2

√
hNj,kb

N
j,k, v

S
j,k+1 + αj,k+ 1

2

√
hSj,k+1b

S
j,k+1, 0

}
, (14c)

a−
j,k+ 1

2
= min

{
vNj,k − αj,k+ 1

2

√
hNj,kb

N
j,k, v

S
j,k+1 − αj,k+ 1

2

√
hSj,k+1b

S
j,k+1, 0

}
. (14d)

Here, αj+ 1
2 ,k

∈ [0, 1] and αj,k+ 1
2

∈ [0, 1] are the switch parameters, which are computed as
follows

αj+ 1
2 ,k

=
⎧⎨⎩�α

(1)
j+ 1

2 ,k

/
�αj+ 1

2 ,k
, if �αj+ 1

2 ,k
> ν,

0, otherwise,
(15)
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where

�α
(1)
j+ 1

2 ,k
=
∣∣∣∣∣b

W
j+1,k + bEj,k

2

((
hWj+1,k + Zj+ 1

2 ,k

)2 −
(
hEj,k + Zj+ 1

2 ,k

)2)

+ hWj+1,k(u
W
j+1,k)

2 − hEj,k(u
E
j,k)

2
∣∣∣∣ , (16a)

�α
(2)
j+ 1

2 ,k
=
∣∣∣hWj+1,k(v

W
j+1,k)

2 − hEj,k(v
E
j,k)

2
∣∣∣ , (16b)

�αj+ 1
2 ,k

=
√(

�α
(1)
j+ 1

2 ,k

)2
+
(
�α

(2)
j+ 1

2 ,k

)2
, (16c)

and

αj,k+ 1
2

=
⎧⎨⎩�α

(1)
j,k+ 1

2

/
�αj,k+ 1

2
, if �αj,k+ 1

2
> ν,

0, otherwise,
(17)

where

�α
(1)
j,k+ 1

2
=
∣∣∣∣∣b

S
j,k+1 + bNj,k

2

((
hSj,k+1 + Zj,k+ 1

2

)2 −
(
hNj,k + Zj,k+ 1

2

)2)

+ hSj,k+1(v
S
j,k+1)

2 − hNj,k(v
N
j,k)

2
∣∣∣∣ , (18a)

�α
(2)
j,k+ 1

2
=
∣∣∣hSj,k+1(u

S
j,k+1)

2 − hNj,k(u
N
j,k)

2
∣∣∣ , (18b)

�αj,k+ 1
2

=
√(

�α
(1)
j,k+ 1

2

)2
+
(
�α

(2)
j,k+ 1

2

)2
. (18c)

In (15) and (17), ν is a small positive parameter designed to prevent the division by zero.

Remark 3.1: We note that using the switch parameters αj+ 1
2 ,k

and αj,k+ 1
2
in (14) helps to

reduce the amount of numerical dissipation present in central-upwind schemes without
risking oscillations, as these parameters become small only near the areas of linear contact
waves or shears, where much smaller amount of numerical dissipation typically suffices to
stabilise the numerical solution (see Kurganov et al. 2019).

Equipped with the reconstructed point values and the one-sided local speeds of propa-
gation, the central-upwind numerical fluxes can be computed using the explicit formulae
provided in Appendix 2.

Remark 3.2: The resulting system of ODEs (13) should be integrated in time using a
stable and sufficiently accurate ODE solver. In our simulations, we have used the three-
stage third-order strong stability preserving (SSP) Runge-Kutta method (see, e.g. Gottlieb
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et al. 2011, 2001) with the time steps restricted using the following CFL condition with the
CFL number 1/2:

�t = 1
2
min

{
�x
axmax

,
�y
aymax

}
,

where

axmax := max
j,k

{
â+
j+ 1

2 ,k
,−â−

j+ 1
2 ,k

}
, aymax := max

j,k

{
â+
j,k+ 1

2
,−â−

j,k+ 1
2

}
. (19)

In order to minimise the risk of instability, we use â±
j+ 1

2 ,k
and â±

j,k+ 1
2
in (19), which are

obtained using (14) with αj+ 1
2 ,k

= 1 and αj,k+ 1
2

= 1.

In sections 4 and 5, we will focus on the applications of the proposed 2D well-balanced
central-upwind scheme. If no otherwise specified, in all of the experiments, we assume that
the bottom topography Z(x, y) ≡ 0, take f0 = 1,H0 = 1, and the switch threshold parame-
ter ν = 10−12 (our numerical experiments not reported here for the sake of brevity, clearly
indicate that the proposed scheme is not sensitive to the choice of ν).

4. Application 1: isolated vortices in themid-latitude β-plane in TRSW
compared to RSW

4.1. Vortex profiles and parameters

For the sake of benchmarking and continuity with the previous study (Gouzien et al. 2017),
we consider the same family of exact solutions of (8), which are based on the non-
dimensional velocity profile of the form:

Ṽ(r) = ± r exp
(−(rγ − 1)/γ

)
, (20)

where we have used the quasi-geostrophic scaling (6) (as in Gouzien et al. 2017), and the
positive (negative) sign correspond to cyclonic (anticyclonic) rotation in the Northern
hemisphere. We take the parameter γ , which controls the steepness of the velocity pro-
file to be equal to 3. The vorticity of such profile is ζ(r) = Ṽ ′(r)+ Ṽ(r)/r, and the total
vorticity

∫∫
R2 ζ dx dy = 0, which ensures that the vortex has zero circulation in the far field

and thus finite total energy, that is, the vortex is isolated.
The corresponding profiles of non-dimensional buoyancy and thickness deviations,

which satisfy the thermo-cyclogeostrophic equilibrium (8), are

θ(r) = (λ− 1)
∫ ∞

r

(
1 + Ro

Ṽ(r′)
r′

)
Ṽ(r′) dr′, (21)

where λ is a parameter, and

η(r) = λ

1 − λ

Bu
Ro

(
1 − 1

/√
1 + 2

Ro
Bu
θ(r)

)
. (22)

With the help of the quasi-geostrophic scaling (6), we obtain the corresponding solu-
tions satisfying the thermo-cyclogeostrophic equilibrium (5) to be used in numerical
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simulations

b(r) = B0
(
1 + 2

Ro
Bu
θ(r)

)
, V(r) = UṼ(r), (23)

h(r) = H0

[
1 + λ

1 − λ

(
1 − 1

/√
1 + 2

Ro
Bu
θ(r)

)]
. (24)

When λ = 1, the buoyancy is flat: b(r) ≡ B0, while the thickness is recovered by
substituting (21) into (24) and taking the limit as λ → 1, which results in

h(r) = H0

[
1 − Ro

Bu

∫ ∞

r

(
1 + Ro

Ṽ(r′)
r′

)
Ṽ(r′) dr′

]
.

For cyclonic vortices with positive V, which we will concentrate on in what follows, this
gives a dip in h. Decreasing λ from 1 to 0 results in an admixture of a dip in buoyancy to a
dip in pressure with parallel gradients of the two fields, that is, a cold-core cyclone in the
oceanic, and the warm-core cyclone in the atmospheric context, as explained in section 2.
At λ = 0, we have a purely “thermal” vortex with flat h(r) ≡ H0. For λ > 1, we have a
buoyancy bump superimposed onto the dip in pressure with antiparallel gradients of the
two fields, that is, the opposite to the case λ < 1 sign of the core temperature.

4.2. Vortex instabilities: benchmark of the numerical scheme

We start with a benchmark of the developed numerical scheme, which is, in fact, a crash-
test. As shown by Gouzien et al. (2017), the vortices with the velocity profiles (23), (20) are
subject to specific small-scale instabilities of convective type. The ability of the scheme to
resolve these instabilities is thus critical.

We initialise the numerical simulations (as Gouzien et al. 2017) by taking a purely
thermal vortex with λ = 0, B0 = 1, Ro = 0.1 and Bu = 1, and superimposing onto it an
unstablemodewith the azimuthalwavenumbern = 3 and a small amplitude of the order of
1% of the background vortex field. The simulation was performed in the domain [−3, 3] ×
[−3, 3], in the units of the deformation radius, using a uniform grid with 600 × 600 cells
and homogeneous Neumann boundary conditions.

The time evolution of the vortex produced by this simulation is presented in figure 1.
Time units here and below are 1/f0. The obtained results confirm the results reported by
Gouzien et al. (2017) (see their figure 2), where the same simulation was performed at a
high-resolution with a pseudospectral code and added small physical (Newtonian) viscos-
ity, and show that the complex structures developed in the buoyancy field at later times are
not numerical artifacts but physical small-scale instabilities of convective type, which are
sharply captured by the proposed central-upwind scheme.

4.3. Evolution of vortices on the β-plane

In this section, we are looking for further benchmarking the developed numerical scheme,
and also, once this is done, for determining the differences between the TRSW and RSW
models in the description of vortex motions. We choose the so-called β-drift of localised
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Figure 1. Snapshots of the buoyancy field during the development of the mode-3 instability of a
perturbed thermal vortex; see section 4.2.

Figure 2. Same as in figure 3, but for the vortex with λ = 0.8.
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vortices, which is well-known (see, e.g. Reznik and Dewar 1994, Sutyrin and Flierl 1994).
It consists of the formation, due to the β-effect, of secondary vorticity structures, the β-
gyres, which push the cyclonic vortex along a curved path in the North-West direction
in the Northern hemisphere, that is, for positive f0. We initialise the simulations with the
vortices of the form (23), (24), which cease to be the exact solutions of the equations of
motion in the presence of the β-effect. All of the simulations in this section have been per-
formed in the domain [−20, 20] × [−20, 20], in the units of the deformation radius, using
a uniform spatial grid with 1500 × 1500 cells and homogeneous Neumann boundary con-
ditions. Increasing the domain size and the resolution does not sensibly affect the results.
The intensity of the vortex should not be too small, as otherwise it would be rapidly dis-
persed as a Rossby wave-packet, and not too strong in order not to rapidly develop intrinsic
instabilities, for instance, the barotropic instability expected due to a change of the vorticity
gradient. This is ensured by taking the Rossby numberRo = 0.15. Themodel is considered
on the β-plane with the Coriolis parameter f (y) = 1 + 0.1y.

We first benchmark the developed central-upwind scheme in the case of λ = 1, which
corresponds to the standard RSW configuration, for which a development of β-gyres is
well-documented in the literature. The evolution of thickness h and relative vorticity ζ of
the cyclonic vortex are presented in figures 3 and 4, respectively. As follows from these
figures, the well-known scenario of formation of secondary circulation in the form of β-
gyres, a subsequent formation of the Rossby wave tail, and the curved trajectory of the
core of the vortex in theNorth-West direction, is perfectly reproduced. The buoyancy field,
which is initially flat at λ = 1 remains flat (modulo insignificant numerical noise) and is
not presented.

In order to see how the temperature (buoyancy) variations across the vortex affect this
scenario and, in turn, how they are influenced by it, we repeat the simulations with other
values of the parameter λ, corresponding to non-flat initial b. We start with the vortex
with a relatively small admixture of a dip in b to the main depression in h corresponding to
λ = 0.8. The time evolution of thickness, vorticity and buoyancy in this case is presented
in figures 2–6, respectively. As one can see there, the evolution of the vorticity field and the
trajectory of the vortex core are practically the same as in the case of the vortex without
buoyancy anomaly. The evolution of h slightly differs, which is normal, as it forms changes
with adding initial b and keeping the same velocity profile. The buoyancy field itself mostly
keeps coherence near the centre of the vortex, but a part of it is entrained with the Rossby
wave tail.

If the buoyancy anomaly has the opposite sign, but the same amplitude (for example, if
we take λ = 1.2), the evolution, which is presented for the vorticity and buoyancy fields in
figures 7 and 8, respectively, is similar.

In all of the cases presented above, the vorticity evolution is practically the same and
the buoyancy anomaly of relatively small amplitude mostly keeps coherence for the long
time. The insight into the origins of the observed feeble difference between trajectories of
thermal versus “normal” vortices in simulations presented above could be gained from the
QG approximation (7) of the TRSW equations. Subtracting (7b) from (7a) we obtain(∇2ψ − ψ

)
t + J (ψ ,∇2ψ) = −ψx + J (ψ , θ). (25)

In this form, the only difference between this equation and the standard QG equation,
obtained under the same hypotheses and scaling in the RSWmodel, is the second term on
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Figure 3. Snapshots of the thickness field during the time evolution of the vortex with λ = 1 on the
β-plane; see section 4.3.

Figure 4. Same as in figure 3, but for the relative vorticity (Colour online).
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Figure 5. Same as in figure 4, but for the vortex with λ = 0.8 (Colour online).

Figure 6. Same as in figures 2 and 5, but for the buoyancy field (Colour online).
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Figure 7. Same as in figure 5, but for the vortex with λ = 1.2 (Colour online).

Figure 8. Same as in figure 6, but for the vortex with λ = 1.2 (Colour online).
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the right-hand side, the “baroclinic” production of the geostrophic PV. Notice that the first
term on the right-hand side is due to theβ-effect, and is, in fact, the geostrophicmeridional
velocity up to a sign. Let us recall now that the standard explanation of the formation of
β-gyres and of the resulting β-drift is as follows (see, e.g. Chapter 6 Zeitlin 2018). The QG
PV equation is considered in the linear limit, and becomes (∇2ψ − ψ)t = −ψx, which
expresses the change in the geostrophic potential vorticity and, hence, vorticity produced
by the β-effect. A sign-definite localised vorticity anomaly, a vortex, is considered as an
initial condition. As is easy to see, the latter leads to formation of a dipolar addition to
the initial vortex, the β-gyres, as the meridional velocity of the circulation created by the
vortex is opposite on the left and on the right of it. As any vortex dipole, the β-gyres tend
to move along the dipole’s axis, producing a displacement of the vortex as a whole; the β-
drift. In turn, the primary β-gyres create further anomalies, which lead to the formation
of alternating positive and negative vorticity anomalies on the right of the vortex (in the
Northern hemisphere with positive f ), the Rossby wave “tail”. Obviously, the same analy-
sis holds for (25), with the same conclusions, which are confirmed by the the simulations
presented in this section. A difference in our case, is that the vortex is isolated, and vor-
ticity is not sign-definite: we have a core surrounded by a ring of opposite vorticity for the
profiles (20). Nevertheless, the deformation of the outer ring due to the β-effect produces
the same consequences. Another reason of the small difference between the evolution of
thermal and standard vortices is the conservation law (2). Indeed, as seen in figures 3–8,
the contours of constant b in the vortex core change onlymarginally in the course of vortex
evolution, which means that the absolute vorticity ζ + f = hQ inside them also changes
marginally. This feeble change in the buoyancy distribution in the core region, as well as
the limited influence of the baroclinic production term upon the evolution of vorticity, are
also due to the initial axial symmetry and corresponding initial alignment of buoyancy and
thickness perturbations, which lead to annihilation, in the leading order, of the Jacobian
J (ψ , θ) in (7) and (25).

However, as shown in Gouzien et al. (2017) and as we have seen in section 4.2, with the
increase of “thermality”, that is, of the strength of the buoyancy anomaly at the same veloc-
ity profile, vortices become unstable and this instability should influence their evolution.
Indeed, as follows from figure 9, where we present the advanced stages of the evolution of
buoyancy and vorticity in the purely thermal case (λ = 0), the vortex loses coherence and
disaggregates due to the instability.

4.4. Including topography and thermal relaxation

One of important advantages of the proposed well-balanced central-upwind scheme is its
ability to accurately treat the bottom topography. In order to verify this and to get insights
on the interaction of vortex with the bottom topography, we repeated the experiments of
section 4.3 with a non-flat bottom topography containing a ridge of Gaussian form

Z(x, y) = 0.1 exp
(−2(y − x − 8)2

)
. (26)

The simulation is performed in the domain [−20, 20] × [−20, 20] using a uniform grid
with 1500 × 1500 cells and the homogeneous Neumann boundary conditions.

We compare the evolution of the “normal” vortex with λ = 1 and the vortex with λ =
0.8 in the presence of the ridge. Until the time t ≈ 150, when the vortices are sufficiently
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Figure 9. Snapshots of the buoyancy (upper row) and vorticity (lower row) during the time evolution of
purely thermal vortex with λ = 0; see section 4.3 (Colour online).

far from the ridge, the behaviour of the vortices is the same as without ridge, which is not
surprising as the ridge is upwind. Snapshots of the buoyancy and vorticity of the vortex
with λ = 0.8 at later times are shown in figure 10. The vorticity of the “normal” vortex
with λ = 1 at the same times is similar (not shown). As seen in figure 10, the vortex centre
crosses the ridge, but undergoes a substantial stretching along the ridge, and erosion, with
similar stretching and erosion of the buoyancy anomaly. This experiment demonstrates
that the proposed numerical scheme is capable of tracking the fine details in the evolution
of both fields.

Again, one could be surprised by a globally similar evolution of vorticity in the TRSW
and RSW models, especially if one recalls that the evolution of vortices in the presence of
topography is governed in the RSWmodel by the conservation of PV, which is not ensured
in the TRSW model. However, the global PV conservation (2) is, apparently, sufficient to
constrain the evolution of the TRSW case, and make it similar to that in the RSW one. It
should not be forgotten that, at the same time, the TRSW model allows one to follow in a
self-consistent way a simultaneous evolution of both vorticity and buoyancy anomaly, and
their interactions, which is not possible in the isothermal RSWmodel.

We also test how the relaxation of the buoyancy field towards themean value B0 changes
the evolution of the vortex. We included the relaxation term −(b − B0)/τ on the right-
hand side of the evolution equation for b. We take the relaxation parameter τ = 10 and
perform the same simulations as in section 4.3 with the λ = 0.8 vortex. We observe that
while the buoyancy becomes virtually flat at t ≈ 150, the vorticity distribution remains
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Figure 10. Snapshots of the buoyancy (upper row) and vorticity (lower row) during the time evolution
of a vortex with λ = 0.8 approaching a ridge (26); see section 4.4. Position of the maximum and width
of the ridge are marked by straight lines (Colour online).

practically the same as in the absence of relaxation, and the peak vorticity in the core
changes little: it is 0.3495 without the relaxation of b and 0.3192 with the relaxation at
t = 150. At the same time, the thickness anomaly deepens in the vortex core, in order to
compensate for the loss of b and maintain the balance. The maximum value of the depres-
sion at t = 150 is 0.5694 in the absence, and 0.5579 in the presence of the relaxation of b.
Therefore, we conclude that the thickness is “slaved” to vorticity, apparently because of the
conservation law (2) and not the inverse, unlike the regimes close to a geostrophic balance
in the RSW model (see Warn et al. 1995), where the velocity field and, hence, vorticity
adjust to the thickness variations.

5. Application 2: relaxation of localised anomalies on the equatorial β-plane
in TRSW compared to RSW

In this section, for the same purposes of benchmarking the developed central-upwind
scheme and gaining insights into the differences between the TRSW and RSWmodels, we
consider a different fundamental process: relaxation of localised perturbations on the equa-
torial β-plane. In order to emphasise the importance of this phenomenon, let us recall that
our understanding of the circulation patterns in the tropical atmosphere is largely based
on the classical paper of Gill (1980), where the RSWmodel on the equatorial β-plane was
used to study the effects of large-scale heating by adding a source to the mass conservation
equation (1b). Although it was a forced-dissipative (with an added bottom drag of the form
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Figure 11. Snapshots of the thickness h during the time evolution of the thickness anomaly without
buoyancy anomaly; see section 5 (Colour online).

discussed in section 2.2) problemwhich was solved inGill (1980), the results can be under-
stood by considering an initial value problem with a localised initial perturbation of h; the
equatorial adjustment problem. In the long-wave limit used by Gill (1980), that is, for the
perturbations with a small meridional to zonal aspect ratio, it was solved analytically, and
the results were confirmed numerically in Le Sommer et al. (2004). Therefore, in order to
benchmark the developed central-upwind scheme on the equatorial β-plane, we simulated
the equatorial adjustment of a thickness anomaly with the following initial data

h(x, y, 0) = 1 + 0.5 exp
(

−1
2
(
(x/a)2 + y2

))
,

u(x, y, 0) ≡ v(x, y, 0) ≡ 0, b(x, y, 0) ≡ 1,

where a is the aspect ratio, which we first take to be a = 5. The simulation is performed
in the domain [−40, 80] × [−10, 10] using a uniform grid with 1200 × 200 cells and the
homogeneous Neumann boundary conditions. Notice that the intrinsic scale in this case is
the equatorial deformation radius Re (see below) and the natural time unit is 1/βRe, while
f0 ≡ 0.

The results, presented in figure 11, are fully consistent with both the theoretical analysis
and numerical simulations for the RSW model on the equatorial β-plane reported by Le
Sommer et al. (2004). One can see the formation of a Kelvin wave running eastward and
steepening, because it has no dispersion, as well as the formation of a Rossby wave packet
running westward, and a packet of almost standing inertia-gravity waves at the location
of the initial perturbation. By itself, resolving a sharpening in time Kelvin front, which is
formed by the breaking Kelvin wave, as predicted by Le Sommer et al. (2004) and visible in
the figure 11, is a good test for a numerical method, which the developed central-upwind
scheme has, thus, passed well.

Next, in order to study the difference between the adjustment of thickness and buoyancy
anomalies, we initialise the simulation with the initial data corresponding to a buoyancy
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Figure 12. Snapshots of the thickness h during the time evolution of the buoyancy anomaly without
thickness anomaly; see section 5 (Colour online).

Figure 13. Snapshots of the buoyancy b during the time evolution of the buoyancy anomaly without
thickness anomaly; see section 5 (Colour online).

anomaly

h(x, y, 0) ≡ 1, u(x, y, 0) ≡ v(x, y, 0) ≡ 0, (27a,b)

b(x, y, 0) = 1 + 0.5 exp
[− 1

2
(
(x/a)2 + y2

)]
(27c)

with the aspect ratio a = 5. The computed thickness, presented in figure 12, shows sig-
nificant differences with the previous case: although Kelvin and Rossby wave packets are
also produced, their amplitudes are smaller and a quasi-stationary thickness anomaly of
the opposite size arises at the location of the initial perturbation. At the same time, the
buoyancy field is quasi-stationary with only marginal changes, as can be seen in figure 13.
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In order to understand the differences between equatorial adjustment of the initial
anomalies with flat and non-flat b, let us analyse equations (1 a–c) on the equatorial β-
plane with f (y) = βy in the long-wave approximation following the lines of Le Sommer
et al. (2004) (see also chapter 5 Zeitlin 2018). By introducing the ratio of typical merid-
ional to typical zonal scales Ly/Lx := δ � 1, which is, at the same time, a ratio of the
meridional to zonal velocities, supposing that the meridional scale is of the order of the
equatorial deformation radius Re = ((B0H0)/β

2)1/4, introducing the equatorial Rossby
number ε = U/(βR2e), where U is the zonal velocity scale, and assuming that the motion
is slow with the typical time scale T ∼ 1/(δβRe), and that typical anomalies of h and b
are of the order ε, we obtain the following system of non-dimensional equations for slow
motions

ut + ε(uux + vuy)− yv = −hx(1 + εb)− 1
2bx(1 + εh), (28a)

δ2vt + δ2ε(uvx + vvy)+ yu = −hy(1 + εb)− 1
2by(1 + εh), (28b)

ht + ux + vy + ε
[
(hv)y + (hu)x

] = 0, (28c)

bt + ε(ubx + vby) = 0. (28d)

Following Le Sommer et al. (2004), this system can be studied analytically, but we will not
undertake such analysis here, limiting ourselves only by considering a linear approxima-
tion of (28), which is obtained by taking the limit ε → 0 and assuming that δ � ε, which
results in

ut − yv = −hx − 1
2bx, (29a)

yu = −hy − 1
2by, (29b)

ht + ux + vy = 0, (29c)

bt = 0. (29d)

Comparing with the analogous equations in the equatorial RSW model (section 5.5
Zeitlin 2018), we see that (29) is obtained by a change of variables h → h + b/2 in this
latter, with time-independent b(x, y). This means that the standard solutions for Kelvin
and long Rossby waves acquire a stationary addition in the way that only a part h̃(x, y, t) of
the initial condition for the thickness field h is projected on the variable, propagative sig-
nal, while there is always a stationary part h (x, y). As is easy to check for the Kelvin-wave
solutions with v ≡ 0, this stationary part should obey the equation h x + bx/2 = 0. As
follows from figures 12 and 13 (compare with figure 11), correlated stationary signals in h
and b do appear in the TRSWmodel. Moreover, at the same amplitude but with even larger
aspect ratio a = 10 in (27), the buoyancy field in analogous simulation practically does
not change at all (not shown). An important conclusion that can drawn from these simu-
lations and analysis is that stronger non-linearities and aspect ratios of order 1 are needed
to make the initial buoyancy significantly evolve, otherwise it serves only as a catalyzer for
triggering the evolution of pressure.

Let us also emphasise that an important feature of curved shocks in shallow water
models in general, and in particular on the equatorial β-plane (see Bouchut et al. 2005),
is generation of vorticity and potential vorticity behind them. An analysis of the Rank-
ine–Hugoniot conditions (9), which can be performed following the lines of Le Sommer
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Figure 14. Snapshots of the PV anomaly behind the Kelvin fronts on the lower-right panels of figures 11
(left) and 12 (right) (Colour online).

et al. (2004) (see also references therein), shows that a dipolar anomaly of potential vor-
ticity should appear behind the Kelvin front. Reproducing this phenomenon is one of the
tests for the proposed TRSW model and central-upwind scheme. In figure 14, we present
the potential vorticity anomaly associated to the Kelvin front, which is clearly visible in the
lower-right panels of figures 11 and 12, respectively, and showing that the front indeed gen-
erates a potential vorticity dipole, which is weaker in the simulation of figure 12 because
of a weaker intensity of the thickness perturbation.

6. Summary and conclusions

We have constructed and presented in a ready-to-code form a well-balanced high-
resolution numerical scheme for theTRSWmodel and tested it on two classical geophysical
fluid dynamics processes: evolution of localised vortices on the β-plane, including their
interaction with an idealised mountain ridge, and relaxation of localised pressure and
temperature anomalies at the equator. Our main goal was not an in-depth investigation
in either case, but a demonstration of capabilities of the new scheme. Nevertheless, we
have obtained some new and somewhat unexpected results. A disadvantage of the TRSW
model, which sometimes is presented as a handicap, is the absence of Lagrangian con-
servation of the PV. An important conclusion of the present work is that the absence of
Lagrangian PV conservation in the model has no drastic consequences. We have observed
no dramatic changes in the evolution of vorticity of convectively-stable thermal vortices
on the β-plane and their interactions with topography, compared to the standard RSW
results. Part of the explanation of this fact is given by the initial alignment of buoyancy
and thickness in the vortices, but the global conservation of PV matters too, although its
precise role in the presence of topography requires further investigation. The observed slav-
ing of pressure to vorticity is also worth noting. Overall, we have shown that our scheme
is capable of high-resolution tracking of both the vorticity and active scalar during the
motion of isolated oceanic vortices and their interaction with bathymetry. In spite of the
fact that in the examples we have presented, the evolution of vorticity is close to what is
expected in the isothermal RSW model, it should be not forgotten that the TRSW model
allows one to simulate configurations which can not be captured by the RSW equations
in a self-consistent way, like interaction of vortices with variable-temperature (or salinity)
background, preserving, at the same time, the simplicity of shallow water modelling.

Another important conclusion is that in the long-wave approximation, which is tra-
ditionally used in the analysis of tropical circulation starting from the pioneering work
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(Gill 1980), the buoyancy, that is, the potential temperature in the atmospheric context,
acts mainly as a catalyzer of pressure evolution not much changing itself in the absence of
diabatic effects in the TRSWmodel.

An advantage of the studied model, and its raison d’être is its ability to represent simul-
taneously sharp pressure and temperature fronts. The presented numerical scheme is able
to properly resolve them (shock-capturing property), as we shown on the example of equa-
torial Kelvin fronts, and, at the same time, tomaintain the equilibrium states at the discrete
level (well-balanced property), as well as to capture small-scale convective-type instabilities
which are proper to the TRSWmodel.
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Appendices

Appendix 1. Well-balanced piecewise linear reconstruction

As in the 1D case studied by Kurganov et al. (2020), instead of reconstructing the conservative vari-
ables, we perform piecewise polynomial reconstruction of equilibrium variables (see also Kurganov
and Petrova 2007, Cheng and Kurganov 2016, Chertock et al. 2018a, 2018b, 2018c, Kurganov 2018,
Cheng et al. 2019). In order to design a second-order scheme, one needs to reconstruct a piecewise
linear interpolant out of the available set of cell averages. We apply a piecewise linear reconstruc-
tion in a piecewise component manner as it is commonly done in Riemann-problem-solver-free
Godunov-type schemes (see, e.g. the review papers and references therein Kurganov 2016, 2018).
We first present a general piecewise linear reconstruction approach. To this end, we assume that for
the reconstructed quantity ϕ, either the cell averages, { ϕ j,k}, or point values, {ϕj,k}, are available.
We then obtain a global spatial approximant

ϕ̃(x, y) = ϕ j,k + (ϕx)j,k(x − xj)+ (ϕy)j,k(y − yk), (x, y) ∈ Cj,k, (A1)

where (ϕx)j,k and (ϕy)j,k are at least first-order approximations of the derivatives ϕx(xj, yk) and
ϕy(xj, yk), respectively (if the reconstruction is build out of the point values, then the cell average
ϕ j,k in (A1), as well as in (A2)–(A3) below, should be replaced with the corresponding point value
ϕj,k). It is well-known that in order to make the reconstruction (A1) non-oscillatory, the slopes are
to be computed using a nonlinear limiter. We have used the generalised minmod limiter (see, e.g.
van Leer 1979, Sweby 1984, Nessyahu and Tadmor 1990, Lie and Noelle 2003)

(ϕx)j,k = minmod
(
θ
ϕ j,k − ϕ j−1,k

�x
,
ϕ j+1,k − ϕ j−1,k

2�x
, θ

ϕ j+1,k − ϕ j,k

�x

)
, (A2a)

(ϕy)j,k = minmod
(
θ
ϕ j,k − ϕ j,k−1

�y
,
ϕ j,k+1 − ϕ j,k−1

2�y
, θ

ϕ j,k+1 − ϕ j,k

�y

)
, (A2b)
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where the parameter θ ∈ [1, 2] helps to control the amount of numerical diffusion (larger values of
θ correspond to less diffusive, but more oscillatory reconstruction), and the minmod function is
defined by

minmod(ω1,ω2, . . .) :=

⎧⎪⎨⎪⎩
mink{ωk}, if ωk > 0 ∀k,
maxk{ωk}, if ωk < 0 ∀k,
0, otherwise,

and applied in (A2) in a component-wise manner.
Equipped with the reconstruction (A1), (A2), we can compute the point values of ϕ at the four

cell interfaces (xj± 1
2
, yk) and (xj, yk± 1

2
)

ϕEj,k = ϕ j,k + 1
2 �x (ϕx)j,k, ϕWj,k = ϕ j,k − 1

2 �x (ϕx)j,k, (A3a,b)

ϕNj,k = ϕ j,k + 1
2 �y (ϕy)j,k, ϕSj,k = ϕ j,k − 1

2 �y (ϕy)j,k. (A3c,d)

We note that in order to compute ϕEj,k and ϕ
W
j,k , we only need to evaluate the x-slope, while computing

ϕNj,k and ϕ
S
j,k requires the y-slope only. We use this fact and reconstruct the East and West values of

the variables q, p, K and b, while the North and South values are obtained for q, p, L and b since K is
the second component of the x-flux, while L is the third component of the x-flux; see (11).

Before the reconstruction can be performed for the aforementioned equilibrium variables, we
need to obtain the point values of b, K and L. First, we immediately obtain bj,k := (hb) j,k/ h j,k.
The point values of K and L are computed as follows

Kj,k = ( q 2
j,k
/

h j,k
)+ 1

2 (hb) j,k h j,k + Qj,k, j = 1, . . . ,Nx, k = 1, . . . ,Ny, (A4a)

Lj,k = ( p 2
j,k
/

h j,k
)+ 1

2 (hb) j,k h j,k + Rj,k, j = 1, . . . ,Nx, k = 1, . . . ,Ny, (A4b)

where Nx and Ny are the total number of cells in the x-and y-directions, respectively. The global
parts of the flux variables, Qj,k and Rj,k, are defined as

Qj,k =
∫ xj [

− f (yk)p(ξ , yk)+ h(ξ , yk)b(ξ , yk)Zx(ξ , yk)
]
dξ , (A5a)

Rj,k =
∫ yk [

f (ξ)q(xj, ξ)+ h(xj, ξ)b(xj, ξ)Zy(xj, ξ)
]
dξ . (A5b)

We then apply the trapezoidal quadrature to discretise the integrals in (A5) and compute Qj,k and
Rj,k in a recursive way

Qj,k = Qj−1,k − 1
2 (�x) fk

(
p j−1,k + p j,k

)
+ 1

2

[
(hb) j−1,k + (hb) j,k

](
Zj,k − Zj−1,k

)
, (A6a)

Rj,k = Rj,k−1 + 1
2 (�y)

(
fk−1 q j,k−1 + fk q j,k

)
+ 1

2

[
(hb) j,k−1 + (hb) j,k

](
Zj,k − Zj,k−1

)
, (A6b)

where fk := f (yk), Q1,k = (Q1/2,k + Q3/2,k)/2 and Rj,1 = (Rj,1/2 + Rj,3/2)/2. The values of Q and R
at the cell interfaces are computed using the midpoint rule as follows

Qj+ 1
2 ,k

= Qj− 1
2 ,k

− fk p j,k�x + (hb) j,k
(
Zj+ 1

2 ,k
− Zj− 1

2 ,k
)
, (A7a)

Rj,k+ 1
2

= Rj,k− 1
2

+ fk q j,k�y + (hb) j,k
(
Zj,k+ 1

2
− Zj,k− 1

2

)
. (A7b)

Here, we initialise the recursive computations by setting Q1/2,k := 0, ∀k and Rj,1/2 := 0, ∀j.
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The point values ofZ used in (A6) and (A7) are computed using a continuous bilinear interpolant
(see Kurganov and Petrova 2007, Kurganov 2018), which gives

Zj,k = 1
4

(
Zj+ 1

2 ,k+ 1
2

+ Zj+ 1
2 ,k− 1

2
+ Zj− 1

2 ,k+ 1
2

+ Zj− 1
2 ,k− 1

2

)
,

Zj+ 1
2 ,k

= 1
2

(
Zj+ 1

2 ,k+ 1
2

+ Zj+ 1
2 ,k− 1

2

)
, Zj,k+ 1

2
= 1

2

(
Zj+ 1

2 ,k+ 1
2

+ Zj− 1
2 ,k+ 1

2

)
.

Here, Zj±1/2,k±1/2 are the point values of Z at the corners of the cell Cj,k, that is, Zj±1/2,k±1/2 =
Z(xj±1/2, yk±1/2) when the bottom topography is continuous. For the case of discontinuous Z, we
refer the reader to Kurganov (2018) and Kurganov and Petrova (2007).

Finally, similarly to the 1D case studied by Kurganov et al. (2020), we compute the values of h
at the cell interfaces by solving the following four cubic equations, which are obtained using the
definitions of global variables K and L in (12),

(qEj,k)
2/hEj,k + 1

2bj+ 1
2 ,k
(hEj,k)

2 + Qj+ 1
2 ,k

− KE
j,k = 0, (A8a)

(qWj,k)
2/hWj,k + 1

2bj+ 1
2 ,k
(hWj,k)

2 + Qj+ 1
2 ,k

− KW
j,k = 0, (A8b)

(pNj,k)
2/hNj,k + 1

2bj,k+ 1
2
(hNj,k)

2 + Rj,k+ 1
2

− LNj,k = 0, (A8c)

(pSj,k)
2/hSj,k + 1

2bj,k+ 1
2
(hSj,k)

2 + Rj,k+ 1
2

− LSj,k = 0, (A8d)

where Qj+ 1
2 ,k

and Rj,k+ 1
2
are defined in (A7), and the corresponding point values of q, p, K and L

are obtained using the piecewise linear reconstruction of these variables. Furthermore, in order to
enforce a well-balanced property (see Kurganov et al. 2020), we set

bj+ 1
2 ,k

:= 1
2

(
bEj,k + bWj+1,k

)
and bj,k+ 1

2
:= 1

2

(
bNj,k + bSj,k+1

)
.

The procedure of solving (A8) is the same as the 1D case; see (Kurganov et al. 2020) for details.

Appendix 2. Well-balanced central-upwind numerical fluxes

We first introduce the central-upwind numerical fluxes from Chertock et al. (2018a), which are a
slight simplification of the 2D central-upwind numerical fluxes rigorously derived by Kurganov and
Lin (2007) using the integral form of the hyperbolic system of conservation laws

F j+ 1
2 ,k

=
a+
j+ 1

2 ,k
F
(
UE

j,k,Zj+ 1
2 ,k
)− a−

j+ 1
2 ,k
F
(
UW

j+1,k,Zj+ 1
2 ,k
)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[
UW

j+1,k − UE
j,k − δU j+ 1

2 ,k

]
,

G j,k+ 1
2

=
a+
j,k+ 1

2
G
(
UN

j,k,Zj,k+ 1
2

)− a−
j,k+ 1

2
G
(
US

j,k+1,Zj,k+ 1
2

)
a+
j,k+ 1

2
− a−

j,k+ 1
2

+
a+
j,k+ 1

2
a−
j,k+ 1

2

a+
j,k+ 1

2
− a−

j,k+ 1
2

[
US

j,k+1 − UN
j,k − δU j,k+ 1

2

]
,

where U i
j,k, i ∈ {E,W,N, S} are the point values of U at the corresponding four cell interfaces (see

Appendix 1), a±
j+ 1

2 ,k
and a±

j,k+ 1
2
are the one-sided local speeds of propagation in the x- and y-

directions, respectively, given by (14)–(17). The terms δU j+ 1
2 ,k

and δU j,k+ 1
2
represent the built-in
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“anti-diffusion” and are computed by

δU j+ 1
2 ,k

= minmod
(
UW

j+1,k − U∗
j+ 1

2 ,k
, U∗

j+ 1
2 ,k

− UE
j,k

)
,

δU j,k+ 1
2

= minmod
(
US

j,k+1 − U∗
j,k+ 1

2
, U∗

j,k+ 1
2

− UN
j,k

)
,

where the minmod function is applied in a component-wise manner, and the intermediate states
U∗

j+ 1
2 ,k

and U∗
j,k+ 1

2
are given by (see Kurganov and Lin 2007)

U∗
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
UW

j+1,k − a−
j+ 1

2 ,k
UE

j,k −
[
F
(
UW

j+1,k,Zj+ 1
2 ,k
)− F

(
UE

j,k,Zj+ 1
2 ,k
)]

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

,

U∗
j,k+ 1

2
=

a+
j,k+ 1

2
US

j,k+1 − a−
j,k+ 1

2
UN

j,k −
[
G
(
US

j,k+1,Zj,k+ 1
2

)− G
(
UN

j,k,Zj,k+ 1
2

)]
a+
j,k+ 1

2
− a−

j,k+ 1
2

.

However, as shown in the 1D case by Kurganov et al. (2020), a direct application of the central-
upwind numerical fluxes would not lead to a well-balanced scheme. We therefore follow Chertock
et al. (2018a) and Kurganov et al. (2020) and switch a part of the numerical diffusion off when the
solution is at or near the thermo-geostrophic equilibria. This leads to the following well-balanced
modifications of the third and fourth components of the x-flux and second and fourth components
of the y-flux, namely

F (3)
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
pEj,ku

E
j,k − a−

j+ 1
2 ,k
pWj+1,ku

W
j+1,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+ H
(
ψj+ 1

2 ,k
) a+

j+ 1
2 ,k
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[
pWj+1,k − pEj,k − δpj+ 1

2 ,k

]
,

F (4)
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
qEj,kb

E
j,k − a−

j+ 1
2 ,k
qWj+1,kb

W
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+ H
(
ψj+ 1

2 ,k
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]
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The smooth cut-off function H(σ ) is defined as

H(σ ) = (Cσ)m

1 + (Cσ)m
,

where C> 0 andm> 0 are constants. In all of the presented simulations, we have used C = 400 and
m = 8. Following Chertock et al. (2018a) and Kurganov et al. (2020), we take

ψj+ 1
2 ,k

= |Kj+1,k − Kj,k|
�x

xNx+ 1
2 ,k

− x 1
2 ,k

max
(|Kj,k|, |Kj+1,k|

) ,
ψj,k+ 1

2
= |Lj,k+1 − Lj,k|

�y

yj,Ny+ 1
2

− yj, 12
max

(|Lj,k|, |Lj,k+1|
) .

Remark A.1: As in the 1D case, in order to accurately compute the point values uij,k, v
i
j,k, b

i
j,k and bj,k

in the case if either hij,k or h j,k is zero or very small (i ∈ {E,W,N, S}), the same desingularisation
technique used byKurganov et al. (2020) has to be implemented. Furthermore, we apply a 2D version
of “draining time step” technique from Bollermann et al. (2011) in order to guarantee the proposed
central-upwind scheme preserves the positivity of the computed h and b.


