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Abstract

We study numerical approximations of the reactive Euler equations of gas dynamic. In
addition to shock, contact and rarefaction waves, these equations admit detonation waves
appearing at the interface between different fractions of the reacting species. It is well-known
that in order to resolve the reaction zone numerically, one has to take both space and time
stepsizes to be proportional to the reaction time, which may cause the numerical method
to become very computationally expensive or even impractical when the reaction is fast.
Therefore, it is necessary to develop underresolved numerical methods, which are capable
of accurately predicting locations of the detonation waves without resolving their detailed
structure. One can distinguish between the stiff and extremely stiff cases. While in the former
case, the reaction time is very small, in the latter one, it is assumes to occur instantaneously.

In [A. Kurganov, in Hyperbolic problems: theory, numerics, applications, Springer,
Berlin, 2003], we proposed a simple underresolved method—an accurate deterministic pro-
jection (ADP) method—for one-dimensional hyperbolic systems with stiff source terms in-
cluding the reactive Euler equations in the extremely stiff regime. In this paper, we extend
the ADP method to the (non-extremely) stiff case, to the multispecies detonation model as
well as to the two-dimensional reactive Euler equations in all of the aforementioned regimes.
We demonstrate the accuracy and robustness of the proposed ADP method on a number of
numerical experiments.

Key words: stiff detonation waves, reactive Euler equations, splitting method, deterministic
projection method, central-upwind scheme, multispecies detonation.
AMS subject classification: 76M12, 65M08, 76V05, 35L65, 35L67.

1 Introduction

We study numerical methods for hyperbolic systems of balance laws with very stiff source terms.
In the two-dimensional (2-D) case, such systems read as

Ut + F (U)x + G(U)y = S(U , ε), (1.1)
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where, U is an unknown function of space variables x and y and a time variable t, F and G are
given flux functions and S is a source term, which depends on the stiffness parameter 0 < ε� 1.
In particular, we consider an inviscid, compressible, reacting flow, governed by the reactive Euler
equations, which, in the single reaction case, have the following form:
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Here, the dependent variables ρ, u, v, E and z are the density, x- and y-velocities, total energy and
the fraction of unburnt gas, respectively. The system is completed through the following equation
of state (EOS):

p = (γ − 1)
[
E − ρ

2
(u2 + v2)− q0ρz

]
, (1.3)

where the parameters γ and q0 represent the specific heat ratio and chemical heat release, respec-
tively. On the right-hand side (RHS) of (1.2), τ := p/ρ is the temperature. Finally, the reaction
can be modeled by either the Arrhenius kinetic term,

K(τ ; ε, τc) =
1

ε
e−τc/τ , (1.4)

where τc is the ignition temperature and ε is the reaction time, or even stiffer Heaviside kinetics
term [36]:

K(τ ; ε, τc) =
1

ε
H(τ − τc) =


1

ε
, if τ ≥ τc,

0, otherwise.
(1.5)

The system (1.2), (1.3) with the kinetic term K(τ ; ε, τc) given by either (1.4) or (1.5) is a
hyperbolic system of balance laws whose solutions contain shock, contact and rarefaction waves.
In addition, in the studied stiff regimes, it also admits detonation waves appearing at the interface
between the burnt and unburnt fractions of the gas. It is well-known that in order to resolve the
reaction zone numerically, one has to take both spatial (∆x,∆y) and temporal (∆t) stepsizes to
be proportional to the reaction time ε, which may cause the numerical method to become very
computationally expensive or even impractical when the reaction is fast, that is, when ∆x/ε� 1,
∆y/ε� 1 and ∆t/ε� 1. Therefore, it is necessary to develop underresolved numerical methods,
which are capable of accurately predicting locations of the detonation waves without resolving
their detailed structure. One can distinguish between the stiff and extremely stiff cases. While
in the former case, the reaction time ε is very small, in the latter one, it is assumes to occur
instantaneously (ε→ 0).

Designing an accurate underresolved numerical method for the general system (1.1) with a very
small ε (or, in particular, for the reactive Euler system in either stiff or extremely stiff regime)
is a rather challenging task. Since the system is stiff, it is natural that one may wish to use an
operator splitting (fractional step) method; see, e.g., [28, 29]. The latter can be implemented by
considering the following two subsystems:

Ut + F (U)x + G(U)y = 0 (1.6)



Accurate Deterministic Projection Methods 3

and

Ut = S(U , ε). (1.7)

Then, assuming that U(x, t) is available at time t, an approximate solution at the next time level
t+ ∆t is given by

U(x, y, t+ ∆t) = SP(∆t)SH(∆t)U(x, y, t),

where SH and SP denote the solution operators for the subsystems (1.6) and (1.7), respectively.
The hyperbolic system of conservation laws (1.6) can be solved by any (stable and suffi-

ciently accurate) shock-capturing method. In this paper, we use the second-order central-upwind
scheme briefly described in Appendix A. Central-upwind schemes are Riemann-problem-solver-
free Godunov-type schemes for general multidimensional hyperbolic systems of conservation laws.
These schemes were first proposed in [25] and then further developed in [22–24,26].

The step of solving the ODE (1.7) requires a special attention. In the extremely stiff case, the
solution operator SP reduces to the projection of the computed solution onto an equilibrium state:

U 7→ PU , (1.8)

where S(PU , ε) ≡ 0. In a less stiff case, one has to solve the ODE (1.7) with a very small, but yet
finite ε. Though this solution may be very close to the projected one given by (1.8), the difference
between the stiff and extremely stiff cases is sometimes significant (especially in the multispecies
case considered in §4) and a sophisticated stiff ODE solver may be required.

Even though the operator splitting method is very simple, it has a major drawback: If the
deterministic projection operator described in §2.1 is used in (1.8), this approach may lead to
a spurious weak detonation wave that travels with a nonphysical propagation speed (the same
phenomena will be observed if the ODE (1.7) is solved in the case of a very small ε disregarding
of the ODE solver used). This occurs since shock-capturing methods smear discontinuities, and
as soon as the nonphysical value of the temperature in this numerical layer is above the ignition
temperature, a certain part of the gas may get numerically burnt prematurely. This peculiar nu-
merical phenomenon was first observed in [10,11], and since then it has attracted lots of attention;
see, e.g., [4, 5, 7, 15, 27, 31]. In order to fix this numerical problem, the ignition temperature was
artificially increased in [6], or replaced with uniformly distributed random variable; see, e.g., ran-
dom projection, [1,2], or random choice, [9], method. Numerical methods using overlapping grids
and block-structured adaptive mesh refinement for high-speed reactive flow in complex geometries
were proposed in [17, 18]. Other, more complicated, but rather successful approaches have been
proposed in [8, 12, 16,33, 35,37, 38]. We refer the reader to [3, 37, 38] for the extensions of some of
the aforementioned numerical methods to the case of multispecies detonation.

A simple and robust alternative to the aforementioned approaches was proposed in [20], where
an accurate deterministic projection (ADP) method for one-dimensional (1-D) hyperbolic systems
with extremely stiff source terms was introduced. The key idea of the ADP method for the reactive
Euler equations can be described as follows. In order to avoid numerical smearing of the profile
of z, we only solve the equations for the density, momentum and energy at the hydrodynamics
substep SH. The values of z are then evolved in time only during the projection substep SP , at
which the pressure (and hence the temperature) is computed using the EOS, at which the values
of z from the previous time level are used; see the details presented in the 2-D case in §2.2.

In this paper, we generalize the ADP method developed in [20] for the 1-D reactive Euler
equations in the extremely stiff regime to the 2-D case and to the following settings. First, in §3,
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we consider the single reaction case in the non-extremely stiff regime with either Arrhenius (1.4) or
Heaviside (1.5) kinetics terms and replace the projection operator (1.8) with the a trapezoidal-like
ODE solver. We then consider in §4 the multispecies detonation, for which we either directly
extend the ADP solution operator (in the extremely stiff regime; §4.1) or develop a special ADP-
based ODE solver (in the non-extremely stiff regime; §4.2). These extensions are carried out in
both the 1-D and 2-D cases. The developed ADP methods are tested on a number of numerical
examples, presented in §2.3, 3.1 and 4.3 after each section where the corresponding version of
the ADP method is presented. The obtained results clearly demonstrate the high resolution and
robustness of the proposed underresolved methods in both stiff and extremely stiff regimes.

2 Deterministic Projection Method: Extremely Stiff Case

In this section, we describe two deterministic projection approaches for solving the reactive Euler
equations (1.2), (1.3), (1.5) in an extremely stiff regime.

2.1 “Standard” Deterministic Projection Method

We begin with a “standard” deterministic projection approach. For simplicity, we consider a
rectangular computational domain covered by a uniform spatial mesh consisting of the cells Cj,k
centered at (xj, yk) := (j∆x, k∆y) and assume that the computed solution is realized in terms of

its cell averages, U
n

j,k =
1

∆x∆y

∫
Cj,k

U(x, y, tn) dy dx and available at time level t = tn. In order

to evolve the solution to the next time level according to the aforementioned operator splitting
approach, we first use a (stable and accurate) shock-capturing method to numerically solve the
homogeneous system arising at the hydrodynamics substep (1.6):
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completed through the EOS (1.3). Here, we prefer to work with finite-volume methods (in partic-
ular, with the central-upwind scheme described in Appendix A), but would like to stress that the
considered computational framework is general and may be used in conjunction with one’s favorite

shock-capturing method. The cell averages ρn+1
j,k , (ρu)n+1

j,k , (ρv)n+1
j,k , E

n+1

j,k and (ρz)∗j,k at the new

time level tn+1 := tn + ∆t are then used to obtain un+1
j,k = (ρu)n+1

j,k /ρ
n+1
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, (2.2)

and the corresponding temperature values,

τn+1
j,k =

pn+1
j,k

ρn+1
j,k

. (2.3)
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Notice that for the (ρz)∗j,k quantities in (2.2), the upper index is not n + 1 yet as they are going
to be changed after the projection step (1.8), at which we obtain the values of z and ρz at time
level t = tn+1:

zn+1
j,k =

{
0, if τn+1

j,k ≥ τc,

1, if τn+1
j,k < τc,

(ρz)n+1
j,k = ρn+1

j,k · z
n+1
j,k .

This “standard” deterministic projection method is very simple, but as mentioned in §1 it may
lead to spurious, nonphysical detonation waves traveling with artificial speeds, which makes the
“standard” deterministic projection method impractical. Utilizing the ADP method presented in
the next section allows one to avoid such an undesirable situation.

2.2 Accurate Deterministic Projection (ADP) Method

The main reason of the failure of the “standard” deterministic projection method is that it uses
nonphysical, artificial values of (ρz)∗j,k obtained after the fluid dynamics substep SH of the operator
splitting method. The simplest way to prevent this undesirable situation is not to solve the (ρz)-
equation at the fluid dynamics step at all. We thus modify the deterministic projection method
as follows.

Once again, we assume that cell averages of the solution at time level t = tn (including the
values of the fraction of unburnt gas znj,k = (ρz)nj,k/ρ

n
j,k) has been already computed. We first

evolve it in time by applying a (stable and accurate) shock-capturing finite-volume method to the
homogeneous system that contains only the first four equations of the system (2.1):
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completed through the EOS (1.3). As before, the evolved cell averages ρn+1
j,k , (ρu)n+1

j,k , (ρv)n+1
j,k and

E
n+1

j,k (but not (ρz)∗j,k, which is not computed now at all) are used to obtain un+1
j,k , vn+1

j,k and

pn+1
j,k = (γ − 1)

[
E
n+1

j,k −
ρn+1
j,k

2

(
(un+1

j,k )2 + (vn+1
j,k )2

)
− q0 ρn+1

j,k · z
n
j,k

]
. (2.5)

Notice that compared with (2.2), the pressure in (2.5) is computed using the values of z from the
previous time level, which is one of the crucial points in the ADP method.

The projection step is then performed as in the case of the “standard” deterministic projection
method, namely, we set

zn+1
j,k =

{
0, if τn+1

j,k ≥ τc,

1, if τn+1
j,k < τc,

(2.6)

where the temperature values τn+1
j,k are obtained by (2.3).
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2.3 Numerical Examples

In this section, we demonstrate the performance of the proposed ADP method and compare it
with the “standard” deterministic projection (SDP) method on four 2-D numerical examples. For
the 1-D numerical examples, we refer the reader to [21].

In the first three examples, we take the CFL number 0.5 (the time step ∆t is determined
adaptively by using the CFL condition for the homogeneous systems (2.4) and (2.1) for the ADP
and SDP methods, respectively), while in the fourth example we use a smaller CFL number 0.25
to avoid small oscillations appearing when a larger time step is used.

Example 1—Detonation Wave in a Channel

We consider the initial-boundary value problem taken from [1]. The initial data,

(ρ(x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0), z(x, y, 0)) =

{
(ρl, ul, 0, p1, 0), if x ≤ ξ(y),

(ρr, ur, 0, pr, 1), if x > ξ(y),

where

ξ(y) =

{
0.004, if |y − 0.0025| ≥ 0.001,

0.005− |y − 0.0025| , if |y − 0.0025| < 0.001,

are given in a 2-D channel [0, 0.025] × [0, 0.005] with the solid wall boundary conditions at the
upper and lower boundaries and free boundary conditions on the left and on the right. We take
the following parameter values: γ = 1.4, q0 = 5.196 × 109 and τc = 1.155 × 109, and the initial
values: ρl = 1.945× 10−3, pl = 6.27× 106, ul = 8.162× 104, ρr = 1.201× 10−3, pr = 8.321× 105

and ur = 0, which are the same as in [1].
One important feature of this solution is that the triple points travel in the transverse direction

and bounce back and forth against the upper and lower walls, forming a cellular pattern.
We compute the solutions by using both the ADP and SDP methods on a uniform spatial

mesh with ∆x = ∆y = 5 × 10−5. In Figure 2.1, we show the density computed at four different
times using the ADP (top row) and SDP (bottom row) methods. The ADP results are in good
agreement with the results reported in [1], while the SDP solution develops a wave traveling with
a nonphysical speed. This can also be clearly seen in Figure 2.2, where we show the propagation
of the interface between the burnt and unburnt fractions of the gas, computed by the two studied
methods.

Example 2—Radial Detonation Wave

In the second example taken from [2], we consider the initial setting, which corresponds to a
circular detonation front and consists of totally burnt gas inside a semi-circle with radius 10
and totally unburnt gas outside the semi-circle and the radially symmetric initial velocities. The
radially symmetric initial data are

(ρ, u, v, p, z)(x, y, 0) =

{
(ρin, uin(x, y), vin(x, y), pin, 0), if r ≤ 10,

(1, 0, 0, 1, 1), if r > 10,
r =

√
x2 + y2,

where pin = 21.53134, ρin = 1.79463, uin(x, y) = 10x/r, and vin(x, y) = 10y/r. The parameters
are chosen as γ = 1.2, q0 = 50 and τc = 2.
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Figure 2.1: Example 1: Density ρ computed by the ADP (top row) and SDP (bottom row) methods.

Figure 2.2: Example 1: Time evolution of the fraction of unburnt gas z computed by the ADP (top
row) and SDP (bottom row) methods. In both figures, the detonation wave propagates from left to
right and the interface between the burnt and unburnt fractions of the gas is shown at times t = 0,
10−8, 5 · 10−8, 9 · 10−8 and 1.7 · 10−7.
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We take the computational domain [−50, 50] × [0, 50] and use a uniform spatial mesh with
∆x = ∆y = 1. The solid wall boundary conditions are used along the bottom part of the domain,
while the free boundary conditions are implemented at the other parts of the boundary. We have
solved the problem numerically by both the ADP and SDP methods and the obtained results are
reported in Figures 2.3 and 2.4.

Figure 2.3: Example 2: Temperature τ computed by the ADP (left column) and SDP (right column)
methods.

In Figure 2.3, we show the temperature component of the computed solution at times t = 0.25,
1 and 3. As one can see, the ADP and SDP temperatures are totally different even at a smaller
time t = 0.25. The source of this difference can be understood by looking at the propagation
of the interface between the burnt and unburnt fractions of the gas shown in Figure 2.4. As the
ADP solution is in a good agreement with the solution reported in [2], we conclude that the fast
wave developed by the SDP solution is a numerical artifact that can be prevented by using the
proposed ADP.

Example 3—Interaction of Gas Dynamics and Detonation Waves

In the third example, we study the collision of a radially symmetric stiff detonation wave with
a shock, contact discontinuity and rarefaction wave. This problem is an extension of the 1-D
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Figure 2.4: Example 2: Fraction of unburned gas z (shaded in red) computed by the ADP (left column)
and SDP (right column) methods.

experiment conducted in [2, 19,20]. We consider the following initial data:

(ρ, u, v, p, z)(x, y, 0) =


(4, 0, 0, 10, 0), if x > 40,

(3.64282, 10 cos θ, 10 sin θ, 54.8244, 0), if
√
x2 + y2 < 10,

(1, 0, 0, 1, 1), otherwise,

where tan θ = y/x and use the following parameters: γ = 1.2, q0 = 50 and τc = 3. We take the
computational domain [−30, 100] × [−30, 30], on which we implement free boundary conditions,
and use a uniform spatial mesh with ∆x = ∆y = 0.5.

The results (temperature and fraction of unburnt gas) obtained by the ADP and SDP methods
at times t = 0.25, 1, 3, 4 and 5 are reported in Figures 2.5 and 2.6. As one can observe, both
methods provide similar approximations at small times t = 0.25 and 1 (before the collision). At
a later time t = 3 (after the collision with the shock, but before the collision with the rarefaction
wave), the solutions start exhibiting a different behavior due to the fact that the detonation wave
produced by the SDP method starts moving with an nonphysical speed; this is similar to the 1-D
case studied in [20]. Finally, at times t = 4 and 5 (after all the collisions), the detonation wave
front computed by the SDP method keeps moving to the right with the increasing nonphysical
speed. At the same time, the ADP method seems to produce accurate results.
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Figure 2.5: Example 3: Temperature τ computed by the ADP (left column) and SDP (right column)
methods.

Example 4—Diffraction of a Detonation Wave

In the last example of this section, we consider a detonation wave in the domain [−1, 0]× [0, 1] ∪
[0, 3]× [−1, 1] with the solid walls along the top part of the boundary and along the following line
segments: {−1 ≤ x ≤ 0, y = 0}, {x = 0, −1 ≤ y ≤ 0} and {0 ≤ x ≤ 3, y = −1}, and the open
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Figure 2.6: Example 3: Fraction of unburned gas z (shaded in red) computed by the ADP (left column)
and SDP (right column) methods.

boundaries on the left and on the right. The initial data are

(ρ, u, v, p, z)(x, y, 0) =

{
(3.64282, 6.2489, 0, 54.8244, 0), if x ≤ −0.5,

(1, 0, 0, 1, 1), if x > −0.5,

and the parameters are the same as in Example 2: γ = 1.2, q0 = 50 and τc = 2. The initial setting
is outlined in Figure 2.7.

In this example, the detonation wave initially positioned vertically at x = −0.5, first propagates
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Figure 2.7: Example 4: Domain and the initial wave location.

to the right and then diffracts around a solid corner. We compute the solution at times t = 0.2
and 0.4 on a uniform spatial grid with ∆x = ∆y = 1/100 using both the ADP and SDP methods.
The results are shown in Figures 2.8 and 2.9, where we plot the temperature and the fraction of
unburnt gas fields. As one can clearly see, an artificially fast wave generated by the SDP method
after the diffraction, is prevented by the use of the proposed ADP procedure.

Figure 2.8: Example 4: Temperature τ (top row) and fraction of unburnt gas z (bottom row) at time
t = 0.2 computed by the ADP (left column) and SDP (right column) methods.

3 Accurate Deterministic Projection Method: Stiff Case

We now consider a stiff, but not extremely stiff regime. In this case, instead of performing a direct
projection (1.8) one has to numerically solve the stiff ODE (1.7) at the projection substep SP .

To this end, we first note that the last equation of the system (1.2) can be combined with the
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Figure 2.9: Example 4: Same as in Figure 2.8, but at time t = 0.4.

density equation and then recast in the nonconservative form as

zt + uzx + vzy = −zK(τ ; ε, τc).

Therefore, at the projection substep SP , we will have to solve the following stiff ODE:

zt = −zK(τ ; ε, τc), (3.1)

where K(τ ; ε, τc) is given by either (1.4) or (1.5).

In order to develop a proper ODE solver for (3.1), we first rewrite it in terms of an auxiliary
variable w := ln z,

wt = −K(τ ; ε, τc), (3.2)

and then apply the trapezoidal method to the rewritten equation (3.2). This results in

wn+1
j,k = wnj,k −

∆t

2

[
K(τnj,k; ε, τc) +K(τn+1

j,k ; ε, τc)
]
,

which, after the backward substitution z = ew, gives the following trapezoidal-like ODE method
for z:

zn+1
j,k = znj,k exp

{
−∆t

2

[
K(τnj,k; ε, τc) +K(τn+1

j,k ; ε, τc)
]}

, (3.3)

where the corresponding pressure pn+1
j,k and temperature τn+1

j,k values are calculated using the ADP
approach, namely, using (2.5) and (2.3). Notice that this ADP-like implementation of the ODE
solver (3.3) is, in fact, an explicit realization of the implicit method.
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3.1 Numerical Examples

In this section, we present two numerical experiments, in which we consider stiff, but not extremely
stiff, 1-D and 2-D problems with the Arrhenius kinetic term. Notice that the 2-D ADP method
proposed in §3 can be reduced to the 1-D case in a straightforward way. In both examples, the
CFL number is chosen as 0.3.

Example 5—1-D Stiff Detonation Waves

We first consider the 1-D example taken from [33,35,38]. The initial conditions, which correspond
to a burned gas on the left and unburned gas on the right, are given by

(ρ, u, p, z)(x, 0) =

{
(1.6812, 2.8867, 21.5672, 0), if x ≤ 10,

(1, 0, 1, 1), if x > 10,

and the parameters are chosen as γ = 1.4, q0 = 25, 1/ε = 16418 and τc = 15. We take the
computational domain [0, 30] and use a uniform spatial mesh with ∆x = 0.1. The density, pressure,
temperature and fraction of unburnt gas, computed by both the ADP and SDP methods at t = 1.5,
are presented in Figure 3.1 together with the reference solution obtained using the ADP method
on a uniform spatial mesh with ∆x = 0.01. As one can see, the proposed ADP method captures
the detonation wave propagating with the correct speed, while the detonation wave computed
by the SDP method moves faster. Also note that our results are in good agreement with those
reported in [38, Example 4.1].

Example 6—2-D Stiff Detonation Waves

We now consider the 2-D example taken from [38], and take the initial conditions similar to those
in Example 2, but put into the radially symmetric setting:

(ρ, u, v, p, z)(x, y, 0) =

{
(ρin, uin(x, y), vin(x, y), pin, 0), if r ≤ 2,

(1, 0, 0, 1, 1), if r > 2,

where r =
√
x2 + y2, pin = 21.53134, ρin = 1.79463, uin(x, y) = 10x/r and vin(x, y) = 10y/r.

The parameters are γ = 1.4, q0 = 30, 1/ε = 20000 and τc = 15. The computational domain is
[−10, 10] × [0, 10] and we use a uniform mesh with ∆x = ∆y = 0.1. We compute the solution
using both the ADP and SDP methods until the final time t = 1 and present the obtained density,
pressure, temperature and fraction of unburnt gas along the y = x 1-D cross-section in Figure
3.2. The results are plotted along with the reference solution computed by the ADP method on a
uniform spatial mesh with ∆x = ∆y = 0.025. As in the previous example, only the ADP method
captures the detonation wave propagating with the correct speed. We would also like to point out
that our results are similar to those reported in [38, Example 4.4].

4 ADP Methods for Multispecies Detonation

In this section, we extend the ADP methods described in §2.2 and §3 to the multispecies detona-
tion; see, e.g., [3, 37,38].
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Figure 3.1: Example 5: Density (ρ), pressure (p), temperature (τ) and mass fraction (z) computed by
the ADP and SDP methods.

The governing equations now read as (1.1) with

U =



ρ

ρu

ρv

E

ρz1
...

ρzN


, F (U ) =



ρu

ρu2 + p

ρuv

u(E + p)

ρuz1
...

ρuzN


, G(U) =



ρv

ρuv

ρv2 + p

v(E + p)

ρvz1
...

ρvzN


, S(U , ε) =



0

0

0

0

S1(U , ε)
...

SN(U , ε)


, (4.1)

where ε := (ε1, . . . , εN)> and

Si(U , ε) = Wi

M∑
`=1

(v′′i` − v′i`)K(τ ; ε`, τ`)
N∏
j=1

(ρzj
Wj

)v′j`
, i = 1, . . . , N. (4.2)

Here, M and N are the numbers of reactions and chemical species, Wi and zi are the molecular
weight and the mass fraction of the i-th chemical species, v′′i` and v′i` are the stoichiometric coef-
ficients for the i-th species appearing as a product and a reactant in the `-th reaction, ε` and τ`
represent the reaction time and the ignition temperature for the `-th reaction, and K(τ ; ε`, τ`) is
the kinetic term given by either (1.4) or (1.5). Finally, the mass fractions satisfy the algebraic
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Figure 3.2: Example 6: 1-D cross-sections along the y = x of the density (ρ), pressure (p), temperature
(τ) and mass fraction (z) computed by the ADP and SDP methods.

relation
N∑
i=1

zi = 1, (4.3)

and the system (1.1), (4.1)–(4.3) is completed through the following EOS:

p = (γ − 1)
[
E − ρ

2
(u2 + v2)−

N∑
i=1

qiρzi

]
. (4.4)

Example. To cite an example, we consider a reacting model consisting of five species and two
reactions. Prototype reactions for such model are

H2 + O2 → 2OH, 2OH + H2 → 2H2O, (4.5)

with τ1 ≤ τ2 and N2 being a catalyst. In this case, M = 2, N = 5, v′1,1 = 1, v′2,1 = 1, v′3,1 = 0,
v′4,1 = 0, v′5,1 = 0, v′1,2 = 1, v′2,2 = 0, v′3,2 = 2, v′4,2 = 0, v′5,2 = 0, v′′1,1 = 0, v′′2,1 = 0, v′′3,1 = 2, v′′4,1 = 0,
v′′5,1 = 0, v′′1,2 = 0, v′′2,2 = 0, v′′3,2 = 0, v′′4,2 = 2 and v′′5,2 = 0. Therefore, formula (4.2) reads as

S1 = W1

[
−K(τ ; ε1, τ1)

(ρz1
W1

)(ρz2
W2

)
−K(τ ; ε2, τ2)

(ρz1
W1

)(ρz3
W3

)2]
,

S2 = W2

[
−K(τ ; ε1, τ1)

(ρz1
W1

)(ρz2
W2

)]
,

S3 = W3

[
2K(τ ; ε1, τ1)

(ρz1
W1

)(ρz2
W2

)
− 2K(τ ; ε2, τ2)

(ρz1
W1

)(ρz3
W3

)2]
.

(4.6)
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The corresponding molecular weights are W1 = 2, W2 = 32 and W3 = 17, but we will not substitute
them in (4.6) until we conduct the numerical experiments reported in Example 8 below.

Note that it is unnecessary to compute the source term S5, since N2 is the catalyst whose mass
fraction z5 will not change during the chemical reaction. It is also unnecessary to compute the
source term S4, since z4 can be obtained directly from (4.3) and it is equal to

z4 = 1− z1 − z2 − z3 − z5. (4.7)

In the remaining part of §4, we will present an extension of the ADP methods to the multispecies
detonation. For the simplicity of presentation, we restrict our consideration to the reactions
presented in the above example.

4.1 Extremely Stiff Case

We begin with the extremely stiff case, in which the multispecies extension of the ADP method
is quite straightforward. As before, the time evolution of the computed solution from time t = tn

to t = tn+1 consists of two splitting substeps. We first solve the system (2.4) to obtain the cell

averages ρn+1
j,k , (ρu)n+1

j,k , (ρv)n+1
j,k and E

n+1

j,k and use them and the EOS (4.4) to obtain un+1
j,k , vn+1

j,k

and

pn+1
j,k = (γ − 1)

[
E
n+1

j,k −
ρn+1
j,k

2

(
(un+1

j,k )2 + (vn+1
j,k )2

)
−

5∑
i=1

qi ρ
n+1
j,k · (zi)

n
j,k

]
. (4.8)

We then compute the corresponding temperature values τn+1
j,k using (4.8) and (2.3), and generalize

the ADP operator (2.6) to the multispecies case as follows:

(zi)
n+1
j,k =


zHTi , if τn+1

j,k ≥ τ2,

zITi , if τ2 > τn+1
j,k ≥ τ1,

zLTi , if τn+1
j,k < τ1,

i = 1, 2, 3. (4.9)

Here, zLTi , zITi and zHTi are the mass fractions of the i-th chemical species in the low, intermediate
and high temperature regimes, respectively. We note that when the temperature is lower than τ1,
no reactions occur, while when the temperature is higher than τ2, then both reactions have been
completed. The value of zITi depends on the quantities of the reactants in the mixture. For the
sake of brevity, we will only consider the case in which there is more hydrogen than oxygen, that
is, zLT1 ≥ W1

W2
zLT2 . The values of the mass fractions zITi are then given by

zIT1 = zLT1 −
W1

W2

zLT2 , zIT2 = 0, zIT3 =
2W3

W2

zLT2 .

Finally, we note that (z5)
n+1
j,k = (z5)

0
j,k as the mass fraction of a catalyst remains constant during

the entire reaction process, and (z4)
n+1
j,k = 1− (z1)

n+1
j,k − (z2)

n+1
j,k − (z3)

n+1
j,k − (z5)

n+1
j,k from (4.3).
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4.2 Stiff Case

In order to complete the derivation of the APD method in the stiff case, we need to develop an
ODE solver for the system of ODEs with the RHS given by (4.6) (or (4.2) in the general case):

(z1)t = W1

[
−K(τ ; ε1, τ1)

( z1
W1

)(ρz2
W2

)
−K(τ ; ε2, τ2)

( z1
W1

)(ρz3
W3

)2]
, (4.10)

(z2)t = W2

[
−K(τ ; ε1, τ1)

( z1
W1

)(ρz2
W2

)]
, (4.11)

(z3)t = W3

[
2K(τ ; ε1, τ1)

( z1
W1

)(ρz2
W2

)
− 2K(τ ; ε2, τ2)

( z1
W1

)(ρz3
W3

)2]
. (4.12)

Equations (4.10)–(4.12) can be simplified as follows. First, it can be easily verified that(
z3 +

2W3

W1

z1 −
4W3

W2

z2

)
t

= 0,

which implies that the quantity

c := z3 +
2W3

W1

z1 −
4W3

W2

z2 (4.13)

is independent of time. Therefore, z3 can be expressed from (4.13) and substituted into (4.10)
so that we will only need to solve a 2 × 2 system of ODEs consisting of (4.10) and (4.11). We
then divide (4.10) and (4.11) by z1 and z2, respectively, introduce w1 := ln z1 and w2 := ln z2, and
obtain the system

(w1)t = R1, (w2)t = R2, (4.14)

where

R1 =
[
−K(τ ; ε1, τ1)

(ρz2
W2

)
−K(τ ; ε2, τ2)

(ρz3
W3

)2]
, z3 = c− 2W3

W1

z1 +
4W3

W2

z2,

R2 =
[
−K(τ ; ε1, τ1)

(ρz1
W1

)]
.

(4.15)

We solve the ODE system (4.14), (4.15) in a predictor-corrector manner. First, we predict the
solution at time t = tn+1 using the forward Euler method, which in terms of z1 = ew1 and z2 = ew2

reads as
(z1)

∗
j,k = (z1)

n
j,k exp

(
∆t(R1)

n
j,k

)
, (z2)

∗
j,k = (z2)

n
j,k exp

(
∆t(R2)

n
j,k

)
,

where the terms (R1)
n
j,k and (R2)

n
j,k are computed by (4.15) with τnj,k obtained using (4.4):

τnj,k = (γ − 1)

[
E
n

j,k

ρnj,k
− 1

2

(
(unj,k)

2 + (vnj,k)
2
)
−

N∑
i=1

qi(zi)
n
j,k

]
. (4.16)

The computed values (z1)
∗
j,k and (z2)

∗
j,k are then updated with the help of a special trapezoidal-

like corrector, once again applied to the ODEs (4.14) and then written in terms of z1 = ew1 and
z2 = ew2 as

(z1)
n+1
j,k = (z1)

∗
j,k exp

{
∆t

2

[
(R1)

n
j,k + (R1)

∗
j,k

]}
,

(z2)
n+1
j,k = (z2)

∗
j,k exp

{
∆t

2

[
(R2)

n
j,k + (R2)

∗
j,k

]}
.

(4.17)
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where the terms (R1)
∗
j,k and (R2)

∗
j,k are computed by (4.15) with τnj,k obtained using (4.4):

τ ∗j,k = (γ − 1)

[
E
n+1

j,k

ρn+1
j,k

− 1

2

(
(un+1

j,k )2 + (vn+1
j,k )2

)
−

N∑
i=1

qi(zi)
n
j,k

]
. (4.18)

We would like to point out that according to the ADP strategy, the old value (z1)
n
j,k and (z1)

n
j,k—not

(z1)
∗
j,k and (z2)

∗
j,k—are used in both (4.16) and (4.18). Finally, the new values of z3 are obtained

using (4.13):

(z3)
n+1
j,k = cj,k −

2W3

W1

(z1)
n+1
j,k +

4W3

W2

(z2)
n+1
j,k ,

where the time-idependent quantities cj,k are given by

cj,k = (z3)
0
j,k +

2W3

W1

(z1)
0
j,k −

4W3

W2

(z2)
0
j,k,

the new values of z4 are obtained from (4.7):

(z4)
n+1
j,k = 1− (z1)

n+1
j,k − (z2)

n+1
j,k − (z3)

n+1
j,k − (z5)

n+1
j,k ,

and the values of z5 remain unchanged, namely, (z5)
n+1
j,k = (z5)

0
j,k.

Remark 4.1 We would like to stress that if the values of (z1)
∗
j,k and (z2)

∗
j,k are used in (4.18),

this will cause the computed detonation waves to propagate with a nonphysical speed. It should be
also observed that a formal consistency consideration would require one to use the values of z from
the time level t = tn, (z1)

n
j,k and (z1)

n
j,k, in (4.17) instead of (z1)

∗
j,k and (z2)

∗
j,k. However, the ADP

strategy dictates one to use (4.17) in its current form as otherwise detonation waves propagating
with nonphysical speeds will be captured by the resulting numerical method. The robustness of the
proposed ODE solver as well as the failure of its aforementioned alternatives is demonstrted in
Example 8c below.

In addition, we note that the special ODE solver presented in this section can be used in a
single species case, while the trapezoidal-like method presented in §3 may fail; see Example 8c.

4.3 Numerical Examples

In order to illusrtate the performance of the ADP methods for multispecies detonation, we conduct
several numerical experiments in both 1-D and 2-D cases. As in §3.1, the 2-D ADP methods
proposed in §4.1 and 4.2 can be reduced to their corresponding 1-D versions in a straightforward
manner. In all of the following numerical examples, the CFL values are chosen as 0.3, except
for Example 8a, where a smaller CFL value 0.1 is used to reduce the numerical oscillations that
appear when larger CFL values are used.

Example 7—One Reaction

We begin with a multispecies case with one reaction

CH4 + 2O2 → CO2 + 2H2O,



20 A. Chertock, S. Chu & A. Kurganov

also studied in [3]. Here, M = 1, N = 4, W1 = 16, W2 = 32, W3 = 44, W4 = 18, v′1,1 = 1, v′2,1 = 2,
v′3,1 = 0, v′4,1 = 0, v′′1,1 = 0, v′′2,1 = 0, v′′3,1 = 1 and v′′4,1 = 2, and formula (4.2) reads as

S1 = − 1

1024
K(τ ; ε1, τ1)(ρz1)(ρz2)

2, S2 = 4S1, S3 = −11

4
S1. (4.19)

Note that it is unnecessary to compute the source term S4, since z4 can be obtained directly from
(4.3) and it is equal to z4 = 1− z1− z2− z3. We note that in the stiff case considered in Examples
7c and 7d, one only needs to compute S1 since (4.19) immediately implies that (z2)t − 4(z1)t = 0
and (z3)t +

11
4

(z1)t = 0. In Examples 7a–7d, we use the same parameters as in [3]: γ = 1.4, q2 = 0,
q3 = 0, q4 = 0, τ1 = 2 and q1 = 500 (in Examples 7a and 7c) or q1 = 100 (in Examples 7b and 7d).

Example 7a—1-D Extremely Stiff Case

We begin with a 1-D extremely stiff case. The initial data are given by

(ρ, u, p, z1, z2, z3, z4)(x, 0) =

{
(2, 10, 40, 0, 0.2, 0.475, 0.325), if x ≤ 2.5,

(1, 0, 1, 0.1, 0.6, 0.2, 0.1), if x > 2.5.
(4.20)

In this example, we use the following ADP operator:

(zi)
n+1
j =

{
zHTi , if τn+1

j ≥ τ1,

zLTi , if τn+1
j < τ1,

i = 1, 2, 3, (4.21)

with zHT1 = 0, zLT1 = 0.1, zHT2 = 0.2, zLT2 = 0.6, zHT3 = 0.475, zLT3 = 0.2, and (z4)
n+1
j =

1 − (z1)
n+1
j − (z2)

n+1
j − (z3)

n+1
j . Here, (·)n+1

j denotes the value of the corresponding variable in
the 1-D cell Cj at time level t = tn+1. We compute the numerical solution using both the ADP
and SDP methods on the domain [0, 50] using a uniform mesh with ∆x = 0.25 until the final
time t = 3. The numerical results (density, pressure, temperature and mass fractions of CH4) are
presented in Figure 4.1 along with the reference solution computed by the ADP method using a
uniform spatial mesh with ∆x = 0.025. As one can observe, the solution consists of a detonation
wave followed by a contact discontinuity and a shock, all captured accurately by the ADP method.
We note that the ADP results are in good agreement with those reported in [3, Example 5.3], while
the solution computed by the SDP method is incorrect.

Example 7b—2-D Extremely Stiff Case

We now consider the 2-D extremely stiff case with the radially symmetric initial data

(ρ, u, v, p, z1, z2, z3, z4)(x, y, 0) =

{
(2, uin(x, y), vin(x, y), 40, 0, 0.2, 0.475, 0.325), if r ≤ 10,

(1, 0, 0, 1, 0.1, 0.6, 0.2, 0.1), if r > 10,

where r =
√
x2 + y2, uin(x, y) = 10x/r and vin(x, y) = 10y/r. As in Example 7a, the ADP

operator is given by

(zi)
n+1
j,k =

{
zHTi , if τn+1

j,k ≥ τ1,

zLTi , if τn+1
j,k < τ1,

i = 1, 2, 3
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Figure 4.1: Example 7a: Density (ρ), pressure (p), temperature (τ) and mass fraction of CH4 (z1)
computed by the ADP and SDP methods.

with zHT1 = 0, zLT1 = 0.1, zHT2 = 0.2, zLT2 = 0.6, zHT3 = 0.475, zLT3 = 0.2, and (z4)
n+1
j,k =

1 − (z1)
n+1
j,k − (z2)

n+1
j,k − (z3)

n+1
j,k . We solve this problem on the domain [0, 50] × [0, 50] using a

uniform mesh with ∆x = ∆y = 0.5. Solid wall boundary conditions are imposed along x = 0 and
y = 0, while the free boundary conditions are used along the other parts of the boundary. Figure
4.2 shows the pressure, temperature and mass fraction of CH4 (we plot 100z1 rather then z1 for a
better visualization) along the line y = x, x ≥ 0 at times t = 1, 2, 4 and 6 obtained by the ADP
method. As one can see, our results are in good agreement with those reported in [3, Example
5.5]. We note that in this example, the SDP yields quite accurate results (very close to those
shown in Figure 4.2), which are omitted for the sake of brevity.

Example 7c—1-D Stiff Case

We now turn our attention to the stiff case, in which we numerically integrate the ODE for z1
(using the ODE solver similar to the one described in §4.2) instead of using the ADP operator
(4.21). We use the same initial conditions (4.20) as in Example 7a.

We first take a very large value of 1/ε1 = 2 × 105 and compute the solutions by both ADP
and SDP methods on the domain [0, 50] using a uniform mesh with ∆x = 0.25 until the final
time t = 3. The obtained results (density, pressure, temperature and mass fraction of CH4) are
presented in Figure 4.3 along with the reference solution, which is computed by the ADP method
using a much finer uniform mesh with ∆x = 0.025. As one can see, the ADP results are almost
the same as the corresponding ADP results obtained in the extremely stiff case; see Figure 4.1.
At the same time, the SDP results are still not accurate. We also notice that when the ODE for
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Figure 4.2: Example 7b: Pressure (p), temperature (τ) and 100 times of mass fraction of CH4 (100z1)
computed by the ADP method at different times.

z1 is numerically solved, the spiky structure of the detonation wave is more accurately resolved in
the reference solution.

We then take a substantially smaller value of 1/ε1 = 104, repeat the same computations, and
plot the obtained results in Figure 4.4. As one can see, the detonation waves captured by the
ADP and SDP methods now propagate with about the same speed (with the SDP speed being still
slightly larger), but the ADP method resolves the spiky structure of the detonation wave much
better than its SPD counterpart.

Example 7d—2-D Stiff Case

Next, we consider the 2-D stiff case with precisely the same setting as the one used in Example
7b with the only exception that we now set 1/ε1 = 2 × 105. The pressure, temperature and 100
times the mass fraction of the first species CH4 computed by the ADP method at times t = 1, 2,
4 and 6 are shown in Figure 4.5, where one can see their slice across the line y = x, x ≥ 0. As
one can see, the numerical results almost coincide with those obtained in the extremely stiff case
considered in Example 7b.

Example 8—Two Reactions

In this example taken from [3, 37], we simulate the two reaction–five species model (4.1)–(4.4)
for the reactions (4.5). The details of the model as well as the corresponding ADP methods are
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Figure 4.3: Example 7c: Density (ρ), pressure (p), temperature (τ) and mass fraction of CH4 (z1)
computed by the ADP and SDP methods for 1/ε1 = 2× 105.

described and studied in §4. In Examples 8a–8d, we use the following parameters: γ = 1.4, q1 = 0,
q2 = 0, q4 = −100, q5 = 0. Other parameters vary and will be specified in each particular example.

Example 8a—1-D Extremely Stiff Case

We begin with the 1-D extremely stiff case studied subject to the following Riemann initial data
also used in [3, Example 5.4]:

(ρ, u, p, z1, z2, z3, z4, z5)(x, 0) =

{
(2, 10, 40, 0, 0, 0.17, 0.63, 0.2), if x ≤ 2.5,

(1, 0, 1, 0.08, 0.72, 0, 0, 0.2), if x > 2.5.

In this example, we set q3 = −20, τ1 = 2, τ2 = 10, and use the 1-D version of the ADP operator
(4.9) with zHT1 = 0, zIT1 = 0.035, zLT1 = 0.08, zHT2 = 0, zIT2 = 0, zLT2 = 0.72, zHT3 = 0.17,
zIT3 = 0.765 and zLT3 = 0. We compute the numerical solution by both the ADP and SDP
methods in the computational domain [0, 50] using a uniform mesh with ∆x = 0.25 until the final
time t = 3. The numerical results (density, pressure, temperature and mass fractions of H2) are
presented in Figure 4.6 along with the reference solution computed by the ADP method using a
much finer uniform mesh with ∆x = 0.025. In this example, we only show the solution obtained
by the ADP method as the results computed by the SDP method are practically the same. As one
can observe, the results are in good agreement with those reported in [3, Example 5.4] except that
the density and temperature fields plotted in [3, Figure 4] are smeared (this causes the pressure
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Figure 4.4: Example 7c: Same as in Figure 4.3, but for 1/ε1 = 104.

graph to be nonflat in the area x ∈ [20, 30]) compared with our much sharper jumps in ρ and τ
and flat p around x ∈ [20, 30].

Example 8b—2-D Extremely Stiff Case

We now consider the 2-D extremely stiff case with the initial data taken from [3, Example 5.6]:

(ρ, u, v, p, z1, z2, z3, z4, z5)(x, y, 0) =

{
(2, 10, 0, 40, 0, 0, 0.17, 0.63, 0.2), if r ≤ ξ(y),

(1, 0, 0, 1, 0.08, 0.72, 0, 0, 0.2), if r > ξ(y),

where r =
√
x2 + y2 and

ξ(y) =

{
12.5− |y − 12.5|, if |y − 12.5| ≤ 7.5,

5, if |y − 12.5| > 7.5.

In this example, we set q3 = −40, τ1 = 2, τ2 = 10, and use the ADP operator (4.9) with the same
projection mass fraction values, which were used in Example 8a, namely, zHT1 = 0, zIT1 = 0.035,
zLT1 = 0.08, zHT2 = 0, zIT2 = 0, zLT2 = 0.72, zHT3 = 0.17, zIT3 = 0.765 and zLT3 = 0. The problem is
solved in the computational domain [0, 150]× [0, 25] using a uniform mesh with ∆x = ∆y = 0.5.
Solid wall boundary conditions are implemented along the boundaries y = 0 and y = 25, and free
boundary conditions are used at x = 0 and x = 150. In Figure 4.7, we show contour plots of the
density computed by both the ADP and SDP methods at times t = 2, 4, 6 and 8. We also plot, in
Figure 4.8, profiles of pressure, temperature and 300 times mass fraction of H2 (as before, we plot
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Figure 4.5: Example 7d: Pressure (p), temperature (τ) and 100 times of mass fraction of CH4 (100z1)
computed by the ADP method at different times.

300z1 rather then z1 for a better visualization) along the line y = 12.5 at the same times. As one
can clearly see from these figures, the ADP and SDP solutions are very different in this example.
As the ADP solution agrees well with the one reported in [3, Example 5.6], we conclude that the
ADP method capture the detonation wave propagating with the correct speeds.

Example 8c—1-D Stiff Case

Next, we study the 1-D stiff case using an example similar to the one considered in [37]. We take
the following Riemann initial data:

(ρ, u, p, z1, z2, z3, z4, z5)(x, 0) =

{
(2, 10, 40, 0, 0, 0.17, 0.63, 0.2), if x ≤ 0.5,

(1, 0, 1, 0.08, 0.72, 0, 0, 0.2), if x > 0.5,

and the parameters q3 = −100, τ1 = τ2 = 1.5 and 1/ε1 = 1/ε2 = 105. We compute the solution
until the final time t = 0.06 by both the ADP and SDP methods on the domain [0, 2] using a
uniform mesh with ∆x = 1/150 and present the obtained results (pressure, temperature, mass
fractions of H2 and OH) in Figure 4.9. We also show the reference solution, which was computed
by the ADP method with a much finer uniform spatial with mesh ∆x = 1/1500. As can be clearly
seen, only the ADP method captures the detonation wave propagating with the correct speed
showing a good agreement with the numerical solution reported in [37, Example 5.3].

As pointed out in Remark 4.1, it is important to numerically solve the ODE system (4.10)–
(4.12) using a special ODE solver presented in §4.2. We now test the two alternative ODE solvers
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Figure 4.6: Example 8a: Density (ρ), pressure (p), temperature (τ) and mass fraction of H2 (z1)
computed by the ADP method.

mentioned in Remark 4.1. The first alternative ODE solver is obtained by replacing (z∗1)j,k and
(z∗2)j,k with (zn1 )j,k and (zn2 )j,k, respectively, in the formulae in (4.17). The results computed using
this ODE solver are shown in Figure 4.10. One can observe a small difference in the captured z1
and z3 compared to Figure 4.9: the mass fractions of H2 and OH have small jumps at x = 0.5,
which is the breaking point in the initial data. Moreover, we conduct a numerical experiment
with precisely the same setting but smaller values 1/ε1 = 1/ε2 = 5 × 104, and observe even
bigger jumps in the mass fractions; see Figure 4.11. We have also performed similar numerical
experiments with the second alternative ODE solver mentioned in Remark 4.1—the trapezoidal-
like method presented in §3—and the obtained results, omitted here for the sake of brevity, have
been very similar to those reported in Figures 4.10 and 4.11.

Example 8d—2-D Stiff case

In the last example, we consider the 2-D case with the radially symmetric initial data given by

(ρ, u, v, p, z1, z2, z3, z4, z5)(x, y, 0) =

{
(2, uin(x, y), vin(x, y), 40, 0, 0, 0.17, 0.63, 0.2), if r ≤ 2,

(1, 0, 0, 1, 0.08, 0.72, 0, 0, 0.2), if r > 2,

where r =
√
x2 + y2, uin(x, y) = 10x/r and vin(x, y) = 10y/r. Other parameters are as the same

as these in Example 8c: q3 = −100, τ1 = τ2 = 1.5 and 1/ε1 = 1/ε2 = 105. We compute the solution
until the final time t = 0.06 by both the ADP and SDP methods in the computational domain
[−5, 5]× [0, 5] using a uniform mesh with ∆x = ∆y = 0.025. The solid wall boundary conditions
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Figure 4.7: Example 8b: Contour plots of density (ρ) computed by the ADP (left column) and SDP
(right column) methods at different times.

are used along the bottom part of the domain, while the free boundary conditions are implemented
at the other parts of the boundary. Contour plots of the density, pressure, temperature and mass
fraction of H2 are presented in Figure 4.12. As one can clearly see, the results obtained by the
ADP and SDP methods are very different. As in previous example, the detonation wave computed
by the SDP method propagates much faster than the one captured by the proposed ADP method.
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The work of A. Kurganov was supported in part by NSFC grants 11771201 and 1201101343, and
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Figure 4.8: Example 8b: Pressure (p), temperature (τ) and 300 times mass fraction of H2 (300z1)
computed by the ADP (left column) and SDP (right column) methods at different times.
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Figure 4.9: Example 8c: Pressure (p), temperature (τ), mass fraction of H2 (z1) and mass fraction of
OH (z3) computed by the ADP and SDP methods.

Design (No. 2019B030301001).

A Semi-Discrete Central-Upwind Scheme

In this section, we briefly describe the semi-discrete central-upwind scheme for the homogeneous
2-D systems (2.1), (1.3) and (2.4), (1.3). The 2-D semi-discrete central-upwind scheme from [26]
admits the following flux form:

d

dt
U j,k(t) = −

Hx
j+ 1

2
,k
−Hx

j− 1
2
,k

∆x
−

Hy
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2
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, (A.1)

where the numerical fluxes are
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.

(A.2)

The quantities U j,k, H
x
j,k, H

y
j,k, a

+
j,k, a

−
j,k, U

E
j,k, U

W
j,k, U

N
j,k and US

j,k depend in fact on t, but we
suppress this dependence for the sake of brevity.
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Figure 4.10: Example 8c: Pressure (p), temperature (τ), mass fraction of H2 (z1) and mass fraction of
OH (z3) computed by the ADP method with the alternative ODE solver obtained by replacing (z∗1)j,k
and (z∗2)j,k with (zn1 )j,k and (zn2 )j,k, respectively, in (4.17). The plots of z1 and z3 contain zooms at
the area of small jumps occuring at x = 0.5.

In (A.2),

UE
j,k = U j,k +

∆x

2
(Ux)j+ 1

2
,k, UW

j,k = U j,k −
∆x

2
(Ux)j+ 1

2
,k,

UN
j,k = U j,k +

∆y

2
(Uy)j,k+ 1

2
, US

j,k = U j,k −
∆y

2
(Uy)j,k+ 1

2

are the point values of the piecewise linear reconstruction

Ũ (x, y) = U j,k + (Ux)j,k(x− xj) + (Uy)j,k(y − yk) for (x, y) ∈
(
xj− 1

2
, xj+ 1

2

)
×
(
yk− 1

2
, yk+ 1

2

)
at the midpoints of the edges of cell (j, k).

The numerical derivatives (Ux)j,k and (Uy)j,k are to be computed using a nonlinear limiter.
We have used a minmod limiter (see, e.g., [30, 32,34]), which gives

(Ux)j,k = minmod

(
U j+1,k − U j,k

∆x
,
U j,k − U j−1,k

∆x

)
,

(Uy)j,k = minmod

(
U j,k+1 − U j,k

∆y
,
U j,k − U j,k−1

∆y

)
,

where the minmod function is defined as

minmod(a, b) :=
sgn(a) + sgn(b)

2
·min(|a|, |b|).



Accurate Deterministic Projection Methods 31

Figure 4.11: Example 8c: Same as in Figure 4.10, but for 1/ε1 = 1/ε2 = 5× 104.

One-sided local propagation speeds in the x- and y-directions a±
j+ 1

2
,k

and b±
j,k+ 1

2

are obtained

using the largest/smallest eigenvalues of the Jacobian. For the reactive Euler systems (2.1), (1.3)
and (2.4), (1.3), we obtain

a+
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2
,k
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√
γpEj,k
ρEj,k
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γpWj+1,k
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)
,
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)
,
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)
,
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, uSj,k+1 −
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ρSj,k
, 0

)
.

Finally, the ODE system (A.1) is numerically integrated by the three-stage third-order strong
stability preserving (SSP) Runge-Kutta method; see, [13,14].
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