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ABSTRACT
We show how the moist-convective rotating shallow water model, where the moist convection and the related latent heat release are incorpo-
rated into the standard rotating shallow water model of the atmosphere, can be improved by introducing, in a self-consistent way, horizontal
gradients of potential temperature and changes of the latter due to the condensation heating, radiative cooling, and ocean-atmosphere heat
fluxes. We also construct the quasi-geostrophic limit of the model in mid-latitudes and its weak-gradient limits in the equatorial region. The
capabilities of the new model are illustrated by the examples of convection-coupled gravity waves and equatorial waves produced by the
relaxation of localized pressure and potential temperature anomalies in the presence of moist convection.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0007757., s

I. INTRODUCTION

Simplified models, which are obtained by space and/or time
averaging of the full “primitive” equations, are the standard con-
ceptual tools for understanding fundamental dynamical processes
in the atmosphere. Among them, the rotating shallow water (RSW)
model plays a distinguished role. The history of applications of this
model and of its reduction to slow motions, the barotropic quasi-
geostrophic (QG) model, is long, and the examples of applications
are numerous; see, e.g., Ref. 1. Let us just mention that the dynam-
ics of the equatorial atmosphere was first theoretically understood
using this model in Ref. 2. Yet, in its classical version, the RSW model
misses an essential ingredient: phase transitions of water vapor with
the related latent heat release and their influence upon dynamical
processes. The moist-convective rotating shallow water (mcRSW)
model was introduced in Ref. 3 in the one-layer configuration and
then extended to two layers in Ref. 4 in order to repair this drawback
of the original RSW model. It incorporates the bulk, vertically aver-
aged, effects of condensation and the related heat release upon the
air column in a simple albeit consistent way, and allows us to study

the dynamical influence of moist convection by analytically simple
and numerically friendly means. The model is a natural extension of
the seminal ideas of Ref. 5 and was shown to capture the essential
properties of moist barotropic and baroclinic instabilities of jets6,7

and vortices,8 including the instabilities of intense hurricane-type
ones.9,10 The model can be extended to include, together with the
water vapor, liquid water, vaporization, and precipitation.10 Despite
these achievements, there is an essential ingredient that is lacking
in the model. As its parent model, the RSW equations, it does not
allow for horizontal variations of the potential temperature. This is
why, for example, in the mcRSW model, the latent heat release is
associated uniquely with the convective mass flux. Yet, there exists
in the literature a variant of the shallow water model with horizontal
density and/or temperature gradients, the so-called thermal rotating
shallow water (TRSW) equations; see, e.g., Ref. 11. The TRSW equa-
tions were multiply reinvented both in the meteorological and in the
oceanographic literature, in the context of the boundary layer in the
atmosphere12,13 and of the mixed layer in the ocean14–16 (the model
is sometimes called the Ripa system). A natural idea, thus, arises to
include the bulk moisture and to apply the simple parameterization
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of the moist convection, which is used in mcRSW, not in RSW but
in TRSW. It seems natural to associate, then, the latent heat release
with an increase in the mean potential temperature and not with a
convective mass flux. This idea was formulated in Ref. 3, but not pur-
sued, as it was shown to lead to physically inconsistent relationship
between the phase velocities of moist and dry gravity waves. At the
same time, a possibility was mentioned in Ref. 3 to split the influ-
ence of the latent heat release into two parts: heating, that is, local
increase of potential temperature, and convective flux. Below we will
show that this idea can be successfully realized, leading to a consis-
tent moist-convective TRSW (mcTRSW) model with an improved
representation of thermodynamic processes, when compared to the
mcRSW model.

The main advantage of the mcTRSW model is that it allows
us to account for both mechanical and thermal effects of the moist
convection and, thus, can be used to improve the TRSW model-
ing of various dynamical phenomena in the atmosphere, the most
important being convection-coupled waves and vortices.

The paper is organized as follows: In Sec. II, we construct the
basic “skeleton” version of the mcTRSW model from the first prin-
ciples, determine the admissible values of parameters by analyzing
its wave spectrum, formulate and analyze the asymptotic limits of
the model, and finally, add more physics by including parameter-
ized interactions with the boundary layer and outer atmosphere. In
Sec. III, we give examples of the applications of the model. We, first,
benchmark it by corresponding constant-temperature simulations,
then simulate the propagation of convection-coupled gravity waves
and evolution (adjustment) of localized pressure and temperature
perturbations at the Equator. The Appendix contains a sketch of the
numerical scheme.

II. CONSTRUCTING THE mcTRSW MODEL
A. The “skeleton” version of the mcTRSW equations

We first recall the equations of the one-layer TRSW model in
the absence of dissipation on the beta-plane. They are written for
the horizontal velocity v(x, y, t) = (u(x,y,t), v(x,y,t))⊺, thickness
h(x, y, t), and the field b(x, y, t) that represents the tempera-
ture/density variations:

vt + v ⋅∇v + f (y)ẑ ∧ v = −b∇h − h
2
∇b, (1a)

ht +∇ ⋅ (hv) = 0, (1b)

bt + v ⋅∇b = 0. (1c)

Here, ∇ = (∂/∂x, ∂/∂y), ẑ is the unit vector in the vertical direction,
and f (y) = f0 + βy is the Coriolis parameter with f0 and β being non-
negative constants. Here and below, we use index notation for the
corresponding partial derivatives if it does not lead to any confusion.
In the atmospheric context, the model can be derived by vertical-
averaging between a pair of material surfaces of the primitive equa-
tions with the pseudo-height as a vertical coordinate, applying the
mean-field hypothesis and relaxing the standard in derivation of the
shallow water model assumption of the horizontal homogeneity of
potential temperature (Ref. 1, Chap. 14). The variable b, then, has a

meaning of buoyancy in terms of vertically averaged potential tem-
perature (see Ref. 3): b = gθ(x, y, t)/θ0, where θ(x, y, t) is the variable
part and θ0 is a reference value for the potential temperature, and b
has the same dimensions as g, m/s2. We recall that the “dry” poten-
tial temperature is, up to a constant, the exponential of entropy.
The variable h has a meaning of geopotential thickness [geopoten-
tial height in the absence of bottom topography, and the latter can
be easily added by replacing h with h + Z(x, y) in the first term on
the right-hand side (RHS) of (1a)]. The bulk humidity (vertically
integrated specific humidity) Q is a passive tracer in the absence of
condensation, obeying the equation

Qt +∇ ⋅ (Qv) = 0. (2)

The mass of the water vapor is neglected in the mass conservation
Eq. (1b).

Let us construct the basic version of the mcTRSW equations,
which we will then ameliorate. By applying the same philosophy as in
Ref. 3, we consider that when the bulk humidity exceeds a saturation
threshold, the condensation starts, providing a sink in (2). With a
relaxation parameterization for the condensation, Eq. (2) becomes

Qt +∇ ⋅ (Qv) = −C ∶= −Q −Qs

τ
H(Q −Qs), (3)

where H denotes the Heaviside function and τ is relaxation time.
In the simplest version of the model, the saturation threshold Qs can
be taken to be constant, although a dependence of Qs on h is easy
to add, as well as now, when θ̄ can vary, a dependence on θ̄. Both
could be reasonably taken to be linear as in Ref. 3. The relaxation
time is short in the atmosphere, of the order of a couple of hours.
An important limit, therefore, is that of immediate relaxation (see
Ref. 5),

τ → 0; C → −Qs∇ ⋅ v. (4)
The condensation leads to the latent heat release, which is associated
in the mcTRSW model with a sink in Eq. (1b) due to the resulting
convective flux,

ht +∇ ⋅ (hv) = −β1C, (5)

where the coefficient β1 was determined in Ref. 3 with the help of a
vertically averaged equation of Lagrangian conservation of the lin-
earized equivalent potential temperature (which was called moist
enthalpy in Ref. 3). In the TRSW model with variable potential
temperature, the heating due to condensation should increase the
entropy, and hence the potential temperature, which should acquire,
thus, a source,

bt + v ⋅∇b = β2C, (6)

where β2 is another coefficient. Combining Eqs. (1a), (5), (6), and
(3), we obtain the simplest “skeleton” version of the mcTRSW equa-
tions. The coefficients β1 and β2 are not determined yet and can, in
principle, depend on the dynamical variables, which will be the case
as we show later. Notice that Eqs. (5) and (6) can be combined to
give

(hb)t +∇ ⋅ (vbh) = (β2h − β1b)C, (7)

which expresses the evolution of the bulk (vertically integrated)
potential temperature and hence of the bulk entropy of the air col-
umn. A natural physical constraint on the values of the coefficients
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β1 and β2 is, thus, the non-negativity of the RHS of (7). Another con-
straint (see Ref. 3) is that of higher phase velocities of dry, as com-
pared to moist, gravity waves, which follows from the observations.
In order to analyze this constraint, let us take, for simplicity, the one-
dimensional (1-D) moist-convective thermal shallow water without
rotation (a schematic representation of this model is presented in
Fig. 1),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + uux = −bhx −
bx
2
h,

ht + (hu)x = −β1C,
bt + ubx = β2C,
Qt + (Qu)x = −C,

(8)

and consider it in the limit of immediate relaxation C = −uxQs with
constant Qs; see (4). Linearizing (8) about the state of rest with uni-
form thickness H and buoyancy B—h = H + η and b = B + σ—and
assuming β1 and β2 to be constant, we obtain a system describing
moist (that is, convection-coupled) gravity waves,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut + Bηx +
H
2
σx = 0,

ηt + (H − β1Qs)ux = 0,
σt + β2Qsux = 0,

(9)

which can be readily reduced into a single wave equation,

utt − [BH − (β1B − β2
H
2
)Qs]uxx = 0,

FIG. 1. A sketch of 1-D moist-convective shallow water model.

giving the following phase velocities of the moist waves:

cm = ±
√

BH − (β1B − β2
H
2
)Qs. (10)

The phase velocities of the dry waves are, obviously, cd = ±
√
BH.

Hence, in order to satisfy the condition of non-decrease of the over-
all entropy in the layer and the condition that dry waves are faster
than moist ones, the coefficients β1 and β2, and the mean thickness
H and buoyancy B, should satisfy the following inequalities:

β1B ≤ β2H < 2β1B. (11)

We note that the configuration where entropy is overall conserved,
which is mentioned in Ref. 3, corresponds to β1B = β2H and is
included in (11).

Let us now exploit the Lagrangian conservation of the lin-
earized equivalent potential temperature (moist enthalpy). In the full
three-dimensional (3-D) primitive equations, it reads

d
dt
(θ +

L
cp
q) = 0, (12)

where d/dt ∶= ∂/∂t + u ⋅ ∇ stands for the 3-D Lagrangian (material or
advective) derivative with the 3-D velocity u = (u,v,w)⊺, θ(x, y, z, t) is
the potential temperature, q(x, y, z, t) is (non-dimensional) specific
humidity, L is the specific heat of vaporization, and cp is the specific
heat at constant pressure. Following Ref. 3 and integrating (12) in z
between a pair of material surfaces z = z1(x, y, t) and z = z2(x, y, t),
such that h = z2 − z1, which, by definition, are moving with the
vertical velocities of the fluid w1 = dz1/dt and w2 = dz2/dt, we obtain

Δ[θ̄h] +
L
cp
Δ[Q] + F(θ(z2) +

L
cp
q(z2)) = 0,

where F denotes a convective flux across z2, and we have used
the same notation as in Ref. 3: Δ(⋅) ∶= (⋅)t + ∇ ⋅ (v̄(⋅)), where
v̄ = (ū, v̄)⊺ is the vertically averaged horizontal velocity in the layer,
and θ̄ denotes the vertically averaged potential temperature. By the
definition of the convective flux, it is a mass sink. Hence, F = −Δ[h],
and we obtain

Δ[θ̄h] +
L
cp
Δ[Q] − Δ[h](θ(z2) +

L
cp
q(z2)) = 0, (13)

where, by construction,Δ[Q] =−C is to be substituted in (13). Notice
that the potential temperature and moisture calculated at the upper
surface in (13) can be approximated by their averages in the layer val-
ues θ̄, q̄. Also notice that the coefficient L/cp can be absorbed in q, and
hence in Q and C, leading just to a renormalization of the relaxation
time in the latter, which will be understood in what follows.

Contrary to the case of constant θ̄ treated in Ref. 3, Δ[h] cannot
be unambiguously determined from (13) in terms of C, and some
additional hypothesis is needed. As already discussed, a natural one
is that of increase of θ̄h ≡ ∫z2

z1 θ dz due to the latent heat release
produced by condensation:

Δ[θ̄h] = γC, (14)
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where γ > 0 is a parameter. Substituting (14) in (13), and omitting
from now on the bars over the vertically averaged quantities results
in

Δ[h] = −1 − γ
θ + q

C, (15)

where we have absorbed L/cp in the humidity, as explained. From
(14) and (15), we obtain

d2

dt
θ ≡ ( ∂

∂t
+ v ⋅∇)θ = 1

h
θ + γq
θ + q

C, (16)

where d2/dt stands for the advective (Lagrangian) derivative with the
vertically averaged horizontal velocity v.

Let us now recall that the use of the linearized form θ + Lq/cp
of the equivalent potential temperature in (12) is based on the small-
ness of the second term compared to the first, which corresponds to
the physical reality. Hence, we can neglect the moisture terms in the
first approximation in (15) and (16), and thus obtain the simplified
expressions

Δ[h] = −1 − γ
θ

C,
d2

dt
θ = 1

h
C. (17)

Thus, in this approximation

β1 =
g
θ0

1 − γ
b

, β2 =
g
θ0

1
h

, (18)

and it follows from (11) that the only constraint to impose on the
value of the parameter γ is 0 ≤ γ < 1/2. Corrections to the expressions
(17) following from (15) and (16) can be added, if necessary.

Thus, with β1 and β2 obeying (18), the equations of the “skele-
ton” mcTRSW model read as

vt + v ⋅∇v + f (y)ẑ ∧ v = −b∇h − h
2
∇b, (19a)

ht +∇ ⋅ (hv) = −1 − γ
b

Q −Qs

τ
H(Q −Qs), (19b)

bt + v ⋅∇b = 1
h
Q −Qs

τ
H(Q −Qs), (19c)

Qt +∇ ⋅ (Qv) = −Q −Qs

τ
H(Q −Qs), (19d)

where we have absorbed the factor g/θ0 in β1 and β2 in (18) in the
bulk humidity Q, which, taking into account the previous renormal-
ization, thus acquires the same dimensions as the product BH, that
is, m2/s2.

B. Asymptotic limits
1. Quasi-geostrophic (QG) limit on the f-plane

Let us recall that the quasi-geostrophic (QG) limit of the “dry”
TRSW model11 is obtained with the following scaling:

u ∼ U, v ∼ U, x ∼ L, y ∼ L, t ∼ L
U

(20)

and the hypotheses that deviations of thickness and buoyancy from
their mean values are small and are of the same order as the Rossby
number Ro = U/f0L ≡ ε, which gives

h(x, y, t) = H(1 + εη(x, y, t)), b(x, y, t) = B(1 + 2εσ(x, y, t)). (21)

As usual in the QG approximation, we suppose that the Burger num-
ber Bu = BH/f 2

0 L
2 is of order one. Under this scaling, the system

(IIA) becomes

ε(vt + v ⋅∇v) + ẑ ∧ v = −(1 + 2εσ)∇η − (1 + εη)∇σ, (22a)

εηt +∇ ⋅ ((1 + εη)v) = − 1 − γ
(1 + 2εσ) C̄, (22b)

σt + v ⋅∇σ = 1
2ε(1 + εη) C̄, (22c)

Qt +∇ ⋅ (Qv) = −C̄, (22d)

where Q is the non-dimensional bulk humidity, and C̄ is C rescaled
by a factor BHU/L. A solution for the velocity is sought in the form
of asymptotic series v = v0 + εv1 +⋯.

As follows from (IIB1), a consistent QG limit ε → 0, as in the
mcRSW model (see Ref. 6), is possible only when the condensation
C̄ is small: C̄ = O(ε). Indeed, for the geostrophic velocity, we obtain
from (22a) in zeroth order in ε,

ẑ ∧ v0 = −∇η −∇σ ≡ −∇ψ, (23)

where ψ = η + σ is the geostrophic streamfunction. Obviously,∇ ⋅v0
≡ 0, which is consistent with (22b) only if the RHS is of the order ε.
Similarly, Eq. (22c) is self-consistent only at C̄ = O(ε). Therefore, in
the following, we assume that C̄ = εĈ with Ĉ = O(1).

Let us also recall the standard algorithm for obtaining the QG
equations in the “dry” RSW model with b = g = const and σ ≡ 0. The
first-order divergence is determined from Eq. (22a) in terms of the
geostrophic streamfunction

∇ ⋅ v1 = −(
∂

∂t
+ v0 ⋅∇)(∇2ψ)

and substituted in (22b) (without the RHS) to give a closed equation
for ψ:

( ∂
∂t

+ v0 ⋅∇)(∇2ψ − ψ) = 0, (24)

with v0 given by (23). In the TRSW model, the same procedure gives

∇ ⋅ v1 = −(
∂

∂t
+ v0 ⋅∇)∇2ψ + v0 ⋅∇σ,

and instead of (24), we obtain

( ∂
∂t

+ v0 ⋅∇)(∇2ψ − ψ) − v0 ⋅∇σ = 0,

which should be considered together with (22c), with v = v0.
Including condensation leads to the following moist-convective
QG-TRSW equations:

(∇2ψ − ψ)t + J(ψ,∇2ψ) −J(ψ, σ) = (1 − γ) Ĉ, (25a)

σt + J(ψ, σ) = Ĉ
2

, (25b)

Q̂t −J(ψ, Q̂) + Qs(∇2ψt + J(ψ,∇2ψ) −J(ψ, σ)) = Ĉ, (25c)
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where J(A,B) ∶= AxBy − AyBx denotes the Jacobian of the pair
of functions A and B and we have introduced the non-dimensional
moisture deficit Q̂ = Qs − Q = O(ε) and supposed, for simplicity,
that Qs = const, although Qs depends, in general, on η (see Ref. 3)
and on σ (see below). In the absence of σ, in the limit of immedi-
ate relaxation, when Q̂ may be set to zero, Eq. (25c) readily gives
the enhancement of the geostrophic relative vorticity ∇2ψ, that is,
enhancement of cyclones and depletion of anticyclones due to con-
densation, as was noticed in Ref. 6. We see from (25c) that in the
moist-convective QG-TRSW, the relationship between the tendency
of the relative vorticity and condensation is less direct and is affected
by advection of the buoyancy anomaly.

2. Charney (weak pressure gradient) limit
in the equatorial beta-plane

As is well known (see, e.g., Ref. 17), the geostrophic balance in
the equatorial region is not well defined due to the essential depen-
dence of the Coriolis parameter on the meridional coordinate. Nev-
ertheless, an analog of the QG approximation was proposed in the
classical paper18 on the basis of the observation that pressure gradi-
ents are small in the tropical atmosphere. The conjecture of small
pressure gradients is supported by data analysis.19 The Charney
approach has recently been applied in Ref. 20 to the RSW equa-
tions on the equatorial beta-plane. It is based on the assumption that
variations of h are small, which implies the smallness of the Froude
number for consistency. In the TRSW model, the smallness of the
variations of h does not automatically imply that the Froude num-
ber, which is the ratio of the typical velocity of the flow to the phase
velocity of the “dry” thermal gravity waves cd =

√
BH is small. Let us

use the same scaling (20) along with the hypothesis of smallness of
thickness perturbations, but without additional hypotheses on the
(equatorial) Rossby number or smallness of the perturbations of b
and assume that Fr ∶= U/cd = O(1), that is, that we are dealing with
fast equatorial motions. We then obtain from (IIA) considered on
the equatorial beta-plane where f (y) = βy, in the leading order in ε,
which controls the amplitude of thickness perturbations:

vt + v ⋅∇v + β̄yẑ ∧ v +∇b̄ = 0, (26a)

∇ ⋅ v = −1 − γ
b̄

C̄, (26b)

b̄t + v ⋅∇b̄ = C̄, (26c)

Qt +∇ ⋅ (Qv) = −C̄. (26d)

Here, the non-dimensional gradient of the Coriolis parameter
β̄ ∶= βL2/U is the inverse of the equatorial Rossby number and
b̄ ∶= b/B is the non-dimensional buoyancy. Notice that Eq. (26a)
has the same form as in the RSW model, and following the standard
procedure, we obtain the absolute vorticity evolution equation by
cross-differentiation,

( ∂
∂t

+ v ⋅∇)(ζ + β̄y) + (ζ + β̄y)∇ ⋅ v = 0,

where ζ ∶= vx − uy is the relative vorticity. In view of (26b), this is
equivalent to

( ∂
∂t

+ v ⋅∇)(ζ + β̄y) = (1 − γ)
b̄
(ζ + β̄y)C̄. (27)

This equation helps to qualitatively analyze the evolution of vortic-
ity. For example, as is easy to see, it amplifies the cyclones at both
sides of the Equator in the condensation regions.

It should be emphasized that Eqs. (26a), (26b), and (26d)
resemble the non-dissipative version of the so- called weak tempera-
ture gradients model for the dynamics of the equatorial atmosphere;
see Ref. 21. However, if the gradients of (potential) temperature are
supposed to be small, as in (21), then similar to the analysis of QG
regime arguments show that first, C̄ should be of the order ε, and
second, U ≪ cd for consistency. In this way, the first three equations
in (IIB2) become

vt + v ⋅∇v + β̄yẑ ∧ v +∇(η + σ) = 0, (28a)

∇ ⋅ v = 0, (28b)

σt + v ⋅∇σ = Ĉ, (28c)

while Eq. (26d) giving the evolution of Q̂ requires the knowledge
of divergence of the first correction to the velocity, as in the QG
regime. Thus, we see that the “weak temperature gradient” model
is, in essence, a weak pressure gradient one in the TRSW context,
while it is the weak temperature and weak pressure gradient model,
which is an analog of the Charney model in the RSW context. It can
be shown that, as in the latter one, it admits modon solutions.20

C. Putting flesh on the skeleton
1. Parameterizing momentum, water vapor,
and heat exchanges with the exterior

The first improvement of the skeleton model consists in adding
on the RHS of Eq. (19d), a source of moisture due to evaporation in
the boundary layer. The boundary layer itself will not be modeled,
and its influence is represented by bulk formulas in the model. For
the evaporation, we use

E = α∣v∣(Qs −Q)H(Qs −Q), (29)

where α is a coefficient that, in general, can depend on the vari-
ables of the model. This formula is well adapted for the atmospheric
dynamics over the ocean, which is of our primary interest; see below.
In order to account for the contrast between the ocean and the
continents, the evaporation coefficient could change its value over
the land, in a minimalistic approach, or the whole parameterization
could be modified there.

Another influence of the boundary layer consists of the
momentum and mass exchanges with the main layer, which can,
again in a minimalistic way, be accounted for by a bottom friction
term,

D = −K(∣v∣)v, (30)

on the RHS of Eq. (19a), where K is typically a linear function. A
radiative cooling/heating of the atmosphere is usually represented in
shallow water models as a relaxation of h to an equilibrium profile;
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see, e.g., Ref. 22. The TRSW model allows one to do it in a more
consistent way by including the radiative relaxation term

R = − 1
τr
(b − be), (31)

on the RHS of Eq. (19c), where be(x, y) is an equilibrium distribution,
which in the simplest case is just a background mean value be(x, y)
≡ B. In the same way, a different, but shorter, relaxation time, can
represent the adjustment of the potential temperature of the air to
the sea-surface temperature (SST),

T = − 1
τs
(b − bs), (32)

where bs(x, y, t) is the buoyancy built with an equivalent potential
temperature corresponding to the SST. It should be stressed that a
similar parameterization of the heat exchanges was used in oceano-
graphic applications of the TRSW model in Ref. 14. To finish with
heat, water vapor, and momentum exchanges, let us mention that,
as it was explained in Ref. 10, there is an ambiguity in assigning
the Stokes drag resulting from the convective flux from the lower to
upper layer in the two-layer model, of which the current one-layer
model is a limit of infinitely thick upper layer. The Stokes drag is
proportional to the velocity difference between the layers, and in the
one-layer limit, with motionless upper layer, the convention adopted
in Ref. 3 was that the Stokes drag affects only the upper layer. If the
Stokes drag acts also upon the lower layer, a term,

S = −δv
h
β1C, (33)

is to be added to the RHS of Eq. (19a), where 0 ≤ δ ≤ 1 is a coefficient
reflecting the aforementioned uncertainty in assigning the Stokes
drag.

2. Adding new ingredients
In the skeleton version of Sec. II A, the condensed water vapor

drops off. Therefore, condensation is equivalent to precipitation,
and it was understood in this sense in Ref. 3. However, condensed
water remains in the atmosphere in the form of clouds, and precip-
itation is switched on only when water droplets reach some critical
size. Following Ref. 10, we include precipitable water in the model
in the form of another advected quantity, with a source due to con-
densation. Once liquid water is included in the model, we can also
include vaporization. A bulk amount of precipitable water W(x, y, t)
in the air column obeys the following equation:

Wt +∇ ⋅ (Wv) = C − V , (34)

where V stands for vaporization. Opposite the condensation, vapor-
ization results in cooling and hence produces a downward convec-
tive flux. This extra flux gives rise to extra terms in the mass and
momentum equations, in the same way as condensation, but with an
opposite sign. The vaporization itself can be modeled by a relaxation
of Q toward Qs from below, but with coefficient smaller by an order
of magnitude, compared to condensation; see Ref. 10. However, in
what follows, we are mostly interested in the configuration where Q
is close to saturation and hence will be neglecting the vaporization
process. On the contrary, the precipitation is important in such a
setting and will be introduced as a sink in (34), again as a relaxation

with a relaxation time τp to a critical bulk amount of precipitable
water in the column, beyond which the precipitation starts,

P = W −Wcr

τp
H(W −Wcr). (35)

A phenomenon that could be included in the model to further
increase the realism of the representation of the water cycle is the
entrainment of liquid water by convective updrafts. This process
can be simply modeled as a sink in the precipitable water equa-
tion, which is proportional, with some coefficient κ, to the upward
convective flux, and hence, to the condensation.

Finally, although we will be using, for simplicity, a constant Qs
in the examples below, it depends, in principle, on deviations of both
the thickness and the potential temperature from their mean values,
as was already mentioned above. This dependence follows from the
Clausius–Clapeyron equation and, in the simplest form, is given by
a linear function.

Gathering all of the above-described additions (except vapor-
ization, as explained), we thus arrive at the system of equations of
the full one-layer mcTRSW model as follows:

vt + v ⋅∇v + f (y)ẑ ∧ v = −b∇h − h
2
∇b + D + S,

ht +∇ ⋅ (hv) = −1 − γ
b

C,

bt + v ⋅∇b = 1
h
C + R + T,

Qt +∇ ⋅ (Qv) = −C + E,

Wt +∇ ⋅ (Wv) = (1 − κ)C − P,

where β1, β2, D, S, R, T, C, E, and P are given by Eqs. (3), (18), (29)–
(33), and (35), respectively.

Below we will present two examples of applications of the con-
structed mcTRSW model. The first example is, at the same time,
a benchmark, as it repeats the similar test in the mcRSW model
from.3 It consists of the interaction of a gravity wave packet with
a moisture front and generation of convection-coupled waves. The
second example is an application of the model to the problem of the
relaxation of localized disturbances at the Equator.

III. EXAMPLES OF APPLICATIONS OF mcTRSW
In the numerical examples below, we will take κ = 0 and switch

off D, S, R, T, and P, which will be included in future work. The
resulting mcTRSW system, rewritten in terms of the conservative
variables (h, zonal momentum density Q ∶= hu, meridional momen-
tum density P ∶= hv, bulk buoyancy B ∶= hb, bulk humidity Q, and
bulk precipitable water W) reads as

ht + Qx + Py = −
1 − γ
b

C, (36a)

Qt + (Q2

h
+
hB

2
)
x

+ (QP

h
)
y
= fP, (36b)
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Pt + (QP

h
)
x

+ (P2

h
+
hB

2
)
y
= −fQ, (36c)

Bt + (BQ

h
)
x

+ (BP

h
)
y
= γC, (36d)

Qt + (QQ

h
)
x

+ (QP

h
)
y
= −C + E, (36e)

Wt + (WQ

h
)
x

+ (WP

h
)
y
= C. (36f)

Unless otherwise stated explicitly, γ is taken to be zero.
For numerical simulations, we use a new well-balanced central-

upwind scheme we have recently proposed in Refs. 23 and 24 for the
1-D and two-dimensional (2-D) TRSW equations, respectively. A
brief description of the 2-D scheme and of the numerical treatment
of the relaxation source terms is presented in the Appendix.

A. One-dimensional convection-coupled gravity
waves

As the first test of the mcTRSW model, we consider the scatter-
ing of the packet of gravity waves by a moisture front. The setup
is 1-D; that is, there is no dependence on x, and the rotation,
precipitation and evaporation are switched off,

ht + Py = −
1 − γ
b

C,

Pt + (P2

h
+
hB

2
)
y
= 0,

Bt + (BP

h
)
y
= γC,

Qt + (QP

h
)
y
= −C,

Wt + (WP

h
)
y
= C.

We take the same initial conditions as in Experiment 1 of Ref. 3,
albeit with the lower value of the saturation threshold, in order to
let the wave cross the front. The moisture front is taken to have the
following form:

Q(y, 0) = Qc[1 + 0.05 tanh((y − yM)H(y + yM))],

where yM = 6 is the middle of the computational domain [0, 12], in
which we introduce a uniform mesh with 1500 finite-volume cells,
and Qc = 0.89. Initial b and W are constant: b(y, 0) ≡ 1 and W(y, 0)
≡ 0. Since the precipitation is switched off, W, when it appears, sig-
nals condensation “clouds.” The initial wave-packet was placed on
the left of the front, in the “dry” zone, and was chosen in a way that
it was moving toward the moisture front:

v(y, 0) = μ(y), h(y, 0) = 1 + μ(y),

where

μ(y) = [−(y − yP)2 + ε]H(y − yP +
√
ε)H(−y + yP +

√
ε).

Here, yP = 2 is an initial position of the wave-packet of a parabolic
form and ε = 0.025 determines both the amplitude and width of
the packet. The parameters used in (3) and (29) are Qs = 0.9 and
τ = 0.02.

The results of the simulations are fully consistent with those of
Ref. 3, apart from the fact that due to a lower Qc, the packet now pen-
etrates into the “moist” zone to the right of the front and propagates
as a convection-coupled wave. In the upper row of Fig. 2, we present
the time evolution of thickness and velocity. They clearly show a par-
tial reflection from, and as a penetration into the “moist” zone by the
wave-packet.

Yet, compared to Ref. 3, we have new elements: diabatic heating
resulting in a local increase of b, and a “cloud” formation related to
the condensed water W. Both are well represented by the scheme, as
follows from Fig. 2 (lower row), where we show the snapshots of the
evolution of b, and Fig. 3, where we display the Hovmöller (charac-
teristic) diagram for W. As follows from these figures, the initially
constant b increases locally when the wave-packet hits the mois-
ture front and condensation starts. The increase in b then spreads
rightwards, following the propagating wave. Condensed water W
starts forming at the same moment and then follows the wave, the
“clouds” never disappearing as the precipitation and vaporization
are switched off.

B. Equatorial adjustment of localized pressure
and potential temperature anomalies

As the second example of applications of the mcTRSW model,
we consider the relaxation of localized perturbations of pressure
and temperature at the Equator, the equatorial adjustment.25 The
motivation for considering this example is twofold. First, starting
from the pioneering works,2,26 the rotating shallow water model has
become a classical tool in understanding the circulation of the tropi-
cal atmosphere. Yet, the heating due to moist convection was under-
stood as a source/sink in the equation for h in the classical works5,26

and subsequent papers; see Refs. 21 and 27. The TRSW model allows
one to distinguish between the mass source/sink and heating/cooling
(potential temperature source/sink), and it is interesting to com-
pare their respective effects. Second, it is well known that, overall,
the temperature gradients in the equatorial region are weak (see,
e.g., Ref. 21), which makes this region well suited for applications
of the TRSW equations. Let us recall that a given velocity profile
of, for example, a jet or a vortex, can be maintained in the TRSW
model by pressure gradients (geostrophic or cyclo-geostrophic bal-
ance), density/temperature gradients (thermal balance), or a combi-
nation of both thermo- and cyclo-geostrophic balance;28 see (23).
It was shown that purely thermal, or thermally dominated, that
is, with the density/temperature gradients stronger than the pres-
sure gradients, vortices28 and jets29,30 (also see Ref. 1, Chap. 14) are
subject to specific convective-type instabilities. The interpretation
and relevance of these instabilities in the TRSW equations is still
to be clarified, but in any case, they typically do not occur if the
model is applied to the equatorial atmosphere with realistic parame-
ters, where temperature gradients are generally small. At the same
time, the advantage of the TRSW model compared to the RSW
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FIG. 2. Upper row: Snapshots of the thickness h(y, t) (left) and velocity v(y, t) (right) at times t = 0, 2.4, 3.6, 4.8, and 6. Lower row: Snapshots of the buoyancy b(y, t) at times
t = 0, 4.8, and 6.

one is that it allows us to track the evolution of (potential) tem-
perature, its changes due to various heat fluxes, and its dynamical
influence.

The equatorial adjustment process is directly related to the clas-
sical Gill mechanism of the response of the tropical atmosphere to a
localized heating.26,31 The heating in these papers was assimilated to
a permanently acting localized forcing term in the equation for h.
Knowing the response to a localized initial h allows us to anticipate

FIG. 3. Hovmöller diagram for W (y, t).

the response in the forced problem, as forcing can be thought of as
permanently recreating the localized perturbation of h.

We start by benchmarking the model on the equatorial beta-
plane with non-dimensional f (y) = y in the “dry” configuration, that
is, we numerically solve the system

ht + Qx + Py = 0,

Qt + (Q2

h
+
hB

2
)
x

+ (QP

h
)
y
= fP,

Pt + (QP

h
)
x

+ (P2

h
+
hB

2
)
y
= −fQ,

Bt + (BQ

h
)
x

+ (BP

h
)
y
= 0,

starting with the initial conditions close to those used in the numer-
ical simulations with the RSW model on the equatorial beta-plane in
Ref. 25, that is,

u(x, y, 0) = v(x, y, 0) ≡ 0, b(x, y, 0) ≡ 1,

h(x, y, 0) = 1 − εe−(
x2

2a2 + y2

2 ),
(37)

where ε is the non-dimensional amplitude of the initial perturba-
tion and a is its aspect ratio. We have used ε = 0.2 and a = 5 so as
to be consistent with the long-wave scaling used in Refs. 5 and 31
and in the theoretical analysis of Ref. 25. The numerical simulations
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FIG. 4. Snapshots of h (colors) and velocity (arrows) fields during the “dry” equatorial adjustment of zonally elongated negative anomaly of h at times t = 20, 40, 60,
and 80.

are performed in the domain [−100, 100] × [−10, 10] using a 1000
× 1000 uniform mesh. The evolution of h and velocity, shown in
Fig. 4, is fully consistent with that of Ref. 25: the initial distur-
bance generates a Kelvin wave rapidly moving to the right (east-
ward), and steepening at the rear, as it is a depression Kelvin wave, a
Rossby wave packet with dipolar structure, which is symmetric with
respect to the Equator, slowly moving to the left (westward) and
a stagnant inertia-gravity wave packet at the location of the initial
perturbation.

We then solve system (III) with Qs = 0.7, τ = 0.15, α = 0.1, and
the initial conditions (37) together with

Q(x, y, 0) ≡ Qs − 0.01, W(x, y, 0) ≡ 0. (38)

The evolution of h and velocity is presented in Fig. 5. Although
similar, Figs. 4 and 5 show significant differences. The pressure
minima in the Kelvin wave and in the Rossby wave are more pro-
nounced in the moist case, and there remains a quasi-permanent

FIG. 5. Same as in Fig. 4, but for “moist-convective” equatorial adjustment.
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FIG. 6. Same as in Fig. 5, but for the condensation C.

depression at the initial location. Both effects are due to the con-
densation, which is displayed in Fig. 6. Notice that while the Kelvin
wave drops out in the leading order under the Charney scaling of
Sec. II B 2, the Rossby waves remain, and their intensification is con-
sistent with (27). The condensation also produces a localized heat-
ing, which creates a persisting buoyancy anomaly, as can be seen in
Fig. 7.

In order to compare the adjustment of localized pressure and
(potential) temperature perturbations, we perform simulations with

the same initial conditions, but with b and h interchanged in (37),
that is, with flat h and Gaussian b. The corresponding evolution
of h with the velocity and b is presented in Figs. 8 and 9, respec-
tively. A comparison of the zonal cross sections of thickness along
the Equator, h(x, 0, 80), corresponding to the snapshots at time t = 80
from Figs. 4, 5, and 8 are presented in Fig. 10. As one can see, the
evolution of h is qualitatively similar to both “dry” and “moist-
convective” adjustments of the pressure anomaly of the same form
and amplitude in the Kelvin- and Rossby-wave sectors, while the

FIG. 7. Same as in Fig. 5, but for the buoyancy b.
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FIG. 8. Same as in Fig. 5, but for initially flat h and Gaussian b.

FIG. 9. Same as in Fig. 8, but for the buoyancy b.

FIG. 10. Zonal profiles of thickness at the Equator, h(x, 0), at t = 80 from the
simulations of Fig. 4 (continuous line), 5 (dashed line), and 8 (dashed-dotted line).

activity at the location of initial perturbation is totally different.
Figure 9 shows that the evolution of buoyancy is different, as the
initial negative anomaly is modified by the heating due to the con-
densation. This latter evolves, qualitatively, as in Fig. 6, but is much
weaker (not shown).

Let us finally comment on the changes in the results with the
change of the value of parameter γ. Instead of taking γ = 0, we
now consider γ = 0.45 and the initial data given by (37) and (38).
The results remain qualitatively the same, but we do observe certain
changes, as one can see in Fig. 11. Since there is no a priori pre-
ferred value of γ, an additional information is needed to fix it when
modeling a given process.
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FIG. 11. Snapshots of h (colors) and velocity (arrows) fields (left) and b (right) at t = 80(βRe)−1 for a simulation with γ = 0.45 (upper row) as compared with the solutions at
the same time presented in Figs. 5 and 7 (lower row) for γ = 0.

IV. SUMMARY AND DISCUSSION
The main purpose of the present paper was to introduce, in

a systematic way, the effects of moist convection in the thermal
rotating shallow water model along the lines announced in Ref. 3
and study the resulting mcTRSW model numerically using a robust
finite-volume scheme. As we have shown, the proposed model is
self-consistent and also has consistent and physically reasonable
asymptotic limits. The presented numerical examples show that the
mcTRSW model reproduces well the convection-coupled gravity
and equatorial waves and is ready for a future, more extensive, use.
The main advantage of this version of the shallow water model with
moist convection over the mcRSW equations, which already proved
to be useful, is a possibility of coupling the new model in a very sim-
ple, albeit systematic, way with the ocean via the relaxation to the
SST, which opens a range of new possibilities. The next step is an
extension of the model to two or three layers in order to include the
effects of baroclinicity. This work is in progress.

The mcTRSW model not only allows for a simplified but self-
consistent modeling of complex atmospheric phenomena, but can
also be used for testing the general circulation models (GCM), if
considered in the spherical geometry as well as data assimilation
schemes. In this context, we should mention that the TRSW model
was recently rediscovered yet another time in Ref. 32 by vertical
averaging of the Boussinesq equations in geometric coordinates and
using the absolute temperature as the thermodynamic variable. It
was supplied by a realistic precipitation scheme borrowed from
the atmospheric general circulation models, apparently without the
knowledge of the previous work,3 and successfully tested. Although
we prefer to limit ourselves by the most crude, simple, robust, and
numerically friendly parameterizations of condensation, moist con-
vection, and precipitation, this example shows that more elaborate
parameterizations of these phenomena are also possible within the

model. It should be pointed out that the advantage of our numerical
scheme with respect to the existing schemes for the TRSW model is
that it correctly resolves sharp fronts, which are ubiquitous, as we
have shown, and also maintains the equilibrium states. However, its
spherical version is not available yet.
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APPENDIX: A SKETCH OF THE NUMERICAL SCHEME
We briefly describe here the 2-D well-balanced central-upwind

scheme that was used in the numerical simulations presented in
Sec. III, to numerically solve the mcTRSW system (III).

In order to design a well-balanced central-upwind scheme for
(III), we follow Ref. 24 (also see Refs. 23 and 33–35) and use the flux
globalization approach by incorporating the Coriolis forces into the
following two global fluxes:

K = Q2

h
+
hB

2
−

x

∫ f (y)P(ξ, y)dξ,

L = P2

h
+
hB

2
+

y

∫ f (η)Q(x,η)dη.

(A1)

The system of balance laws (III) can be recast in the vector form as
follows:

U t + F(U , K)x + G(U , L)y = N(U), (A2)
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where

U ∶= (h, Q, P, B,Q,W)⊺,

F(U ,K) ∶= (Q, K,
QP

h
,
BQ

h
,
QQ

h
,
WQ

h
)
⊺

,

G(U , L) ∶= (P,
QP

h
, L,

BP

h
,
QP

h
,
WP

h
)
⊺

,

N ∶= (−1 − γ
B

hC, 0, 0, γC,−C + E,C)
⊺

.

(A3)

We then apply the semi-discrete Riemann-problem-solver-free
central-upwind scheme to (A1)–(A3),

d
dt

U j,k(t) = −
Fj+ 1

2 ,k(t) −Fj− 1
2 ,k(t)

Δx

−
Gj,k+ 1

2
(t) − Gj,k− 1

2
(t)

Δy
+ Nj,k(t),

where Ij,k ∶= [xj− 1
2
, xj+ 1

2
] × [yk− 1

2
, yk+ 1

2
] are the finite-volume cells of

size |Ij ,k| = ΔxΔy, U j,k(t) ≈ 1
∣Ij,k ∣∬Ij,k

U(x, y, t)dx dy are the computed
cell averages Fj+ 1

2 ,k(t) and Gj,k+ 1
2
(t) are the central-upwind fluxes

(developed in Refs. 24 and 36), computed using the reconstructed
point values ofU at the middle points of the corresponding cell sides:
(xj+ 1

2
, k) and (xj, yk+ 1

2
), and Nj,k(t) ≈ 1

∣Ij,k ∣∬Ij,k
N(U(x, y, t))dx dy.

The scheme is second order accurate provided the point values
are reconstructed using a piecewise linear approximation. In order
to ensure that the proposed scheme is well-balanced (in the sense
that it is capable of preserving certain QG equilibria), we use spe-
cial well-balanced reconstruction and evolution techniques. More
specifically, instead of reconstructing the conservative variables U ,
we reconstruct the equilibrium variables Q, P, B, K (in the x-
direction), L (in the y-direction), Q, and W to ensure that the recon-
struction is well-balanced; see Ref. 24 for details. In addition, we use
a numerical diffusion switch function to slightly modify the origi-
nal central-upwind numerical fluxes from Ref. 36 to guarantee the
well-balanced property of the evolution step; see Ref. 24 for details.

Notice that if the condensation (C) and evaporation (E) are
neglected, then system (36a)–(36d) reduces to the TRSW model, for
which the central-upwind scheme has been developed in Ref. 24. The
extension to the studied system (III) is quite straightforward. First,
the left-hand sides of Eqs. (36e) and (36f) have a similar form to
the left-hand side of Eq. (36a), and thus they can be treated simi-
larly. Second, the source terms are approximated using the midpoint
quadrature as follows:

Nj,k =
⎛
⎝
−1 − γ

Bj,k
hj,kCj,k, 0, 0, γCj,k,−Cj,k + Ej,k,Cj,k

⎞
⎠

⊺
,

where

Cj,k =
Qj,k −Qs

τ
H(Qj,k −Qs)

and

Ej,k =
α
hj,k

√
Q

2
j,k + P

2
j,k(Qs −Qj,k)H(Qs −Qj,k).
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