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Abstract

We construct new fifth-order alternative WENO (A-WENO) schemes for the Euler
equations of gas dynamics. The new scheme is based on the central-upwind Rankine-
Hugoniot (CURH) numerical flux, which has been recently proposed in [N. K. Garg,
A. Kurganov and Y. Liu, J. Comput. Phys., 428 (2021)] in the context of second-
order semi-discrete finite-volume methods. The CURH flux contains a smaller amount of
numerical dissipation compared with the adaptive diffusion central numerical flux, which
was also developed with the help of the discrete Rankine-Hugoniot conditions and used
in the A-WENO scheme recently introduced in [B. S. Wang, W. S. Don, N. K. Garg
and A. Kurganov, SIAM J. Sci. Comput., 42 (2020)]. As in that work, we here use
the fifth-order characteristic-wise WENO-Z interpolations to evaluate the fifth-order point
values required by the numerical fluxes. The resulting one- and two-dimensional schemes
are tested on a number of numerical examples, which clearly demonstrate that the new
schemes outperform the existing fifth-order A-WENO schemes without compromising the
robustness.

Key words: A-WENO schemes; central-upwind schemes; discrete Rankine-Hugoniot condi-
tions; numerical dissipation switch; local speeds of propagation; Euler equations of gas dynam-
ics.
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1 Introduction

This study is devoted to high-order finite-difference schemes for hyperbolic systems of conser-
vation laws, which in the one-dimensional (1-D) case read as

Ut + F (U)x = 0. (1.1)
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Here, x and t are spatial and temporal variables, respectively, U(x, t) ∈ RN is a vector of
conserved variables, and F is a flux function.

It is well-known that solutions of the system (1.1) may develop complicated structures in-
cluding shock waves, rarefactions, and contact discontinuities even for smooth initial data. It is
therefore not so easy to develop robust and highly accurate numerical methods for (1.1). Finite-
volume Godunov-type schemes provide a popular framework for development of such methods;
see, e.g., the monographs [6,9, 12,19]. Recall that in the framework of semi-discrete Godunov-
type schemes, the solution is represented in terms of its cell averages, which are evolved in time
with the help of the numerical fluxes, computed, in turn, using the reconstructed point values
of U at the both sides of the cell interfaces. The latter point-values are computed using a
global piecewise polynomial approximation, which is supposed to be made non-oscillatory with
the help of nonlinear limiters. Notice that second-order schemes employ second-order piecewise
linear reconstructions, while higher-order schemes have to utilize higher-degree polynomials,
whose oscillations are much harder to control, especially in the multidimensional case.

Also recall that upwind numerical fluxes are computed based on either the exact or ap-
proximate solution of the (generalized) Riemann problems, which might make the resulting
scheme quite complicated and computationally expensive; see, e.g., [1] and references therein.
Non-oscillatory central, and especially central-upwind (CU) numerical fluxes provide one with a
much simpler, more robust and yet very accurate alternative to the upwind fluxes. Unlike their
upwind counterparts, CU fluxes do not employ any (generalized) Riemann problem solver, they
only require the one-sided local speeds of propagation computed using upper/lower bounds on
the largest/smallest eigenvalues of the Jacobian ∂F /∂U . We refer the reader to [4, 14, 15, 17]
for the derivation of the second-order CU schemes; also see the review paper [13] and references
therein.

In general, CU numerical fluxes have larger amount of numerical dissipation (ND) compared
with the upwind numerical fluxes. Several attempts to reduce the ND present in the CU
fluxes have been made. In the recent work [4], we have utilized two different mechanisms to
further reduce the ND. First, we have followed [5,10,25,30] and used discrete Rankine-Hugoniot
conditions to more accurately estimate the one-sided local speeds of propagation. Second, in the
two-dimensional (2-D) case, we have implemented the ND switch recently introduced in [24],
and then modified in [15, 16]. The main idea of this switch is to locally reduce the influence
of the acoustic wave speeds in the directions tangent to the dominating direction of the fluid
flows in the neighborhoods of contact waves and shear layers. The resulting CU schemes were
called in [4] central-upwind Rankine-Hugoniot (CURH) schemes.

In this paper, we incorporate the CURH numerical fluxes into the alternative WENO (A-
WENO) finite-difference framework. A-WENO schemes, proposed in [11] (also, see [23]), em-
ploy standard finite-volume numerical fluxes, whose accuracy, in the context of finite-difference
schemes, is limited to the second order, while a high order is achieved using the flux Taylor ex-
pansion. A-WENO schemes have been typically implemented using the simplest Rusanov (local
Lax-Friedrichs) numerical flux (see [22,31]) or its lower ND extension recently proposed in [30].
Here, we use the CURH numerical flux together with the fifth-order characteristic-wise alterna-
tive WENO polynomial interpolation procedure with the Z-type weights (WENO-Z) [11,22,31],
which was also used in [2, 20, 30]. We briefly describe the new A-WENO schemes in §2, and
then test them in §3 on a number of challenging numerical examples for both 1-D and 2-D Euler
equations of gas dynamics. We demonstrate that the new schemes outperform the fifth-order
A-WENO schemes from [30] in capturing discontinuous solution (containing shocks and contact
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waves) in essentially non-oscillatory manner and resolving fine-scale structures in a high speed
shear instability flows.

2 Fifth-Order A-WENO Schemes: A Brief Description

We consider the 1-D system (1.1) on a certain interval covered with the uniform cells [xj− 1
2
, xj+ 1

2
]

of size ∆x centered at xj = (xj− 1
2

+ xj+ 1
2
)/2. Assuming that at a certain time t the point

values Uj(t) ≈ U(xj, t) are available (from now on we will omit the time dependence of all of
the indexed quantities for the sake of brevity). These point values are then evolved in time
according to the following semi-discretization:

d

dt
Uj = −

F j+ 1
2
−F j− 1

2

∆x
, (2.1)

where F j+ 1
2

are numerical fluxes, which will be fifth-order accurate (see [11, 22, 31]) if we use

the sixth-order accurate Taylor expansion of F(x) at x = xj+ 1
2

(see [29]), namely, if

F j+ 1
2

= F FV
j+ 1

2
− 1

24
(∆x)2(Fxx)j+ 1

2
+

7

5760
(∆x)4(Fxxxx)j+ 1

2
. (2.2)

Here, F FV
j+ 1

2
is the finite-volume numerical flux, taken to be the 1-D CURH numerical flux

from [4, §2], which is a function of the left- and right-sided point values of U at x = xj+ 1
2
.

These one-sided point values, denoted by U−
j+ 1

2

and U+
j+ 1

2

, respectively, are obtained using the

WENO polynomial interpolation procedure with the Z-type weights (WENO-Z), applied in a
characteristic-wise manner using the local characteristic decomposition [11,22,31]; also see the
description provided in [30, §2.1]. The approximations of the second and fourth derivatives
of the flux F on the right-hand side of (2.2) are computed using the standard central finite
differences:

(Fxx)j+ 1
2

=
1

48(∆x)2
(−5Fj−2 + 39Fj−1 − 34Fj − 34Fj+1 + 39Fj+2 − 5Fj+3) ,

(Fxxxx)j+ 1
2

=
1

2(∆x)4
(Fj−2 − 3Fj−1 + 2Fj + 2Fj+1 − 3Fj+2 + Fj+3) ,

(2.3)

where Fj := F (Uj).

Remark 2.1 The semi-discrete A-WENO scheme results in the system of time-dependent
ODEs (2.1), which should be integrated by a sufficiently accurate, efficient and stable ODE
solver. In the numerical experiments reported in §3, we have used the three stages third-order
strong stability preserving (SSP) Runge-Kutta method; see, e.g., [7, 8]. The time steps have
been chosen adaptively using the CFL number 0.45.

Remark 2.2 The proposed A-WENO scheme (2.1)–(2.3) can be extended to hyperbolic sys-
tems of balance laws,

Ut + F (U)x = S(U),
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in a straightforward way:

d

dt
Uj = −

F j+ 1
2
−F j− 1

2

∆x
+ S(Uj),

where the numerical fluxes F j+ 1
2

are still given by (2.2) and (2.3).

Remark 2.3 The 2-D extension of the described A-WENO scheme is performed in the dimension-
by-dimension manner. We use the ND switch and the 2-D CURH numerical fluxes for the 2-D
Euler equations of gas dynamics,

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0,

(ρv)t + (ρuv)x + (ρv2 + p)y = 0,

Et + [u(E + p)]x + [v(E + p)]y = 0.

(2.4)

are those presented in [4, §3]. In (2.4), ρ is the density, u and v are the x- and y-velocities,
respectively, p is the pressure, and E is the total energy related to the other thermodynamic
quantities through the equation of state, which for an ideal gas reads as

E =
p

γ − 1
+
ρ

2
(u2 + v2), (2.5)

where γ is the specific heat ratio.

3 Numerical Examples

In this section, we present a variety of 1-D and 2-D numerical examples. The numerical results
obtained by the proposed A-WENO schemes will be compared with the results computed by the
A-WENO scheme recently proposed in [30]. For the sake of brevity, we will refer to these two
schemes as the “NEW scheme” and the “OLD scheme”, respectively. Our goal is to demonstrate
that the NEW scheme leads to a higher resolution of contact waves, shear layers, vortices as
well as large-scale 2-D structures. In Examples 1–6, we take γ = 1.4, while in Example 7,
γ = 5/3.

3.1 One-Dimensional Examples

We first apply the NEW and OLD A-WENO schemes to the 1-D Euler equations of gas dy-
namics:

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,

Et + [u(E + p)]x = 0,

where ρ is the density, u is the velocity, p is the pressure, and E is the total energy satisfying
the following equation of states:

E =
p

γ − 1
+
ρu2

2
.
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We have tested many 1-D benchmark examples including the slowly moving isolated contact
discontinuity problem, the Lax problem, the shock-density wave interaction problem and the
blast wave problem. The obtained results (most of which are not reported here for the sake of
brevity) clearly indicate that the proposed NEW scheme is as robust as the OLD scheme. Since
the ND switch is built for the 2-D system of equations only, in most of the 1-D examples we
could not, as expected, observe any significant differences between the results computed by the
NEW and OLD schemes as the tangential component of the velocity does not exist in the 1-D
case. In Example 1 below, we present the computations for one specific example—the Blast
wave problem, in which the NEW scheme slightly outperforms the OLD one.

Example 1—Blast Wave Problem

In the first example, we consider the following initial conditions:

(ρ(x, 0), u(x, 0), p(x, 0)) =


(1, 0, 1000), x < 0.1,

(1, 0, 0.01), 0.1 ≥ x ≤ 0.9,

(1, 0, 100), x > 0.9,

which are prescribed on the interval [0, 1], at both ends of which the solid wall boundary
conditions are imposed. We compute the numerical solutions by both the NEW and OLD
schemes until the final time t = 0.038 on a uniform grid with ∆x = 1/400. The obtained
densities are presented in Figure 3.1. From the local magnification subplots, one can see that
the NEW scheme achieves a slightly better resolution than the OLD one.

3.2 Two-Dimensional Examples

We now turn to several 2-D examples for the compressible Euler equations (2.4) and (2.5).

Example 2—Double Mach Reflection

We first consider the double Mach reflection problem of a strong shock from an oblique surface,
which is taken from [32]; also studied in [30]. The computational domain is Ω = [0, 4] × [0, 1]
and the initial data are given by

(
ρ(x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0)

)
=

(8, 8.25 cos θ,−8.25 sin θ, 116.5), x <
1

6
+

y√
3
,

(1.4, 0, 0, 1), otherwise,

where θ = π/6. At x = 0 and at the short part of the lower boundary y = 0 in the interval
x ∈ [0, 1/6], supersonic inflow boundary conditions are specified. At x = 4, we impose the
free-stream outflow boundary conditions. In the remaining part of the lower boundary, we use
the solid wall boundary conditions, while at the upper boundary y = 1, the exact solution of
the Mach 10 moving oblique shock is imposed.

We compute the solutions until the final time t = 0.2 on the uniform grid with ∆x = ∆y =
1/480. The densities computed by the NEW and OLD schemes are shown in Figure 3.2. As
one can see, both the NEW and OLD schemes can capture the following phenomena. First, the
wall jet curl into a vortex occurs as the jet reaches the Mach stem. Furthermore, the shock that
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Figure 3.1: Example 1: Density (ρ) computed using both the NEW and OLD schemes (top left)
together with the zooms at three different regions (top right and bottom row). The reference
solution has been computed using the OLD scheme with ∆x = 1/3200.

joins the contact surface and transverse wave (making this a double Mach reflection) sharpens
and its triple point, the kink along the transverse wave, becomes much more distinguished.
Finally, the Kelvin-Helmholtz (KH) instabilities along the contact surface, which grow through
to the wall jet, are developed. It is clear that the NEW scheme captures these phenomena
much better than the OLD scheme. Moreover, from Figure 3.3, where we zoom at the local
structures at the tip of the jet, we can clearly see that the mushroom shape structures captured
by the NEW scheme are slightly more curlier than those computed by the OLD scheme.

Example 3—Two-Dimensional Riemann Problem

In this example, we consider Configuration 3 of the 2-D Riemann problems from [18]; see
also [26, 27,33]. The initial conditions,

(ρ(x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0)) =


(1.5, 0, 0, 1.5), x > 0.8, y > 0.8,

(0.5323, 1.206, 0, 0.3), x < 0.8, y > 0.8,

(0.138, 1.206, 1.206, 0.029), x < 0.8, y < 0.8,

(0.5323, 0, 1.206, 0.3), x > 0.8, y < 0.8,

are prescribed in the computational domain [0, 1]×[0, 1] and supplemented with the free bound-
ary conditions.

In Figure 3.4, we plot the densities computed by the NEW and OLD schemes on a uniform
grid with ∆x = ∆y = 1/400 at the final time t = 0.8. As one can see, the NEW scheme can
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Figure 3.2: Example 2: Density (ρ) computed by the NEW (top) and OLD (bottom) schemes.

Figure 3.3: Same as in Figure 3.2, but zoom at the tip of the jet.

better capture a sideband instability of the jet in the zones of strong along-jet velocity shear
and the instability along the jet’s neck.

Example 4—Explosion Problem

In this example, we consider the explosion problem taken from [21] and also studied in [4, 14,
15,17]. This is a circularly symmetric problem with an initial circular region of higher density
and pressure:

(
ρ(x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0)

)
=

{
(1, 0, 0, 1), x2 + y2 < 0.16,

(0.125, 0, 0, 0.1), otherwise.

In this problem, the contact line develops instabilities as it is sensitive to perturbations of the
initially circular interface represented by the discrete data on a Cartesian grid. Therefore, we
use this example to compare the ND of different schemes.
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Figure 3.4: Example 3: Density (ρ) computed by the NEW (left) and OLD (right) schemes.

We compute the solution in the first quadrant (x, y) ∈ [0, 1.5] × [0, 1.5] using the uniform
mesh with ∆x = ∆y = 3/800. Solid wall boundary conditions are imposed at x = 0 and y = 0,
while free boundary conditions are set at x = 1.5 and y = 1.5. The densities computed by both
the NEW and OLD schemes at the final time t = 3.2 are plotted in Figure 3.5. As expected, the
contact curve captured by the NEW scheme is much “curlier” and the mixing layer is slightly
“wider”, and thus the contact wave part of the solution is more unstable than that captured
by the OLD scheme. This indicates the lower ND of the NEW scheme as the contact curve is
supposed to be unstable and may be stabilized by the ND only.

Figure 3.5: Example 4: Density (ρ) computed by the NEW (left) and OLD (right) schemes.

Example 5—Implosion Problem

In this example, we consider the implosion problem, which is a converging shock problem, which
was studied in [4, 14, 15, 17, 21]. The computational domain is [0, 0.3] × [0, 0.3] and the initial
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conditions are(
ρ(x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0)

)
=

{
(0.125, 0, 0, 0.14), |x|+ |y| < 0.15,

(1, 0, 0, 1), otherwise,

so that the initial density and pressure are smaller inside the triangle than in the rest of
the computational domain. Solid wall boundary conditions are imposed on all of the four
boundaries.

We compute the solutions using both the NEW and OLD schemes until the final time t = 2.5
on the uniform mesh with ∆x = ∆y = 3/4000. The obtained ρ-components of the obtained
numerical solutions are plotted in Figure 3.6. As one can see, a jet has formed in the results
computed by both schemes. However, we observe that the jet generated by the NEW scheme
propagates further in the direction of y = x than the jet produced by the OLD one: This
indicates a lower amount of the ND present in the NEW scheme.

Figure 3.6: Example 5: Density (ρ) computed by the NEW (left) and OLD (right) schemes.

Example 6—Kelvin-Helmholtz (KH) instability

In this example, we study the KH instability, which frequently occurs in nature: two of its
manifestations are the so-called “wind-over-water” and “clear air turbulence” instabilities. The
KH instability is triggered by shear flows, often also involving fluids with different densities, and
grows exponentially until the primary billows break, subsequently leading to a turbulent mixing
of the two phases. In order to use the KH instability as a high-resolution test for the NEW
scheme’s capabilities of capturing small scale turbulent structures, we consider the following
initial conditions [3, 4, 15,24]:

(
ρ(x, y, 0), u(x, y, 0)

)
=



(
1,−0.5 + 0.5e(y+0.25)/L

)
, y ∈ [−0.5,−0.25),(

2, 0.5− 0.5e(−y−0.25)/L
)
, y ∈ [−0.25, 0),(

2, 0.5− 0.5e(y−0.25)/L
)
, y ∈ [0, 0.25),(

1,−0.5 + 0.5e(0.25−y)/L
)
, y ∈ [0.25, 0.5],

v(x, y, 0) = 0.01 sin(4πx), p(x, y, 0) ≡ 1.5,



10 B.-S. Wang, W. S. Don, A. Kurganov & Y. Liu

where L is a smoothing parameter (we take L = 0.00625), which corresponds to a thin shear
interface with a perturbed vertical velocity field v in the conducted simulations. We expect that
the difference between the initial fluid velocities across the interface will destabilize it. This
will lead to the formation of KH vortices along the interface.

The computational domain is [−0.5, 0.5] × [−0.5, 0.5]. We use a uniform grid with ∆x =
∆y = 1/400 and the periodic boundary conditions to compute the solutions by the NEW and
OLD schemes until the final time t = 4. The densities obtained at times t = 1, 2.5 and 4
are plotted in Figure 3.7. As one can see, at the early time t = 1, the vortex streets formed
by the NEW scheme are more pronounced. These structures continue growing exponentially
in time and the most obvious difference in the performance of the two studied schemes is in
the formation of “swirls”, much more complicated vortices and the turbulent mixing of the
two phases. This can be observed at later times t = 2.5 and 4, which confirms that the NEW
scheme can capture the KH instabilities better than the OLD one.

Example 7—Raleigh-Taylor (RT) Instability

In the final example, we investigate the RT instability, which is a physical phenomenon occurring
when a layer of heavier fluid is placed on top of a layer of lighter fluid. The RT instability
phenomenon is important in many natural and industrial systems, such as supernova explosions,
turbulent mixing and many others.

In order to study RT instabilities, we include a gravitational source term in the vertical
momentum and energy equations. Assuming that the gravitation acts upward in the y-direction
and setting the gravitational constant to be 1, we modify the 2-D Euler equations (2.4) as
follows:

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0,

(ρv)t + (ρuv)x + (ρv2 + p)y = ρ,

Et + [u(E + p)]x + [v(E + p)]y = ρv.

We use the setting from [28] (also see [4,15,30]) and consider the following initial conditions:

(
ρ(x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0)

)
=

{
(2, 0,−0.025 c cos(8πx), 2y + 1), y < 0.5,

(1, 0,−0.025 c cos(8πx), y + 1.5), otherwise,

where c :=
√
γp/ρ is the speed of sound. The computational domain is [0, 1/4] × [0, 1]. We

impose the solid wall boundary conditions at x = 0 and x = 1/4 and the Dirichlet boundary
conditions at the top and bottom boundaries,

(ρ, u, v, p)
∣∣∣
y=1
≡ (1, 0, 0, 2.5) and (ρ, u, v, p)

∣∣∣
y=0
≡ (2, 0, 0, 1),

respectively.
We compute the numerical solutions by both the NEW and OLD schemes until the final

time t = 2.95 using a uniform mesh with ∆x = ∆y = 1/800. In Figure 3.8, we plot the densities
obtained at times t = 1.95 and 2.95. Due to the gravity in the system, the fluid with a higher
density intruded into the fluid with a lower density. The initial velocity v(x, y, 0) is not 0, but a
cosine wave with small amplitude, which develops into a mushroom-like vortical structure due
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Figure 3.7: Example 6: Time snapshots of density (ρ) computed by the NEW (left column) and
OLD (right column) schemes at t = 1 (top row), t = 2.5 (middle row) and t = 4 (bottom row).

to the vorticity generation with a nonalignment of the pressure gradient and density gradient
(baroclinity) of a stratified fluid. The vortical structure in the simulation of the RT instability
later develops into narrow trails. At earlier time t = 1.95, from the results obtained by the
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NEW scheme, one can observe the appearance of two horn-like small structures at the top of
the mushroom-like shape. Meanwhile, we also see that two small mushroom-like structures
have been developed. At later time t = 2.95, the difference between the results obtained by the
NEW and OLD schemes is even more pronounced. We can clearly see that the NEW scheme
produces a more jellyfish-like structure, where the head of this “jellyfish” is extremely clear.
Moreover, the “tentacles” generated by the NEW scheme are more abundant. Therefore, we
conclude that the NEW scheme achieves a much better resolution of the complicated solution
structures, which again indicates that the NEW scheme is less dissipative than the OLD one.

Figure 3.8: Example 7: Density (ρ) computed by the NEW and OLD schemes at times t = 1.95
and 2.95.
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[12] D. Kröner, Numerical schemes for conservation laws, Wiley-Teubner Series Advances in
Numerical Mathematics, John Wiley & Sons Ltd., Chichester, 1997.

[13] A. Kurganov, Central schemes: a powerful black-box solver for nonlinear hyperbolic
PDEs, in Handbook of numerical methods for hyperbolic problems, vol. 17 of Handb.
Numer. Anal., Elsevier/North-Holland, Amsterdam, 2016, pp. 525–548.

[14] A. Kurganov and C.-T. Lin, On the reduction of numerical dissipation in central-
upwind schemes, Commun. Comput. Phys., 2 (2007), pp. 141–163.

[15] A. Kurganov, Y. Liu, and V. Zeitlin, Numerical dissipation switch for two-
dimensional central-upwind schemes. Submitted.

[16] , Thermal vs isothermal rotating shallow water equations: comparison of dynamical
processes in two models by simulations with a novel well-balanced central-upwind scheme,
Geophys. Astro. Fliud., (2020). To appear.

[17] A. Kurganov, M. Prugger, and T. Wu, Second-order fully discrete central-upwind
scheme for two-dimensional hyperbolic systems of conservation laws, SIAM J. Sci. Comput.,
39 (2017), pp. A947–A965.



14 B.-S. Wang, W. S. Don, A. Kurganov & Y. Liu

[18] A. Kurganov and E. Tadmor, Solution of two-dimensional riemann problems for gas
dynamics without Riemann problem solvers, Numer. Methods Partial Differential Equa-
tions, 18 (2002), pp. 584–608.

[19] R. J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge Texts in
Applied Mathematics, Cambridge University Press, Cambridge, 2002.

[20] P. Li, W. S. Don, and Z. Gao, High order well-balanced finite difference WENO
interpolation-based schemes for shallow water equations, Comput. & Fluids, 201 (2020),
p. 104476.

[21] R. Liska and B. Wendroff, Comparison of several difference schemes on 1D and 2D
test problems for the Euler equations, SIAM J. Sci. Comput., 25 (2003), pp. 995–1017.

[22] H. Liu, A numerical study of the performance of alternative weighted ENO methods
based on various numerical fluxes for conservation law, Appl. Math. Comput., 296 (2017),
pp. 182–197.

[23] H. Liu and J. Qiu, Finite difference Hermite WENO schemes for conservation laws, II:
An alternative approach, J. Sci. Comput., 66 (2016), pp. 598–624.

[24] J. Panuelos, J. Wadsley, and N. Kevlahan, Low shear diffusion central schemes
for particle methods, J. Comput. Phys., 414 (2020), p. 109454.

[25] S. V. Raghurama Rao and K. Balakrishna, An accurate shock capturing algorithm
with a relaxation system for hyperbolic conservation laws, in 16th AIAA Computational
Fluid Dynamics Conference, 2003, p. 4115.

[26] C. W. Schulz-Rinne, Classification of the Riemann problem for two-dimensional gas
dynamics, SIAM J. Math. Anal., 24 (1993), pp. 76–88.

[27] C. W. Schulz-Rinne, J. P. Collins, and H. M. Glaz, Numerical solution of the
Riemann problem for two-dimensional gas dynamics, SIAM J. Sci. Comput., 14 (1993),
pp. 1394–1394.

[28] J. Shi, Y.-T. Zhang, and C.-W. Shu, Resolution of high order WENO schemes for
complicated flow structures, J. Comput. Phys., 186 (2003), pp. 690–696.

[29] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-
capturing schemes, J. Comput. Phys., 77 (1988), pp. 439–471.

[30] B.-S. Wang, W. S. Don, N. K. Garg, and A. Kurganov, Fifth-order A-WENO
finite-difference schemes based on a new adaptive diffusion central numerical flux, SIAM
J. Sci. Comput., 42 (2020), pp. A3932–A3956.

[31] B.-S. Wang, P. Li, Z. Gao, and W. S. Don, An improved fifth order alternative
WENO-Z finite difference scheme for hyperbolic conservation laws, J. Comput. Phys., 374
(2018), pp. 469–477.

[32] P. Woodward and P. Colella, The numerical solution of two-dimensional fluid
flowwith strong shocks, J. Comput. Phys., 54 (1988), pp. 115–173.



A-WENO Central-Upwind Rankine-Hugoniot Schemes 15

[33] Y. Zheng, Systems of conservation laws, Progress in Nonlinear Differential Equations
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