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Abstract

We are interested in simulating gravitationally stratified atmospheric flows governed
by the compressible Euler equations in irregular domains. In such simulations, one of
the challenges arises when the computations are conducted on a Cartesian grid. The
use of regular rectangular grids that intersect with the irregular boundaries leads to
the generation of arbitrarily small and highly distorted computational cells adjacent
to the boundaries of the domain. The appearance of such cells may affect both the
stability and efficiency of the numerical method and therefore require special attention.

In order to overcome this difficulty, we introduce a structured quadrilateral mesh,
which is designed for the irregular domain at hand, and solve the studied atmospheric
flow equations using a second-order central-upwind scheme. In addition, the resulting
numerical method is developed to provide a well-balanced discretization of the under-
lying system. The latter is achieved by rewriting the governing equations in terms
of equilibrium variables representing perturbations of the physically relevant equilib-
rium. The proposed method is tested in a number of numerical experiments, including
the buoyant bubble rising and interacting with an (zeppelin) obstacle and the Lee
wave generation due to topography. The obtained numerical results demonstrate high
resolution and robustness of the proposed computational approach.
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1 Introduction

Gravitationally stratified flows in a compressible medium are widely used in atmospheric
models to predict weather and climate. These models are typically characterized as variants
of the compressible Euler equations with gravity. Here, we focus on studying the following
two-dimensional (2-D) system proposed in [14]:

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0,

(ρv)t + (ρvu)x + (ρv2 + p)y = −ρg,
(ρθ)t + (ρθu)x + (ρθv)y = 0,

(1.1)

where x and y are spatial variables, t is a time, ρ(x, y, t), u(x, y, t), v(x, y, t) and θ(x, y, t)
are the density, horizontal, vertical velocities and potential temperature, respectively, and g
is the acceleration due to gravity. The air flow is assumed to be an ideal gas satisfying the
equation of state:

p = (ρθ)γ, (1.2)

where p is the pressure and γ = 1.4 is the specific heat ratio.
Time-independent (steady-state or equilibrium) solutions of the system (1.1) play an

important role as many atmospheric phenomena are described by small perturbations of
the steady states. In particular, one of the physically relevant equilibria is the motionless
hydrostatic one:

u = v ≡ 0, px ≡ 0, py = −ρg. (1.3)

Capturing small perturbations of (1.3) numerically is a challenging task since at a large
scale or on a coarse grid the magnitude of such perturbations may be smaller than the
size of truncation errors. Obviously, the truncation errors may be reduced by refining the
computational mesh, but this would make the numerical simulations very inefficient or even
impractical. Therefore, the goal is to develop well-balanced numerical methods, which are
capable of preserving the underlying steady states exactly, that is, without any truncation
errors. Several well-balanced numerical methods capable of exactly preserving motionless
hydrostatic steady-states solutions have been proposed; see, e.g., [2,4,6,8,13–15,21,27] and
references therein.

Another challenge one faces while numerically solving the system (1.1), (1.2) is to capture
its solutions near irregular boundaries. Several techniques were proposed to address this
problem. In the older works, the terrain-following coordinate approach was widely used in
atmospheric simulations; see, e.g., [7, 23, 25]. It normalizes the vertical coordinate by the
fluid depth to incorporate the topography of domains into the studied models. However, this
approach typically leads to significant truncation errors near boundaries, especially when the
flow contains steep gradients; see, e.g., [12, 26]. Alternatively, one may use Cartesian-grid
based methods, which are relatively simple, but suffer from the appearance of arbitrarily
small and highly distorted cells adjacent to the boundaries of the domain. Such cut cells
may lead to stability and efficiency issues for numerical methods and therefore require special
techniques; see, e.g., [1,3,8,9,14,22] and references therein. Triangular, quadrilateral and cell-
vertex polygonal meshes can also be used to conduct simulations in domains with irregular
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boundaries. It should be observed that unstructured meshes with different polygons can
accurately represent irregular boundaries and thus provide with a flexible tool to handle
regions with steep topographic gradients.

In this paper, we develop a well-balanced method for the system (1.1), (1.2) in two steps.
We first rewrite the studied system in terms of the perturbation variables and thus ensure that
the resulting method is well-balanced. We then introduce a structured quadrilateral mesh,
which is specifically designed for every considered irregular domain. Finally, the rewritten
system is numerically integrated using the second-order semi-discrete central-upwind scheme,
which was introduced in [16, 17, 20] as a robust and highly accurate “black-box solver” for
general multidimensional system of hyperbolic conservation and balance laws (including the
compressible Euler equations with gravitation [4]) on Cartesian grids, and then extended to
structured and unstructured quadrilateral meshes in [18,19,24].

The paper is organized as follows. In §2, we introduce the perturbation variables and
use them to rewrite the system (1.1), (1.2) in the form suitable for the development of well-
balanced methods. We also briefly discuss the implementation of the second-order semi-
discrete central-upwind scheme on structured quadrilateral meshes for the rewritten system.
In §3, we show how to design appropriate quadrilateral meshes on three numerical examples
and demonstrate high resolution and robustness of the proposed numerical method.

2 Model Description and Numerical Method

In this section, we follow the idea introduced in [2] and achieve the well-balanced property of
proposed numerical method by rewriting the system (1.1), (1.2) in terms of the perturbation
variables. To this end, we first denote the steady-state solution (1.3) by ρs(y) and ps(y)
with the corresponding potential temperature θs(y) = [ps(y)]1/γ/ρs(y), and introduce the
perturbation variables ρ′, u′, v′ and θ′ so that

ρ = ρs + ρ′, u = u′, v = v′, θ = θs + θ′, p′ = [(ρs + ρ′)(θs + θ′)]
γ − ps. (2.1)

where p′ is obtained from the equation of state (1.2). We then rewrite the system (1.1) in
the following form: 

ρ′t + (ρu′)x + (ρv′)y = 0,

(ρu′)t + [ρ(u′)2 + p′]x + (ρu′v′) = 0,

(ρv′)t + (ρv′u′)x + [ρ(v′)2 + p′]y = −ρ′g,
(ρθ)t + (ρθu′)x + (ρθv′)y = 0.

(2.2)

The main advantage of the system (2.2) over its original counterpart (1.1) is that when
the solution is at the steady state, the perturbation variables vanish and this makes it
easy to design a well-balanced numerical method. In this paper, we use the second-order
semi-discrete central-upwind scheme as it is described in [19] with the only exception that
the piecewise linear reconstruction is now performed not for the conservative variables U :=
(ρ′, ρu′, ρv′, ρθ), but for the perturbation variables U ′ := (ρ′, u′, v′, θ′), which remain constant
(zero) at the steady state (1.3).

The central-upwind scheme can be briefly described as follows. Let us assume that
the computational domain is covered with a structured quadrilateral mesh consisting of
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), the center of mass (xj,k, yj,k), and area |Cj,k|. We also assume that the

computed cell averages,

U j,k(t) ≈
1

|Cj,k|

∫∫
Cj,k

U(x, y, t) dx dy.

are available at a certain time level t and we use them to approximate the corresponding
point values of U ′ at the center of mass of cell Cj,k:

ρ′j,k = ρ ′j,k, u′j,k =
(ρu ′)j,k
ρj,k

, v′j,k =
(ρv ′)j,k
ρj,k

, θ′j,k =
(ρθ ′)j,k
ρj,k

− θs(xj,k, yj,k).

Here, ρj,k = ρ ′j,k + ρs(xj,k, yj,k) and the dependence of the indexed quantities on t has been
omitted for the sake of brevity.

Equipped with the point values
{
U ′j,k

}
, we perform the piecewise linear reconstruction

from [19] for U ′ and then obtain all of the required point values of U using (2.1). The
obtained point values are, in turn, used to complete the construction of the second-order
semi-discrete central-upwind scheme; see [19, §2.2] for details. The resulting system of ODEs
is integrated in time using the three-stage third-order strong stability-preserving Runge-
Kutta (SSP-RK3) method; see, e.g., [10, 11].

Remark 2.1 Notice that the gravitational source term on the right-hand side of (2.2) van-
ishes at the steady state (1.3). Therefore, approximating its cell averages using the midpoint
rule leads to a well-balanced discretization.

3 Numerical Examples

In this section, we demonstrate the performance of the proposed well-balanced central-
upwind scheme on three numerical examples. In all of the experiments, we take the minmod
parameter ψ = 1.3; see [19, Equation (2.9)].

3.1 Example 1 (Convergence Test)

In the first example, we experimentally check the accuracy of the proposed method. We take
g = 1.

3.1.1 Problem Settings

We take a relatively simple computational domain
{

(x, y) : −1 ≤ x ≤ 1, 0.1(x+1) ≤ y ≤ 2
}

;
see Figure 3.1 (left).

The steady-state solution satisfying (1.3) and (1.2) is made of one layer atmosphere and
given by

θs(y) = ey/4, ps(y) =
(

1 +
8

7

(
e−y/4 − 1

) )7/2

, ρs(y) =
[ps(y)]5/7

θs(y)
.
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We introduce a small perturbation in the potential temperature only,

θ′(x, y, 0) = 0.01e−100(x2+(y−0.5)2),

while setting

u′(x, y, 0) = v′(x, y, 0) ≡ 0, ρ′(x, y, 0) ≡ 0, p′(x, y, 0) ≡ 0.

In addition, solid wall boundary conditions are applied on all of the four sides of the com-
putational domain.

Figure 3.1: Example 1: Computational domain (left) and structured quadrilateral mesh (right).

3.1.2 Mesh Generation

Structured quadrilateral mesh can be easily generated in this example by equally spacing left
and right boundaries for the horizontal distance and top and bottom boundaries for vertical
distances; see Figure 3.1 (right). Then, the constructed cell vertices are

xj+ 1
2
,k+ 1

2
= −1 +

2j

M
,

yj+ 1
2
,k+ 1

2
=

(
1− k

N

)
0.1
(
xj+ 1

2
, 1
2

+ 1
)

+
2k

N
,

j = 0, · · · ,M, k = 0, · · · , N.

3.1.3 Results

We measure the experimental convergence rates using the numerical solutions computed
with M = N for N = 50, 100, 200, 400 and 800 at time t = 0.1. The convergence rates are
calculated using the numerical solutions on successively refined grids. For example, let us
denote by ρN the density computed using the N ×N mesh. Then the estimated convergence
rate for the density field is

Rate ≈ log2

(
‖∆ρN/2‖1

‖∆ρN‖1

)
, ∆ρN := ‖ρN − ρN/2‖1.
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The corresponding convergence rates for the other fields can be obtained similarly.
The results of the mesh refinement study are reported in Table 3.1. As one can see, the

proposed method achieves the expected second order of accuracy.

N ∆ρN Rate ∆(ρu)N Rate ∆(ρv)N Rate ∆(ρθ)N Rate

100 0.9288E-4 – 0.9354E-5 – 0.1236E-4 – 0.5476E-4 –

200 0.2506E-4 1.89 0.3488E-5 1.42 0.0381E-4 1.70 0.1479E-4 1.89

400 0.0639E-4 1.97 0.0875E-5 2.00 0.0092E-4 2.05 0.0354E-4 2.06

800 0.0162E-4 1.98 0.0210E-5 2.06 0.0024E-4 1.96 0.0089E-4 1.99

Table 3.1: Example 1: Experimental convergence rates in the L1-norm.

3.2 Example 2 (Zeppelin Test)

In this test, we consider an example from [5,14], in which the hot air is propagating upward
and flows around a stationary suspended zeppelin. We take g = 1.14.

3.2.1 Problem Settings

We solve the studied atmospheric flow equations in a vertically stratified atmosphere with a
stationary elliptic obstacle suspended in the air. The computational domain is presented in
Figure 3.2. The boundary of the obstacle is given by

x2

`2
0

+
(y − 0.5)2

h2
0

=
1

4
,

where h0 = 0.333 is the height and `0 = 0.466 is the length of the zeppelin.
In order to minimize gravity wave reflection from the top of the domain, we use the

highlighted upper part of the computational domain as a sponge layer; see Figure 3.2. To
this end, we replace the computed solution at every stage of the SSP-RK3 method with the
following relaxed values:

U
relax

j,k = U
0

j,k +
1

1 + ∆t
10
ŷ

(
U j,k − U

0

j,k

)
,

where U
0

j,k are the initial data and ŷ := max
(
yj,k − 1, 0

)
is the distance from the center of

mass (xj,k, yj,k) of cell Cj,k to the non-sponge part of the computational domain.
In this example, the steady-state solution satisfying (1.3) and (1.2) is

θs(y) ≡ 1, ps(y) =
(

1− 2

7
gy
)7/2

, ρs(y) =
(

1− 2

7
gy
)5/2

.

We introduce the initial perturbations in the potential temperature and pressure so that

θ′(x, y, 0) = θB cos2
(πr

2

)
, p′(x, y, 0) = ps(y)

([
1 + θB cos2

(πr
2

)]7/5

− 1

)
, (3.1)
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Sponge Layer

−1 1
0

1

1.5

`0

h0

Figure 3.2: Example 2: Computational domain.

while setting

u′(x, y, 0) = v′(x, y, 0) ≡ 0, ρ′(x, y, 0) ≡ 0.

In (3.1), r = min
{

1
RB

√
(x− xB)2 + (y − yB)2, 1

}
, with RB = 0.15, (xB, yB) = (−0.23, 0.2)

and θB = 0.0333 being the radius, center and magnitude of the initial perturbation.

In addition, solid wall conditions are applied on the boundary of the zeppelin and on the
top and the bottom of the computational domain, while periodic boundary conditions are
implemented on the horizontal domain edges.

3.2.2 Mesh Generation

The structured quadrilateral mesh we have used in this example is presented in Figure 3.3.

This mesh is constructed as follows. We first consider the mesh in the non-sponge part
of the computational domain in [−1, 1]× [0, 1] and introduce the cell vertices there:{(

xj+ 1
2
,k+ 1

2
, yj+ 1

2
,k+ 1

2

)}
, j = −M, · · · ,M, k = −N, · · · , N.

Our goal is to make the generated mesh structured and avoid flat angles in the mesh cells.
The difficulty is related to the presence of the elliptic obstacle inside the domain, which we
split into several simpler parts using the following four symmetric points on the boundary
of the ellipse: (

x±M ′+ 1
2
,±N ′+ 1

2
, y±M ′+ 1

2
,±N ′+ 1

2

)
= (±`,±h+ 0.5),

where ` < `0/2 and h = h0

√
1
4
− `2

`20
; see Figure 3.3. We then consider the cell vertices

located below and above the zeppelin, that is, those vertices whose indices satisfy |j| ≤ M ′
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-1 1 

0 

1 

1.5

Figure 3.3: Example 2: Structured quadrilateral mesh.

and |k| ≥ N ′; see Figure 3.3. These cell vertices are given by

xj+ 1
2
,k+ 1

2
=

j`

M ′ , j = −M ′, · · · ,M ′,

yj+ 1
2
,k+ 1

2
=



N + k

N −N ′

1

2
− h0

√
1

4
−
x2
j+ 1

2
,k+ 1

2

`2
0

 , k = −N, · · · ,−N ′,

1− N − k
N −N ′

1

2
− h0

√
1

4
−
x2
j+ 1

2
,k+ 1

2

`2
0

 , k = N ′, · · · , N.

Similarly, the cell vertices located to the left and to the right of the zeppelin, that is, those
vertices whose indices satisfy |j| ≥M ′ and |k| ≤ N ′, are given by

yj+ 1
2
,k+ 1

2
=
kh

N ′
, k = −N ′, · · · , N ′,

xj+ 1
2
,k+ 1

2
=


j +M ′

M −M ′ −
M + j

M −M ′ · `0

√
1

4
−
y2
j+ 1

2
,k+ 1

2

h2
0

, j = −M, · · · ,−M ′,

j −M ′

M −M ′ +
M − j
M −M ′ · `0

√
1

4
−
y2
j+ 1

2
,k+ 1

2

h2
0

, j = M ′, · · · ,M ;

see Figure 3.3. Next, the cell vertices in the four corners of the non-sponge part of the
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computational domain, that is, those whose indices satisfy |j| > M ′ and |k| > N ′, are

xj+ 1
2
,k+ 1

2
=


j +M ′

M −M ′ − `
M + j

M −M ′ , j = −M, · · · ,−M ′ − 1,

j −M ′

M −M ′ + `
M − j
M −M ′ , j = M ′ + 1, · · · ,M,

yj+ 1
2
,k+ 1

2
=


N + k

N −N ′

(
1

2
− h
)
, k = −N, · · · ,−N ′ − 1,

1− N − k
N −N ′

(
1

2
− h
)
, k = N ′ + 1, · · · , N,

Finally, in the sponge layer [−1, 1]× [1, 1.5] we use a uniform mesh with

xj+ 1
2
,k+ 1

2
= xj+ 1

2
,N+ 1

2
, j = −M, · · · ,M,

yj+ 1
2
,k+ 1

2
= 1 +

k −N
2Ns

, k = N + 1, · · · , N +Ns.

In the numerical simulations reported in §3.2.3, we have used ` = 0.2. Notice that if ` is
chosen to be close to either 0 or `0/2, flat angles will appear in some of the cells, and this
may cause numerical oscillations.

3.2.3 Results

We first compute the solution using the constructed mesh with M = 400, N = 200, Ns = 50,
M ′ = 81 and N ′ = 35 until the final time t = 33.55 and plot the time snapshots of the
obtained potential temperature θ in Figure 3.4. At t = 0, the warm air circular area is
located below the left part of the zeppelin. As a result of buoyancy effects, warm air rises
and by the time t = 5.77 the warm air “bubble” touches the lower boundary of the zeppelin
and then splits into two parts, which move along the surface of the zeppelin in the opposite
directions. Later on, the left part of the “bubble” takes off the surface of the zeppelin, keeps
rising and further splits into smaller pieces, while the right-going part of the “bubble” keeps
sliding along the zeppelin. By the final time t = 33.55, the left part of the warm air spins
counter-clockwise, the middle part spins clockwise and reaches the absorption layer, and the
right part has detached from the zeppelin and started to rise and spin clockwise.

It should be observed that while the details of the warm air evolution are not the same
as in the computations reported in [14], we find that the results are qualitatively similar. In
order to further validate the proposed numerical method, we refine the mesh and compute
the solution at the same sequence of times, but using M = 800, N = 400, Ns = 100,
M ′ = 161 and N ′ = 69. The obtained results, plotted in Figure 3.5, clearly demonstrate
that the structure of the fine mesh solution is the same as the coarse mesh one, while, as
expected, more small features are now resolved.

3.3 Example 3 (Lee Waves)

In the final example taken from [5, 8, 14], we test the capability of the proposed numerical
method to accurately capture the Lee waves generated when gravitationally stratified flow
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Figure 3.4: Example 2: Potential temperature θ at different times.

passes a mountain. We take g = 1.14.

3.3.1 Problem Settings

The computational domain is

{(x, y) : −7.2 ≤ x ≤ 10.8, h(x) ≤ y ≤ 1.28} , h(x) =
h0a

2

x2 + a2
, (3.2)

where a = 1 and h0 = 0.06 represent the characteristic width and the height of the mountain.
We set the solid wall boundary conditions on the top and the bottom of the computational
domain, while the periodicity is imposed on the left and the right boundaries.

A sponge layer is implemented to avoid gravity wave reflection from top of the domain
and transmission across the horizontal boundaries. As illustrated in Figure 3.6, the sponge
width is 3 both on the left and on the right and its height is 0.63. In the sponge layer, we
follow [14] and replace the computed solution at every stage of the SSP-RK3 method with
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Figure 3.5: Same as Figure 3.4, but the results are computed using a finer mesh.

the following relaxed values:

U
relax

j,k = U
0

j,k +
1

1 + ∆t max
(
0.83x̂, 0.17ŷ

) (U j,k − U
0

j,k

)
,

where U
0

j,k are the initial data and x̂ and ŷ are the horizontal and vertical relative distances
from the center of mass (xj,k, yj,k) of cell Cj,k to the non-sponge part of the computational
domain, namely, x̂ := max

(
xj,k − 7.8,−4.2− xj,k, 0

)
and ŷ := max

(
yj,k − 0.65, 0

)
.

In this example, the steady-state solution satisfying (1.3) and (1.2) consists of two layers
of atmosphere (with two different Brunt-Väisälä frequency constants N` and Nu for the lower
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u0

Sponge Layer

−7.2 −4.2 0 7.8 10.8

Hd

0

0.65

1.28

Figure 3.6: Example 3: Computational domain.

and upper layers, respectively) separated at height Hd:

θs(y) =

{
eN

2
` y/g, y < Hd,

e[(N2
`−N

2
u)Hd+N2

uy]/g, y ≥ Hd,

ps(y) =


[
1− 2g2

7N2
`

(
1− e−N2

` y/g
)]7/2

, y < Hd,[
p

2/7
Hd
− 2g2

7N2
u
e−N

2
`Hd/g

(
1− e−N2

u(y−Hd)/g
)]7/2

, y ≥ Hd,

ρs(y) =
[ps(y)]5/7

θs(y)
,

where pHd
= lim

y→H−d
ps(y) =

[
1− 2g2

7N2
`

(
1− e−N2

`Hd/g
)]7/2

. Similarly to [8, 14], we will consider

three different combinations of parameters Hd, N` and Nu, given in Table 3.2.

Parameter Case (a) Case (b) Case (c)

Hd 0.1571 0.3142 0.3142

N` 0.6816 0.6816 0.3408

Nu 0.3408 0.3408 0.6816

Table 3.2: Lee-wave parameters.

We introduce the constant initial perturbation u′(x, y, 0) = 0.06816 in the horizontal
velocity, while setting v′(x, y, 0), ρ′(x, y, 0) and θ′(x, y, 0) to be zero.
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3.3.2 Mesh Generation

The structured quadrilateral mesh we have used in this example is presented in Figure 3.7.

-7.2 -4.2 7.8 10.8

0 

0.65

1.28

Figure 3.7: Example 3: Structured quadrilateral mesh.

This mesh is constructed as follows. We begin with the non-sponge part of the compu-
tational domain, which is

[xmin, xmax]× [h(x), ymax], xmin := −4.2, xmax := 7.8, ymax := 0.65,

where h(x) is defined in (3.2). The cell vertices in this part of the domain are given by

xj+ 1
2
,k+ 1

2
=
(

1− j

M

)
xmin +

j

M
xmax, j = 0, · · · ,M,

yj+ 1
2
,k+ 1

2
=
(

1− k

N

)
h
(
xj+ 1

2
,k+ 1

2

)
+
k

N
ymax, k = 0, · · · , N.

Within the sponge layer, we have

xj+ 1
2
,k+ 1

2
=


xmin +

j

Ms

Ls, j = −Ms, · · · ,−1,

xmax +
j −M
Ms

Ls, j = M + 1, · · · ,M +Ms,

yj+ 1
2
,k+ 1

2
=


yj+ 1

2
,k+ 1

2
=
(

1− k

N

)
h
(
xj+ 1

2
,k+ 1

2

)
+
k

N
ymax, k = 0, · · · , N,

ymax +
k −N
Ns

Hs, k = N + 1, · · · , N +Ns,

where Ls = 3 and Hs = 0.63.
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3.3.3 Results

We first compute the solution using the constructed mesh with M = 432, N = 132, Ms = 9
and Ns = 18 until the final time t = 293.4 and plot the obtained potential temperature
θ in Figure 3.8. In all three Cases (a), (b) and (c), the results qualitatively match those
reported in [5,8,14]. We have also added the contour lines corresponding to different values
of θ with the difference between adjacent contours being 0.01. As one can observe, in all
of the three cases the “density” of contours changes at about y = Hd. One can also see
more contours in the lower layer of atmosphere in Cases (a) and (b), while in Case (c) the
situation is opposite: there are less contours in the lower layer. The location where the rate
of potential temperature increase changes corresponds to the height of the interface between
the two layers. It also indicates the place where turbulence occurs, which provides a useful
information for practitioners studying the atmospheric dynamics. In addition, in Cases (a)
and (b), one can observe a sharp drop of potential temperature above the downhill part
(0 ≤ x ≤ 2). In Case (b), the occurrence of vertical oscillation of the perturbed air, which
can be observed at about x ∈ [1, 4], indicates the phenomenon of Lee waves. At the same
time, in Cases (a) and (c), no significant change in gravity waves on the right of the mountain
has been observed.

In order to further validate the proposed numerical method, we refine the mesh and
compute the solution at the same final time, but using M = 864, N = 264, Ms = 18 and
Ns = 36. The obtained results, plotted in Figure 3.9, clearly demonstrate that the structure
of the fine mesh solution is the same as the coarse mesh one, which experimentally indicates
the convergence of the method.

Acknowledgment: The work of A. Chertock was supported in part by NSF grants DMS-
1818684. The work of A. Kurganov was supported in part by NSFC grant 11771201 and
by the fund of the Guangdong Provincial Key Laboratory of Computational Science and
Material Design (No. 2019B030301001).

References

[1] M. Berger and C. Helzel, A simplified h-box method for embedded boundary grids,
SIAM J. Sci. Comput., 34 (2012), pp. A861–A888.

[2] N. Botta, R. Klein, S. Langenberg, and S. Lützenkirchen, Well balanced fi-
nite volume methods for nearly hydrostatic flows, J. Comput. Phys., 196 (2004), pp. 539–
565.

[3] P. T. Brady and D. Livescu, Foundations for high-order, conservative cut-cell meth-
ods: Stable discretizations on degenerate meshes, J. Comput. Phys., (2020), p. 109794.

[4] A. Chertock, S. Cui, A. Kurganov, c. N. Özcan, and E. Tadmor, Well-
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