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We study semi-discrete central-upwind schemes and develop a new technique that allows 
one to decrease the amount of numerical dissipation present in these schemes without 
compromising their robustness. The goal is achieved by obtaining more accurate estimates 
for the one-sided local speeds of propagation using the discrete Rankine-Hugoniot 
conditions. In the two-dimensional case, these estimates are further enhanced with the 
help of the numerical dissipation switch mechanism, which is automatically activated near 
contact discontinuities and shear layers. The resulting central-upwind Rankine-Hugoniot 
schemes are tested on a number of numerical examples for both the one- and two-
dimensional Euler equations of gas dynamics. The obtained results clearly demonstrate 
the superiority of the proposed method over the existing semi-discrete central-upwind 
schemes.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we focus on the numerical solutions of hyperbolic systems of conservation laws, which in one-dimensional 
(1-D) case read as

U t + F (U )x = 0, (1.1)

where x is a spatial variable, t is time, U (x, t) ∈RN is a vector of conserved variables, and F is a flux vector. It is well-known 
that solving (1.1) numerically can be a daunting task, as these systems may develop complicated nonsmooth structures 
including shock waves, rarefactions, and contact discontinuities even for sufficiently smooth initial data. It is therefore 
quite challenging to develop robust and highly accurate numerical methods to capture such features. In order to gain both 
robustness and accuracy, these methods must have a sufficient but not excessive amount of built-in numerical diffusion. 
Typically, finite-volume Godunov-type schemes provide a popular framework to achieve this goal; see, e.g., the monographs 
[7,12,15,25]. Here, we would like to recall that in the framework of Godunov-type schemes, the solution is represented in 
terms of its cell averages. They are used to obtain a global in space piecewise polynomial reconstruction, which is then 
evolved in time using the integral form of the studied system of conservation laws.
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Godunov-type schemes can be further divided into two major categories: upwind and central ones. The first stable upwind 
scheme is the Godunov scheme proposed in [8]. It is based on solving the Riemann problems at all of the cell interfaces at 
every time step. Higher-order finite-volume methods employ higher-order piecewise polynomial reconstructions. Therefore, 
in order to develop higher-order upwind methods one needs to (approximately) solve the generalized Riemann problems, 
which is a much more complicated task; see, e.g., [3] and references therein. On the other hand, in Godunov-type central 
schemes, no (generalized) Riemann problem solver is required for time evolution. This makes central schemes much simpler 
to apply to a wide variety of hyperbolic systems of conservation laws as “black-box” solvers; see, e.g., [16] and references 
therein. The simplest Godunov-type central scheme is the first-order staggered Lax-Friedrichs scheme whose order and 
hence resolution can be increased upon using proper piecewise polynomial reconstructions. This way the Nessyahu-Tadmor 
scheme [32], its higher-order [4,26,31,34] and multi-dimensional [1,2,14,27,28] extensions were derived.

Due to the staggered grid structure, staggered central schemes have quite a large amount of numerical dissipation, 
which can be reduced by utilizing the information about the one-sided local speeds of propagation. This was done in 
[20,22,23], where nonstaggered central-upwind (CU) schemes were developed. The CU schemes are not only more accurate 
but also more robust than the staggered ones, as the numerical diffusion coefficients in the CU schemes are not inversely 
proportional to the size of the time step; see [22] for detailed analysis. The CU schemes were further developed in [17,18,21], 
where a considerable amount of numerical dissipation present in the original CU schemes was removed.

The CU schemes, however, are still more dissipative than their upwind counterparts, particularly near contact discontinu-
ities. Here, we aim to further reduce the amount of numerical dissipation present in the CU schemes without compromising 
their robustness. In order to achieve this goal, we obtain more accurate estimates of one-sided local speeds of propagation 
and hence perform a more accurate time evolution of the computed solution. To this end, we implement the approach 
introduced in central Rankine-Hugoniot (R-H) schemes [6,13,35,41], in which the amount of numerical dissipation is con-
trolled mostly by the discrete R-H conditions near/at steady discontinuities. We call the resulting scheme central-upwind 
Rankine-Hugoniot (CURH) scheme. In the two-dimensional (2-D) case, we further reduce the amount of numerical dissipa-
tion by implementing the numerical dissipation switch mechanism recently introduced in [33], and then modified in [18,19]. 
The main idea of this mechanism is to locally reduce the influence of the acoustic wave speeds in the directions tangent to 
the dominating direction of the fluid flows near/at contact waves and shear layers.

The paper is organized as follows. We first briefly review the 1-D CU schemes in §2.1 and then derive the 1-D CURH 
scheme in §2.2. The 2-D numerical dissipation switch mechanism is reviewed in §3.1. It is then used to develop the 2-D 
CURH scheme in §3.2. Finally, we test the proposed CURH schemes and compare their performance with the previous ver-
sions of the CU schemes on several numerical examples for both 1-D (§4.1) and 2-D (§4.2) Euler equations of gas dynamics.

2. One-dimensional central-upwind Rankine-Hugoniot (CURH) scheme

In this section, we first present a brief overview of the CU schemes in §2.1 and then provide a detailed description on 
how to more accurately estimate the one-sided local speeds propagation near/at the contact waves. This would lead to the 
CURH scheme in §2.2.

2.1. The second-order semi-discrete central-upwind (CU) schemes: a brief overview

Here, a brief description of the second-order semi-discrete CU schemes for (1.1) from [17] is provided. Let us split the 
computational domain into the finite-volume cells C j := [x j− 1

2
, x j+ 1

2
], which, for the sake of brevity, are assumed to be 

uniform so that x j+ 1
2

− x j− 1
2

≡ �x for all j.

As in all finite-volume methods, the computed solution is realized in terms of its cell averages U j(t) ≈ 1
�x

´
C j

U (x, t) dx. 
They are assumed to be known at a given time t , and are then evolved in time according to the following semi-
discretization:

d

dt
U j = −

F j+ 1
2

−F j− 1
2

�x
. (2.1)

Here, F j+ 1
2

is the CU numerical flux which was originally derived in [20,22] and later modified in [17]:

F j+ 1
2

=
a+

j+ 1
2

F (U E
j ) − a−

j+ 1
2

F (U W
j+1)

a+
j+ 1

2
− a−

j+ 1
2

+
a+

j+ 1
2

a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

[
U W

j+1 − U E
j − δU j+ 1

2

]
. (2.2)

The built-in “anti-diffusion” term δU j+ 1
2

is given by

δU j+ 1
2

= minmod
(

U W
j+1 − U ∗

j+ 1
2
, U ∗

j+ 1
2

− U E
j

)
, (2.3)

where
2
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U ∗
j+ 1

2
=

a+
j+ 1

2
U W

j+1 − a−
j+ 1

2
U E

j −
{

F (U W
j+1) − F (U E

j )
}

a+
j+ 1

2
− a−

j+ 1
2

, (2.4)

and the minmod function, defined by

minmod(z1, z2, . . .) :=

⎧⎪⎨⎪⎩
min

k
{zk}, if zk > 0 ∀k,

max
k

{zk}, if zk < 0 ∀k,

0, otherwise,

(2.5)

is applied both here and in (2.7), (3.4) and (3.6) below in a componentwise manner.
In (2.2)–(2.4), U E

j and U W
j+1 stand for the respective point values of the piecewise linear reconstruction. In every cell, 

these values are given by

U E
j = U j + �x

2
(U x) j, U W

j = U j − �x

2
(U x) j, (2.6)

where the slopes (U x) j are to be computed using a nonlinear limiter to suppress oscillations. One can use, for instance, the 
generalized minmod limiter (see, e.g., [29,32,39,40]):

(U x) j = minmod

(
θ

U j − U j−1

�x
,

U j+1 − U j−1

2�x
, θ

U j+1 − U j

�x

)
, (2.7)

where θ ∈ [1, 2] is a tuning parameter which helps to control the sharpness of the resulting reconstruction. A use of larger 
θ typically leads to less diffusive but (slightly) more oscillatory scheme.

Finally, a±
j+ 1

2
are the one-sided local propagation speeds, which can be estimated, for example, by

a+
j+ 1

2
= max

{
λN

(
∂ F

∂U

(
U W

j+1

))
, λN

(
∂ F

∂U

(
U E

j

))
, 0

}
,

a−
j+ 1

2
= min

{
λ1

(
∂ F

∂U

(
U W

j+1

))
, λ1

(
∂ F

∂U

(
U E

j

))
, 0

}
.

(2.8)

Here, λ1 ≤ λ2 ≤ . . . ≤ λN are the N eigenvalues of the flux Jacobian ∂ F
∂U .

Remark 2.1. We would like to point out that the upper/lower bounds on the local speeds of propagation given in (2.8) may 
be inaccurate; see, for instance, [11]. However, in the numerical results reported in §4, we have used the straightforward 
estimates (2.8), and this did not lead to any numerical instabilities.

2.2. A sharper estimate on one-sided local speeds of propagation

In this section, we derive a new CURH scheme. Recall that in (2.8), the one-sided local propagation speeds (a±
j+ 1

2
) are 

estimated using the largest and smallest eigenvalues of the Jacobian, which makes CU schemes quite robust. These estimates, 
however, are not sharp and can be significantly improved especially in the cases when the data at x = x j+ 1

2
correspond to 

an isolated discontinuity. In the later case, the speeds can be accurately measured using the R-H conditions, which read as

�F j+ 1
2

= s j+ 1
2
�U j+ 1

2
, (2.9)

where �F j+ 1
2

:= F (U +
j+ 1

2
) − F (U −

j+ 1
2
) and �U j+ 1

2
:= U +

j+ 1
2
−U −

j+ 1
2

. However, (2.9) is not true for general data. We therefore 
define the following quantities:

s(i)
j+ 1

2
:=

�F (i)
j+ 1

2

�U (i)
j+ 1

2

, i = 1, . . . , N. (2.10)

Here, we use a component notation �U j+ 1
2

= (
�U (1)

j+ 1
2
, . . . , �U (N)

j+ 1
2

)�
and likewise for other vector quantities. We note that 

�U (i)
j+ 1

2
can be equal to zero and we thus desingularize (2.10) by introducing

ŝ (i)
j+ 1

2
=

2�F (i)
j+ 1

2

�U (i)
1 + �U (i),ε

1

,

j+ 2 j+ 2

3
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where

�U (i),ε
j+ 1

2
=

⎧⎪⎪⎨⎪⎪⎩
max

{
�U (i)

j+ 1
2
, ε

}
, if �U (i)

j+ 1
2

> 0,

min

{
�U (i)

j+ 1
2
,−ε

}
, otherwise.

In the numerical examples presented in §4, we have used ε = 10−10. In order to estimate the local speeds of propagation, 
we introduce the largest and the smallest R-H quantities:

smax
j+ 1

2
= max

1≤i≤N

{̂
s (i)

j+ 1
2

}
and smin

j+ 1
2

= min
1≤i≤N

{̂
s (i)

j+ 1
2

}
.

We then improve the estimate (2.8) according to the following algorithm.

Algorithm 2.1.

Step 1. Compute a±
j+ 1

2
using (2.8).

Step 2. If smax
j+ 1

2
> ε, then set

a+
j+ 1

2
= min

{
a+

j+ 1
2
, smax

j+ 1
2

}
and a−

j+ 1
2

= max

{
a−

j+ 1
2
,−smax

j+ 1
2

}
.

Step 3. If smin
j+ 1

2
< −ε, then set

a+
j+ 1

2
= min

{
a+

j+ 1
2
,−smin

j+ 1
2

}
and a−

j+ 1
2

= max

{
a−

j+ 1
2
, smin

j+ 1
2

}
.

Remark 2.2. The semi-discrete CURH scheme results in a system of time-dependent ODEs (2.1), which should be integrated 
by a sufficiently accurate, efficient, and stable ODE solver. In the numerical experiments reported in §4, the three stage 
third-order strong stability preserving (SSP) Runge-Kutta method (see, e.g., [9,10]) has been used together with an adaptive 
time step, which is computed at every time level as follows:

�t ≤ �x

2amax
, amax := max

j

[
max

{
a+

j+ 1
2
,−a−

j+ 1
2

}]
.

3. Two-dimensional central-upwind Rankine-Hugoniot (CURH) scheme

In the 2-D case, we take the CU scheme from [17] and then improve it by obtaining sharper estimates on the one-sided 
local speeds of propagation.

We first introduce 2-D hyperbolic systems of conservation laws written as

U t + F (U )x + G(U )y = 0, (3.1)

where x and y are spatial variables, t is time, U (x, y, t) ∈ RN is the vector of unknown quantities, and F and G are 
the x- and y-fluxes, respectively. We first divide the computational domain into a set of uniform Cartesian cells C j,k :=
[x j− 1

2
, x j+ 1

2
] ×[yk− 1

2
, yk+ 1

2
] with x j+ 1

2
− x j− 1

2
≡ �x and yk+ 1

2
− yk− 1

2
≡ �y for all j, k. As in all finite-volume methods, the 

computed solution is realized in terms of its cell averages U j,k ≈ 1
�x�y

˜
C j,k

U (x, y, t) dx dy. They are assumed to be known 
at a given time t , and are then evolved in time according to the following semi-discretization:

d

dt
U j,k = −

F j+ 1
2 ,k −F j− 1

2 ,k

�x
−

G j,k+ 1
2

−G j,k− 1
2

�y
. (3.2)

Here, F j+ 1
2 ,k and G j,k+ 1

2
are the CU numerical fluxes taken from [17]:

F j+ 1
2 ,k =

a+
j+ 1

2 ,k
F (U E

j,k) − a−
j+ 1

2 ,k
F (U W

j+1,k)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+

j+ 1
2 ,k

a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[
U W

j+1,k − U E
j,k − δU j+ 1

2 ,k

]
,

G j,k+ 1
2

=
b+

j,k+ 1
2

G(U N
j,k) − b−

j,k+ 1
2

G(U S
j,k+1)

b+
1 − b−

1

+
b+

j,k+ 1
2

b−
j,k+ 1

2

b+
1 − b−

1

[
U S

j,k+1 − U N
j,k − δU j,k+ 1

2

]
.

(3.3)
j,k+ 2 j,k+ 2 j,k+ 2 j,k+ 2

4
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The built-in “anti-diffusion” terms δU j+ 1
2 ,k and δU j,k+ 1

2
are given by

δU j+ 1
2 ,k = minmod

(
U SW

j+1,k − U ∗
j+ 1

2 ,k
, U ∗

j+ 1
2 ,k

− U SE
j,k, U NW

j+1,k − U ∗
j+ 1

2 ,k
, U ∗

j+ 1
2 ,k

− U NE
j,k

)
,

δU j,k+ 1
2

= minmod
(

U SW
j,k+1 − U ∗

j,k+ 1
2
, U ∗

j,k+ 1
2

− U NW
j,k , U SE

j,k+1 − U ∗
j,k+ 1

2
, U ∗

j,k+ 1
2

− U NE
j,k

)
,

(3.4)

where

U ∗
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
U W

j+1,k − a−
j+ 1

2 ,k
U E

j,k −
{

F (U W
j+1,k) − F (U E

j,k)
}

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

,

U ∗
j,k+ 1

2
=

b+
j,k+ 1

2
U S

j,k+1 − b−
j,k+ 1

2
U N

j,k −
{

G(U S
j,k+1) − G(U N

j,k)
}

b+
j,k+ 1

2
− b−

j,k+ 1
2

.

(3.5)

In (3.2)–(3.5), the corresponding point values of U are

U E
j,k = U j,k + �x

2
(U x) j,k, U W

j,k = U j,k − �x

2
(U x) j,k,

U N
j,k = U j,k + �y

2
(U y) j,k, U S

j,k = U j,k − �y

2
(U y) j,k,

U NE
j,k = U j,k + �x

2
(U x) j,k + �y

2
(U y) j,k, U NW

j,k = U j,k − �x

2
(U x) j,k + �y

2
(U y) j,k,

U SE
j,k = U j,k + �x

2
(U x) j,k − �y

2
(U y) j,k, U SW

j,k = U j,k − �x

2
(U x) j,k − �y

2
(U y) j,k.

The slopes (U x) j,k and (U y) j,k are to be computed using a nonlinear limiter to reduce spurious oscillations. As in the 1-D 
case, we have used the generalized minmod limiter:

(U x) j,k = minmod

(
θ

U j,k − U j−1,k

�x
,

U j+1,k − U j−1,k

2�x
, θ

U j+1,k − U j,k

�x

)
,

(U y) j,k = minmod

(
θ

U j,k − U j,k−1

�y
,

U j,k+1 − U j,k−1

2�y
, θ

U j,k+1 − U j,k

�y

)
,

θ ∈ [1,2]. (3.6)

Finally, a±
j+ 1

2 ,k
and b±

j,k+ 1
2

are the one-sided local speeds of propagations in x- and y-directions respectively. In [17], they 
were estimated by

a+
j+ 1

2 ,k
= max

{
λN

(
∂ F

∂U

(
U W

j+1,k

))
, λN

(
∂ F

∂U

(
U E

j,k

))
, 0

}
,

a−
j+ 1

2 ,k
= min

{
λ1

(
∂ F

∂U

(
U W

j+1,k

))
, λ1

(
∂ F

∂U

(
U E

j,k

))
, 0

}
,

b+
j,k+ 1

2
= max

{
λN

(
∂G

∂U

(
U S

j,k+1

))
, λN

(
∂G

∂U

(
U N

j,k

))
, 0

}
,

b−
j,k+ 1

2
= min

{
λ1

(
∂G

∂U

(
U S

j,k+1

))
, λ1

(
∂G

∂U

(
U N

j,k

))
, 0

}
.

(3.7)

Here, λ1 ≤ . . . ≤ λN are the N eigenvalues of the corresponding Jacobians ∂ F
∂U and ∂G

∂U .

3.1. Numerical dissipation switch mechanism

In the recent papers [18,19], the amount of numerical dissipation present in 2-D CU schemes was locally reduced by 
using the numerical dissipation switch mechanism. The switch applies in the areas of contact lines and shear layers. We will 
briefly describe the switch for the Euler equations of gas dynamics which was developed in [18]. The 2-D Euler equations 
of gas dynamics read as
5
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ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0,

(ρv)t + (ρuv)x + (ρv2 + p)y = 0,

Et + [u(E + p)]x + [v(E + p)]y = 0.

(3.8)

Here, ρ is the density, u and v are the x- and y-velocities, p is the pressure, and E is the total energy which, in the case of 
ideal gas, is related to the other thermodynamical quantities through the following equation of states:

E = p

γ − 1
+ ρ

2

(
u2 + v2

)
,

where γ is the specific heat ratio.
Notice that for the system (3.8), the equations in (3.7) read as

a+
j+ 1

2 ,k
= max

{
uE

j,k + cE
j,k, uW

j+1,k + cW
j+1,k, 0

}
,

a−
j+ 1

2 ,k
= min

{
uE

j,k − cE
j,k, uW

j+1,k − cW
j+1,k, 0

}
,

b+
j,k+ 1

2
= max

{
vN

j,k + cN
j,k, vS

j,k+1 + cS
j,k+1, 0

}
,

b−
j,k+ 1

2
= min

{
vN

j,k − cN
j,k, vS

j,k+1 − cS
j,k+1, 0

}
,

(3.9)

where c := √
γ p/ρ is the speed of sound, and

uE
j,k = (ρu)E

j,k

ρ E
j,k

, uW
j+1,k = (ρu)W

j+1,k

ρ W
j+1,k

, uN
j,k = (ρu)N

j,k

ρ N
j,k

, uS
j,k+1 = (ρu)S

j,k+1

ρ S
j,k+1

,

vE
j,k = (ρv)E

j,k

ρ E
j,k

, vW
j+1,k = (ρv)W

j+1,k

ρ W
j+1,k

, vN
j,k = (ρv)N

j,k

ρ N
j,k

, vS
j,k+1 = (ρv)S

j,k+1

ρ S
j,k+1

,

pE
j,k = (γ − 1)

[
E

E
j,k − ρ E

j,k

2

((
uE

j,k

)2 + (
vE

j,k

)2
)]

,

pW
j+1,k = (γ − 1)

[
E

W
j+1,k − ρ W

j+1,k

2

((
uW

j+1,k

)2 + (
vW

j+1,k

)2
)]

,

pN
j,k = (γ − 1)

[
E

N
j,k − ρ N

j,k

2

((
uN

j,k

)2 + (
vN

j,k

)2
)]

,

pS
j,k+1 = (γ − 1)

[
E

S
j,k+1 − ρ S

j,k+1

2

((
uS

j,k+1

)2 + (
vS

j,k+1

)2
)]

,

cE
j,k =

√√√√γ pE
j,k

ρ E
j,k

, cW
j+1,k =

√√√√γ pW
j+1,k

ρ W
j+1,k

, cN
j,k =

√√√√γ pN
j,k

ρ N
j,k

, cS
j,k+1 =

√√√√γ pS
j,k+1

ρ S
j,k+1

.

The main idea of the numerical dissipation switch is to reduce the local propagation speeds in the areas where the so-
lution is near/at contact waves and shear layers. To this end, we replace (3.9) with the following modified local propagation 
speeds:

a+
j+ 1

2 ,k
= max

{
uE

j,k + α j+ 1
2 ,kcE

j,k, uW
j+1,k + α j+ 1

2 ,kcW
j+1,k, 0

}
,

a−
j+ 1

2 ,k
= min

{
uE

j,k − α j+ 1
2 ,kcE

j,k, uW
j+1,k − α j+ 1

2 ,kcW
j+1,k, 0

}
,

b+
j,k+ 1

2
= max

{
vN

j,k + β j,k+ 1
2

cN
j,k, vS

j,k+1 + β j,k+ 1
2

cS
j,k+1, 0

}
,

b−
j,k+ 1

2
= min

{
vN

j,k − β j,k+ 1
2

cN
j,k, vS

j,k+1 − β j,k+ 1
2

cS
j,k+1, 0

}
,

(3.10)

where both α 1 and β 1 are given by (see [18])
j+ 2 ,k j,k+ 2

6
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α j+ 1
2 ,k =

⎧⎪⎪⎨⎪⎪⎩
�α

(1)

j+ 1
2 ,k

�α j+ 1
2 ,k

, if �α j+ 1
2 ,k > ε,

0, otherwise,

where

�α
(1)

j+ 1
2 ,k

=
∣∣∣∣∣ pW

j+1,k − pE
j,k

γ − 1
+ ρW

j+1,k(uW
j+1,k)

2 − ρE
j,k(uE

j,k)
2

2

∣∣∣∣∣ ,
�α

(2)

j+ 1
2 ,k

=
∣∣∣∣∣ρ

W
j+1,k(vW

j+1,k)
2 − ρE

j,k(vE
j,k)

2

2

∣∣∣∣∣ , �α j+ 1
2 ,k =

√(
�α

(1)

j+ 1
2 ,k

)2

+
(

�α
(2)

j+ 1
2 ,k

)2

,

and

β j,k+ 1
2

=

⎧⎪⎪⎨⎪⎪⎩
�β

(1)

j,k+ 1
2

�β j,k+ 1
2

, if �β j,k+ 1
2

> ε,

0, otherwise,

where

�β
(1)

j,k+ 1
2

=
∣∣∣∣∣ pS

j,k+1 − pN
j,k

γ − 1
+ ρS

j,k+1(vS
j,k+1)

2 − ρN
j,k(vN

j,k)
2

2

∣∣∣∣∣ ,
�β

(2)

j,k+ 1
2

=
∣∣∣∣∣ρ

S
j,k+1(uS

j,k+1)
2 − ρN

j,k(uN
j,k)

2

2

∣∣∣∣∣ , �β j,k+ 1
2

=
√(

�β
(1)

j,k+ 1
2

)2

+
(

�β
(2)

j,k+ 1
2

)2

,

respectively. Here, ε is a small positive number needed to avoid division by zero. We have taken ε = 10−10 in the numerical 
examples reported in §4.

3.2. A sharper estimate on one-sided local speeds of propagation

We now follow the 1-D R-H approach developed in §2.2 and apply it to a±
j+ 1

2 ,k
and b±

j,k+ 1
2

given by (3.10). We begin 
with the x-directional flux F and introduce

ŝ (i)
j+ 1

2 ,k
=

2�F (i)
j+ 1

2 ,k

�U (i)
j+ 1

2 ,k
+ �U (i),ε

j+ 1
2 ,k

, i = 1, . . . , N,

where

�U (i),ε
j+ 1

2 ,k
=

⎧⎪⎪⎨⎪⎪⎩
max

{
�U (i)

j+ 1
2 ,k

, ε

}
, if �U (i)

j+ 1
2 ,k

> 0,

min

{
�U (i)

j+ 1
2 ,k

,−ε

}
, otherwise.

Then, the largest and the smallest local R-H quantities are

smax
j+ 1

2 ,k
= max

1≤i≤N

{̂
s (i)

j+ 1
2 ,k

}
and smin

j+ 1
2 ,k

= min
1≤i≤N

{̂
s (i)

j+ 1
2 ,k

}
.

Finally, the improved estimates of the x-directional one-sided local propagation speeds are obtained according to the fol-
lowing algorithm.

Algorithm 3.1.

Step 1. Compute a±
j+ 1

2 ,k
using (3.10).

Step 2. If smax
j+ 1

2 ,k
> ε, then set

a+
j+ 1 ,k

= min

{
a+

j+ 1 ,k
, smax

j+ 1 ,k

}
and a−

j+ 1 ,k
= max

{
a−

j+ 1 ,k
,−smax

j+ 1 ,k

}
.

2 2 2 2 2 2

7
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Step 3. If smin
j+ 1

2 ,k
< −ε, then set

a+
j+ 1

2 ,k
= min

{
a+

j+ 1
2 ,k

,−smin
j+ 1

2 ,k

}
and a−

j+ 1
2 ,k

= max

{
a+

j+ 1
2 ,k

, smin
j+ 1

2 ,k

}
.

Remark 3.1. We have applied the above approach to improve the estimate (3.10) on the one-sided local speeds of propa-
gation. It can be applied to the original estimate (3.7) (or (3.9) in the case of the 2-D Euler equations of gas dynamics) as 
well.

An improved estimate of the y-directional one-sided local speeds of propagation (b±
j,k+ 1

2
) can be obtained in a similar 

manner.

Remark 3.2. As in the 1-D case, the 2-D semi-discrete CURH scheme results in a system of time-dependent ODEs (3.2), 
which we have integrated using the same three stage third-order SSP Runge-Kutta method. The time steps have been 
selected adaptively using the following CFL-type condition:

�t ≤ 1

2
min

{
�x

amax
,

�y

bmax

}
,

where

amax := max
j,k

[
max

{
a+

j+ 1
2 ,k

,−a−
j+ 1

2 ,k

}]
, bmax := max

j,k

[
max

{
b+

j,k+ 1
2
,−b−

j,k+ 1
2

}]
.

4. Numerical examples

In this section, we present various 1-D and 2-D numerical examples. Our main objective is to demonstrate that the R-H 
based CU schemes developed in §2 and §3 lead to the higher resolution of contact and shock waves, shear layers, vortices 
as well as large-scale 2-D structures. In Examples 1–7, the ratio of specific heats is taken to be γ = 1.4, while in Example 8, 
we take γ = 5/3. In all of the examples, we have used the CFL number 0.45.

4.1. One-dimensional examples

We consider the 1-D Euler equations of gas dynamics:

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,

Et + [u(E + p)]x = 0,

where, as in the 2-D case, ρ is the density, u is the velocity, p is the pressure, and E is the total energy, which is related to 
the other thermodynamical quantities through the equation of states:

E = p

γ − 1
+ ρu2

2
.

In all of the 1-D numerical examples, we will use the Riemann initial data on the computational domain [0, 1] subject 
to free (zero-order extrapolation) boundary conditions. We have tested the CURH scheme on a wide variety of Riemann 
problems, and the obtained results (most of which are not reported here for the sake of brevity) clearly indicate that the 
proposed CURH scheme is as robust as the original CU scheme. In Examples 1 and 2 below, we show the computations of 
some specific Riemann problems for which the CURH scheme exhibits improved results compared to the CU scheme.

Example 1 (Slowly moving isolated contact discontinuity). In the first example, the following initial conditions are taken:

(ρ(x,0), u(x,0), p(x,0)) =
{

(1.4,0.1,1), x < 0.3,

(1.0,0.1,1), x > 0.3.

This example is useful for assessing the isolated contact capturing ability of numerical schemes.
We compute the CURH and CU solutions until the final time t = 2 on a uniform grid with �x = 1/100. We first test the 

first-order versions of both schemes, which are obtained by setting (U x) j ≡ 0 in (2.6). The obtained densities are presented 
in Fig. 4.1, where one can see that the first-order CURH scheme clearly outperforms the first-order CU scheme. We then 
test the corresponding second-order schemes and show the obtained results in Fig. 4.2. As expected, the CURH achieves a 
slightly better resolution of the isolated contact wave even though the difference is not as pronounced as in the first-order 
case.
8



N.K. Garg, A. Kurganov and Y. Liu Journal of Computational Physics 428 (2021) 110078
Fig. 4.1. Example 1: Density (ρ) computed using both the CURH and CU first-order schemes.

Fig. 4.2. Example 1: Density (ρ) computed by both the CURH and CU second-order schemes (left) and zoom at the contact discontinuity area (right).

Fig. 4.3. Example 2: Density (ρ) computed by both the CURH and CU first-order schemes (left) and zoom at the contact discontinuity area (right).

Example 2 (Stationary contact wave and traveling shock and rarefaction). In this example taken from [17], the initial data are

(ρ(x,0), u(x,0), p(x,0)) =
{

(1,−19.59745,1000), x < 0.8,

(1,−19.59745,0.01), x > 0.8.

The exact solution of this initial-value problem consists of a stationary contact wave, a traveling shock, and a traveling 
rarefaction wave. We compute the CURH and CU solutions until the final time t = 0.012 on a uniform grid with �x = 1/200. 
As in Example 1, we first test the first-order versions of the schemes and present the obtained results in Fig. 4.3. As one 
can see, the first-order CURH scheme outperforms the first-order CU scheme, while the second-order CURH results are only 
slightly better than the second-order CU results; see in Fig. 4.4.

4.2. Two-dimensional examples

In the 2-D examples, we test the proposed CURH scheme and compare its performance with the original CU scheme, 
the CU scheme with the numerical dissipation switch recently proposed in [18,19], and the CURH scheme without the 
9
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Fig. 4.4. Example 2: Density (ρ) computed by both the CURH and CU second-order schemes (left) and zoom at the contact discontinuity area (right).

Fig. 4.5. Example 3: Density (ρ) computed by the CU (top left), Switch CU (top right), CURH-WS (bottom left) and CURH (bottom right) schemes. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

numerical dissipation switch. Below, we will refer to the CU scheme with the numerical dissipation switch as to the “Switch 
CU scheme” and the CURH scheme without the numerical dissipation switch as the “CURH-WS scheme”. Our goal is to show 
that combining the two discussed numerical dissipation reduction techniques (the discrete R-H conditions and the numerical 
dissipation switch mechanism) lead to a more accurate, yet highly robust central-upwind scheme—the CURH scheme.

Example 3 (Moving contact waves). In the first 2-D test taken from [18], we consider an isolated moving contact wave in the 
computational domain � = [−0.2, 0.2] × [0, 0.8] with the following initial data:

(
ρ(x, y,0), u(x, y,0), v(x, y,0), p(x, y,0)

) =
{

(1.4,0,0.2,1), (x, y) ∈ D,

(1.0,0,0.2,1), otherwise.

The domain D consists of the points (x, y) ∈ � that satisfy the following conditions:
10



Fig. 4.6. Example 4: Density (ρ) computed by the CU (top left), Switch CU (top right), CURH-WS (bottom left) and CURH (bottom right) schemes.

{−0.1 < x < 0.1, 0 < y < 0.02}
⋃

{−0.02 < x < 0.02, 0.02 < y < 0.1}
⋃

{
(x + 0.02)2 + (y − 0.02)2 < 0.082

}⋃{
(x − 0.02)2 + (y − 0.02)2 < 0.082

}
.

We impose free boundary conditions and compute the solution until the final time t = 2 on the uniform grid with 
�x = �y = 1/250. The densities computed by all of the studied schemes are shown in Fig. 4.5. As one can see, the CURH-
WS scheme produces slightly better resolution of contact waves in comparison with the CU scheme, and the Switch CU 
scheme in this case outperforms the CURH-WS scheme. As expected, the proposed CURH scheme clearly achieves the best 
resolution among all of the schemes.

Example 4 (Two-dimensional Riemann problem). We now consider Configuration 3 of the 2-D Riemann problems from [23]; 
see also [24,36,37,42]. The initial conditions are

(ρ(x, y,0), u(x, y,0), v(x, y,0), p(x, y,0)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1.5,0,0,1.5), x > 1, y > 1,

(0.5323,1.206,0,0.3), x < 1, y > 1,

(0.138,1.206,1.206,0.029), x < 1, y < 1,

(0.5323,0,1.206,0.3), x > 1, y < 1.

The computational domain [0, 1.2] × [0, 1.2] is divided into 1000 × 1000 uniform cells with �x = �y = 3/2500. We 
impose free boundary conditions and compute the solution until the final time t = 1. The densities computed by all of the 
studied schemes are shown in Fig. 4.6. As one can see, the large-scale flow structures such as the triple point, incident 
shock, reflected shock, Mach stem, and slip plane are resolved in a better manner by the newly proposed CURH scheme 
compared with the results obtained using the CU, Switch CU, and CURH-WS schemes. Also, the instability along the jet’s 
neck is more pronounced with a stronger vorticity deposition in the CURH solution.

Example 5 (Explosion problem). In this example, we consider the explosion problem, which is taken from [30] and also used 
in [17,18,21]. The initial conditions are
N.K. Garg, A. Kurganov and Y. Liu Journal of Computational Physics 428 (2021) 110078
11



N.K. Garg, A. Kurganov and Y. Liu Journal of Computational Physics 428 (2021) 110078

Fig. 4.7. Example 5: Density (ρ) computed by the CU (top left), Switch CU (top right), CURH-WS (bottom left) and CURH (bottom right) schemes.

Fig. 4.8. Example 6: Density (ρ) computed by the CU (top left), Switch CU (top right), CURH-WS (bottom left) and CURH (bottom right) schemes with 
�x = �y = 3/6000.
12
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Fig. 4.9. Example 6: Density (ρ) computed by the CU (top left), Switch CU (top right), CURH-WS (bottom left) and CURH (bottom right) schemes with 
�x = �y = 3/8000.

(
ρ(x, y,0), u(x, y,0), v(x, y,0), p(x, y,0)

) =
{

(1,0,0,1), x2 + y2 < 0.16,

(0.125,0,0,0.1), otherwise.

We compute the solution using the uniform mesh with �x = �y = 3/800 in the computational domain [0, 1.5] × [0, 1.5]. 
We set the reflecting (solid wall) boundary conditions at x = 0 and y = 0, and free boundary conditions at x = 1.5 and 
y = 1.5. The densities computed by all of the studied schemes at the final time t = 3.2 are plotted in Fig. 4.7. As one 
can clearly see, the proposed CURH-WS and CURH schemes yield much higher resolution results compared to the CU and 
Switch CU schemes. This is reflected in the fact that the contact curve captured by the CURH-WS and CURH schemes is 
much “curlier” and thus more unstable than that of the CU and Switch CU schemes. This again indicates, in particular, the 
low dissipation property of the CURH scheme as the contact curve is supposed to be unstable and may be stabilized by 
excessive numerical dissipation only.

Example 6 (Implosion problem). We then test the implosion problem, also taken from [30] and used in [17,18,21]. The initial 
conditions,

(
ρ(x, y,0), u(x, y,0), v(x, y,0), p(x, y,0)

) =
{

(0.125,0,0,0.14), |x| + |y| < 0.15,

(1,0,0,1), otherwise,

are prescribed in the computational domain [0, 0.3] ×[0, 0.3] with the reflecting (solid wall) boundary conditions. In Figs. 4.8
and 4.9, we plot the ρ-component of the numerical solutions at final time t = 2.5 computed using the CU, Switch CU, 
CURH-WS, and CURH schemes respectively, using two different uniform meshes with �x = �y = 3/6000 and 3/8000. As 
one can observe, all of the schemes produce more accurate results as the mesh is refined. Moreover, if we compare the 
differences between these schemes, we find that the jets generated by the CURH-WS and CURH schemes propagate to a 
larger extent than the jets produced by the CU and Switch CU schemes, respectively. Again, it is worth noting that the 
numerical dissipation switch mechanism plays a vital role in reducing numerical dissipation when coupled with the CURH-
WS scheme. Consequently, one can conclude that the CURH scheme has a much smaller amount of numerical dissipation 
compared to its counterparts.
13
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Fig. 4.10. Example 7: Density (ρ) computed by the CU (top left), Switch CU (top right), CURH-WS (bottom left), and CURH (bottom right) schemes at time 
t = 1.

Example 7 (Kelvin-Helmholtz (KH) instability). In this example, taken from [33] and also studied in [5,18], we investigate the 
ability of all of the studied schemes to capture the KH instability. To this end, we consider the following initial data:

(
ρ(x, y,0), u(x, y,0)

) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
1,−0.5 + 0.5e(y+0.25)/L), y ∈ [−0.5,−0.25),(
2,0.5 − 0.5e(−y−0.25)/L), y ∈ [−0.25,0),(
2,0.5 − 0.5e(y−0.25)/L), y ∈ [0,0.25),(
1,−0.5 + 0.5e(0.25−y)/L), y ∈ [0.25,0.5],

v(x, y,0) = 0.01 sin(4πx), p(x, y,0) ≡ 1.5,

where L is a smoothing parameter, and we take L = 0.00625, which corresponds to a thin shear interface in the simulation 
below.

The computation domain is [−0.5, 0.5] × [−0.5, 0.5]. We use a uniform grid with �x = �y = 1/1024 and the periodic 
boundary conditions to compute the solutions until the final time t = 4. The densities at times t = 1, 2.5, and 4, computed 
by all of the studied schemes, are plotted in Figs. 4.10–4.12. As one can see in Fig. 4.10, the swirl structures produced 
by the CURH-WS and CURH schemes at t = 1 are much more clear than the similar structures in the CU and Switch CU 
solutions. Likewise, at the later times t = 2.5 and t = 4, the difference in the performance of the CURH-WS and CURH 
schemes compared to the CU and Switch CU schemes becomes more and more pronounced, as shown in Figs. 4.11 and 4.12, 
respectively. Notice that the CURH-WS and CURH schemes effectively resolve small details in the wave-breaking pattern and 
produce more isolated and complicated vorticities indicating that both of these two schemes can capture the KH instability 
much better than the CU and Switch CU schemes. On the other hand, in this example, we cannot find obvious difference 
between the CURH-WS and CURH schemes; see bottom rows of Figs. 4.10–4.12. This indicates that the numerical dissipation 
switch mechanism plays a lesser role here.

Example 8 (Raleigh-Taylor (RT) instability). In the final example, we numerically investigate the RT instability, which is a 
standard test for comparing the amount of numerical dissipation present in shock-capturing numerical schemes. Instead of 
(3.8), we numerically solve the 2-D Euler equations with gravitation acting downward in the y-direction:
14
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Fig. 4.11. Example 7: Density (ρ) computed by the CU (top left), Switch CU (top right), CURH-WS (bottom left), and CURH (bottom right) schemes at time 
t = 2.5.

Fig. 4.12. Example 7: Density (ρ) computed by the CU (top left), Switch CU (top right), CURH-WS (bottom left), and CURH (bottom right) schemes at time 
t = 4.
15
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Fig. 4.13. Example 8: Density (ρ) computed by the CU, Switch CU, CURH-WS and CURH (from left to right) schemes.

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0,

(ρv)t + (ρuv)x + (ρv2 + p)y = ρ,

Et + [u(E + p)]x + [v(E + p)]y = ρv.

We use the setting from [38] and consider the following initial conditions:(
ρ(x, y,0), u(x, y,0), v(x, y,0), p(x, y,0)

) =
{

(2,0,−0.025 c cos(8πx),2y + 1), y < 0.5,

(1,0,−0.025 c cos(8πx), y + 1.5), otherwise,

where c is the speed of sound. The computational domain is [0, 1/4] ×[0, 1]. We impose the reflective (solid wall) boundary 
conditions at x = 0 and x = 1/4 and the Dirichlet boundary conditions at the top and bottom boundaries,

(ρ, u, v, p)

∣∣∣
y=1

≡ (1,0,0,2.5) and (ρ, u, v, p)

∣∣∣
y=0

≡ (2,0,0,1),

respectively.
We compute the solution until the final time t = 2.95 using a uniform mesh with �x = �y = 1/1024. The densities 

computed by all of the studied schemes are shown in Fig. 4.13. As one can see, the CURH scheme achieves a much better 
resolution of the complicated solution structures, which clearly indicates that the CURH scheme is less dissipative than the 
CU, Switch CU and CURH-WS ones.

5. Conclusion

In this paper, we have developed new semi-discrete central-upwind Rankine-Hugoniot (CURH) schemes. Compared with 
the original central-upwind schemes, the CURH schemes have a smaller amound of numerical dissipation. In order to achieve 
this goal, we employ two techniques: one depends upon the efficient use of discrete Rankine-Hugoniot conditions for the 
system of hyperbolic conservation laws, and the other is a numerical dissipation switch mechanism. These approaches are 
utilized in such a manner so that the amount of numerical dissipation can be controlled to a greater extent, particularly in 
the areas of contact waves and shear layers without compromising the robustness of the original central-upwind schemes. 
This fact is demonstrated through a number of challenging test problems for both one- and two-dimensional Euler equations 
of gas dynamics. The proposed CURH schemes not only lead to an improved resolution of contact waves, but also capture 
large-scale structures of the solutions in a much more accurate way.
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