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Abstract
Wedevelopnew perturbation techniques for conducting convergence analysis of various
first-order algorithms for a class of nonsmooth optimization problems. We consider the
iteration scheme of an algorithm to construct a perturbed stationary point set-valued map,
and define the perturbing parameter by the difference of two consecutive iterates. Then, we
show that the calmness condition of the induced set-valued map, together with a local ver-
sion of the proper separation of stationary value condition, is a sufficient condition to ensure
the linear convergence of the algorithm. The equivalence of the calmness condition to the
one for the canonically perturbed stationary point set-valued map is proved, and this equiv-
alence allows us to derive some sufficient conditions for calmness by using some recent
developments in variational analysis. These sufficient conditions are different from exist-
ing results (especially, those error-bound-based ones) in that they can be easily verified for
many concrete application models. Our analysis is focused on the fundamental proximal
gradient (PG) method, and it enables us to show that any accumulation of the sequence gen-
erated by the PG method must be a stationary point in terms of the proximal subdifferential,
instead of the limiting subdifferential. This result finds the surprising fact that the solution
quality found by the PG method is in general superior. Our analysis also leads to some
improvement for the linear convergence results of the PG method in the convex case. The
new perturbation technique can be conveniently used to derive linear rate convergence of a
number of other first-order methods including the well-known alternating direction method
of multipliers and primal-dual hybrid gradient method, under mild assumptions.
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1 Introduction

We illustrate our technique for the following (possibly) nonconvex and nonsmooth opti-
mization problem:

min
x∈Rn

F (x) := f (x) + g(x), (1.1)

where f : Rn → (−∞,∞] is a proper lower semi-continuous (lsc) function that is smooth
in its domain domf := {x | f (x) < ∞} and g : R

n → (−∞,∞] is a proper lsc and
possibly nonsmooth function.

Various data fitting problems in areas such as machine learning, signal processing, and
statistics can be formulated in the form of (1.1), where f is a loss function measuring the
deviation of observations from a solution point and g is a regularizer intended to induce
certain structure in the solution point. With the advent of big data era, the problem instances
are typically of large scale; and in recent years first-order methods such as the proximal
gradient (PG) method originated from [44] (see also [45]), block coordinate descent-type
methods and their extended accelerated versions are popularly used to solve problem (1.1).
In this paper, we concentrate on the study of the PG method. For solving problem (1.1),
recall that the iterative scheme of the PG method is

xk+1 ∈ Proxγ
g

(
xk − γ∇f (xk)

)
, (1.2)

where γ > 0 represents the step-size and the proximal operator associated with g is defined
as

Proxγ
g (a) := arg min

x∈Rn

{
g(x) + 1

2γ
‖x − a‖2

}
. (1.3)

When g is an indicator function of a closed convex set, the PG method reduces to the
projected gradient method (see, e.g., [45]); when f ≡ 0, it reduces to the proximal point
algorithm (PPA) [44]; and when g ≡ 0 it reduces to the standard gradient descent method
(see, e.g., [11]).

Throughout this paper, unless otherwise stated, we assume that the following assump-
tions hold.

Assumption 1 (Standing Assumption I) (i) f is smooth with L-Lipschitz gradient with
L > 0 which means that f is smooth on domf which is assumed to be open and ∇f (x)

is Lipschitz continuous on a closed set C ⊇ domf ∩ dom g with constant L. (ii) g(x) is
continuous in dom g.

Assumption 2 (Standing Assumption II) F(x) ≥ Fmin for all x in R
n. g is prox-bounded

which means that the proximal operator Proxγ
g (·) is well-defined when γ is selected as

0 < γ < γg for certain γg > 0.

In addition, we assume that a global optimal solution of the optimization problem (1.3)
is easy to calculate for any a ∈ R

n along with certain well chosen γ > 0. This assumption
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can be satisfied by many important applications because for many popular regularizers like
the l1-norm and group sparse penalty, the subproblems (1.3) all have closed form solutions.
Even for nonconvex penalties such as the SCAD and MCP to be discussed below, closed-
form solutions may be found if γ is chosen appropriately.

It is known that various first-order methods for the convex case of problem (1.1) converge

at the O
(

1
k

)
or O

(
1
k2

)
sublinear rates, where k ≥ 1 is the number of iterations; see,

e.g., [5, 40, 52, 53]. However, for problem (1.1) with certain specific structure, it has been
observed numerically that many of them converge at a faster rate than that suggested by the
theory; see, e.g., [56]. In particular, when f is strongly convex and g is convex, [42, 51] has
proved the global linear convergence rate of the PG method with respect to the sequence of
objective function values.

Many application problems have nonconvex data-fidelity objectives f (x). For instance,
the nonconvex neural network based loss function has been very popular in the deep learning
literature [27, 34]. To see this, we present a simple neural network (NN) model for illustra-
tion. For a given dataset {ai, bi}mi=1 with ai ∈ R

n and bi ∈ R, for simplicity we assume the
input layer has n nodes and the output layer has only one node, while one hidden layer with
p nodes is introduced. The whole neural network is fully connected. We denote by wjk the
weight from node j in the hidden layer to node k in the input layer, and by uj the weight
from node in the output layer to node j in the hidden layer. In both the hidden layer and
output layer, the sigmoid activation function σ(a) = 1

1+e−a is introduced into this model
and the l2 loss is applied in the output layer. As a result, the mathematical formulation for
this NN model can be written as

min
w1,··· ,wp,u

f (w1,··· ,wp,u)︷ ︸︸ ︷
1

2

m∑
i=1

∥∥∥∥∥∥
σ

⎛
⎝

p∑
j=1

ujσ
(
wT

j ai

)
− bi

⎞
⎠
∥∥∥∥∥∥

2

+g(w1, · · · ,wp, u),

where wj := (wj1, . . . , wjn), u := (u1, . . . , uk} and g denotes the regularizer [46]. Hence
in general the function f in the NN model is nonconvex which fulfills Assumption 1.

Moreover allowing the regularization term g to be nonconvex further broadens the range
of applicability of problem (1.1). Indeed, nonconvex regularizers such as the smoothly
clipped absolute deviation (SCAD) [19] and the minimax concave penalty (MCP) [63] are
known to induce “better” sparser solutions in the sense that they induce nearly unbiased
estimates which under some conditions are provably consistent, and the resulting estimator
is continuous in the data which reduces instability in model prediction. Hence studying the
PG method with nonconvex f and g is an urgent task.

So far most of results about the PG methods in the literature assume that the function g

is convex. In this case, the proximal operator defined as in (1.3) is a single-valued map and
we can define the set of stationary points X as follows:

x̄ ∈ X ⇐⇒ 0 ∈ ∇f (x̄) + ∂g(x̄) ⇐⇒ x̄ = Proxγ
g (x̄ − γ∇f (x̄)) ,

where ∂g(x) represents the subdifferential in the sense of convex analysis. Following [54,
Assumption 2a], we say that the Luo-Tseng error bound holds if for any ξ > infx∈Rn F (x),
there exist constant κ > 0 and ε > 0, such that

dist(x,X ) ≤ κ
∥∥x − Proxγ

g (x − γ∇f (x))
∥∥ ,

whenever F(x) ≤ ξ,
∥∥x − Proxγ

g (x − γ∇f (x))
∥∥ ≤ ε.

(1.4)
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In [37], Luo and Tseng introduced a general framework of using the Luo-Tseng error
bound together with the assumption of the proper separation of isocost surfaces of F on X ,
i.e.,

∃ δ > 0 such that x ∈ X , y ∈ X , F (x) �= F(y) =⇒ ‖x − y‖ ≥ δ (1.5)

to prove the linear convergence of feasible descent methods which include the PG
method for problem (1.1) with g(x) being an indicator function of a closed convex set.
Since the Luo-Tseng error bound is an abstract condition involving the proximal residue∥∥x − Proxγ

g (x − γ∇f (x))
∥∥ and the distance to the set of stationary points, it is not directly

verifiable. Hence an important task is to find verifiable sufficient conditions based on func-
tions f and g under which the Luo-Tseng error bound holds. Unfortunately there are very
few concrete cases where the Luo-Tseng error bound condition holds. Nerveless, it is known
that the Luo-Tseng error bound condition holds under one of the conditions (C1)-(C4), see
e.g. [54].

Assumption 3 (Structured Assumption) f (x) = h(Ax) + 〈q, x〉 where A is some given
m × n matrix, q is some given vector in R

n, and h : Rm → (−∞, ∞] is closed, proper,
and convex with the properties that h is continuously differentiable on domh, assumed to be
open and h is strongly convex on any compact convex subset of domh.

(C1) f is strongly convex, ∇f is Lipschitz continuous, and g is closed, proper, and
convex.

(C2) f satisfies Assumption 3, and g has a polyhedral epigraph.
(C3) f satisfies Assumption 3, g is the group LASSO regularizer, i.e., g(x) :=∑

J∈J ωJ ‖xJ ‖2, where ωJ ≥ 0 and J is a partition of {1, . . . , n}, and the optimal
solution set X is compact.

(C4) f is quadratic, g is polyhedral convex.

Notice that the Luo-Tseng error bound (1.4) is only defined for the case where the func-
tion g is convex and hence the convergence rate analysis based on the Luo-Tseng error
bound can be only used to study the case where g is convex. Recently the celebrated
Kurdyka-Łojasiewicz (KL) property (see, e.g., [7, 8]) has attracted much attention in the
optimization community. In the fully nonconvex setting where both f and g are nonconvex,
under the KL property, it has been shown that the PG method converges to a stationary point
which lies in the set of limiting stationary point defined as

XL := {x ∣∣ 0 ∈ ∇f (x) + ∂g(x)
}
,

where ∂g(x) is the limiting subdifferential defined as in Definition 2 (see, e.g. [2, 10]). In
particular, it has been shown that if F is both a coercive function and a KL function with an
exponent 1

2 as defined in the following definition, the sequence generated by the PG method
converges linearly to a limiting stationary point in XL. (see [20, Theorem 3.4]).

Definition 1 For a proper closed function φ : Rn → (−∞,∞] and x̄ ∈ dom φ, we say that
φ satisfies the KL property at x̄ with an exponent of 1

2 if there exist positive numbers κ, ε

such that

κ (φ(x) − φ(x̄))−
1
2 dist(0, ∂φ(x)) ≥ 1, ∀x ∈ B(x̄, ε) ∩ {x | φ(x̄) < φ(x) < +∞},

where B(x̄, ε) is the open ball centered at x̄ with radius ε. A proper closed function φ

satisfying the KL property at all points in dom φ is called a KL function.
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The KL property with an exponent of 1
2 is very powerful in the linear convergence anal-

ysis since it leads to the linear convergence for the fully nonconvex problem and the proper
separation condition (1.5) is not required (see, e.g., [1, 2, 10, 41]). The drawback of this
approach is that it is not easy to verify whether a function satisfies the KL property with
an exponent of 1

2 or not. In order to make use of the known KL functions with an exponent
of 1

2 in producing more KL functions with an exponent of 1
2 , recently, [35] studies various

calculus rules for the KL exponent. In particular, [35, Theorem 4.1] shows that the Luo-
Tseng error bound and the proper separation condition (1.5) implies that F is a KL function
with an exponent of 1

2 (similar results can be found in [16]). This implication consequently
covers the results in [55]. Building upon the calculus rules and the connection with the Luo-
Tseng error bound, which is known to hold under conditions (C1)-(C4), [35] shows that
some optimization models with underlying structures have objectives whose KL exponent
is 1

2 .
In this paper, we focus on the fully nonconvex case where both f and g are not nec-

essarily convex. Suppose that x0 is a local optimal solution of problem (1.1). Then it
follows easily from the definition of the proximal subdifferential (see Definition 2) that
0 ∈ ∂πF (x0), where ∂πF (x) represents the proximal subdifferential of F at x. By virtue of
Assumption 1, the function f is continuously differentiable with Lipschitz gradients in its
domain and consequently by the calculus rules in Proposition 2 we have

0 ∈ ∇f (x0) + ∂πg(x0).

Based on this observation, we may define the set of proximal stationary points as follows.

X π := {x ∣∣ 0 ∈ ∇f (x) + ∂πg(x)
}

.

Since ∂πg(x) ⊆ ∂g(x) and the inclusion may be strict, in general X π ⊆ XL and they
coincide when ∂πg(x) = ∂g(x). Hence the optimality condition defining the proximal
stationary set X π provides a shaper necessary optimality condition for problem (1.1) than
the one for the limiting stationary set XL while in the case where g is semi-convex (see
Definition 3), X π = XL and when g is convex, X = X π = XL. Since the stationary
condition in terms of the proximal subdifferential provides a shaper necessary optimality
condition, it is natural to ask whether one can one can prove that the PG method converges
to a proximal stationary point. To our knowledge, all results in the literature for the case
where g is nonconvex prove the convergence to a limiting stationary point (see, e.g., [2, 10,
20]). In this paper, we show that the PG method actually converges to the set of the proximal
stationary points X π instead of the set of the limiting stationary points XL.

Despite widespread use of the Luo-Tseng error bound in the convergence analysis and
the calculus rules for the KL exponent, the concrete cases where the Luo-Tseng error bound
holds are still very limited. Motivated by this observation, in the recent paper [64], the
authors relate the Luo-Tseng error bound condition to some unified sufficient conditions
under the convex setting. They verify the existence of the Luo-Tseng error bound in con-
crete applications under the dual strict complementarity assumption. However, the unified
approach in [64] leads no improvement to the cases (C1)–(C3). Moreover an extra compact-
ness assumption of the optimal solution set is even required for the case (C2). The recent
paper [17] further illuminates and extends some of the results in [64] by dispensing with
strong convexity of component functions.

The limited application of the Luo-Tseng error bound is perhaps due to the fact that, from
the theory of error bounds, except for the case where the Hoffman’s error bound holds or the
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Robinson’s polyhedral multifunction theory [48] holds, most of the sufficient conditions for
error bounds are point-based (depending on the point of interest). The advantage of using
point-based error bound is the existence of well-studied verifiable sufficient conditions.

The main goal of this paper is to find an appropriate point-based error bound type con-
dition to meet increasing needs in convergence analysis, calculus for the KL exponent and
other aspects whenever appropriate. The new condition is regarded as both

– a weaker replacement for the Luo-Tseng error bound condition when g is convex,
– an extension of the Luo-Tseng error bound condition when g is nonconvex.

In particular, the new condition meets the following requirements simultaneously.

(R1) It estimates the distance to a chosen set of stationary points in terms of certain easily
computable residue.

(R2) In the fully nonconvex setting, together with weaker point-based version of the
proper separation condition, it ensures the linear convergence of the PG method
toward the set of chosen stationary points.

(R3) It serves as a sufficient condition for the KL property with an exponent of 1
2 under

some mild assumptions.
(R4) It is generally weaker than the Luo-Tseng error bound condition when g is con-

vex and more importantly, it is easier to verify via variational analysis when g is
nonconvex.

(R5) In the full convex setting, it results in some improvements to the linear convergence
of the PG method for some of cases of (C1)–(C3).

Although we conduct most of our analysis on the PG method, actually we are interested
in extensions to other first-order algorithms. A natural question to be answered is:

Q: For analyzing the convergence behavior of a given first-order algorithm, how to
determine an appropriate type of error bound condition?

In this paper, using the PG method as an example, we introduce a new perturbation
analysis technique in order to provide an answer to the above question. By the PG iteration
scheme (1.2), using the sum rules of proximal subdifferentials in Proposition 2 we obtain

pk+1

γ
∈ ∇f

(
xk+1 + pk+1

)
+ ∂πg

(
xk+1

)
, (1.6)

where pk+1 := xk − xk+1. Inspired by (1.6), we define the set-valued map induced by the
PG method

SPG (p) :=
{
x
∣∣ p

γ
∈ ∇f (x + p) + ∂πg (x)

}
.

If the set-valued map SPG has a stability property called calmness around (0, x̄), where
x̄ ∈ X π is a accumulation point of the sequence {xk}, then exist κ > 0 and a neighborhood
U(x̄) of x̄ such that

d(x,X π ) ≤ κ‖p‖, ∀x ∈ U(x̄) ∩ SPG(p).

The calmness of SPG turns out to ensure that

dist
(
xk+1,X π

)
≤ κ

∥∥∥xk − xk+1
∥∥∥ ,

which is essentially required for the linear convergence of the PG method toward X π .
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The calmness for a set-valued map is a fundamental concept in variational analysis;
see, e.g., [30, 31]. Although the terminology of “calmness” was coined by Rockafellar
and Wets in [50], it was first introduced in Ye and Ye [59, Definition 2.8] as the pseudo
upper-Lipschitz continuity taking into account that the calmness is weaker than both the
pseudo-Lipschitz continuity of Aubin [3] and the upper-Lipschitz continuity of Robinson
[47]. Therefore the calmness condition can be verified by either the polyhedral multi-
function theory of Robinson [48] or by the Mordukhovich criteria based on the limiting
normal cone [39]. Recently based on the directional limiting normal cone, weaker verifiable
sufficient conditions for calmness have been established (see, e.g. [25, Theorem 1]).

The perturbation analysis technique motivates us to use the calmness of the set-valued
map SPG in analyzing the linear convergence of the PG method instead of the stringent
Luo-Tseng error bound. However, in variational analysis, most of the sufficient conditions
for calmness are given for a canonically perturbed system, while SPG is not. In order to
connect the calmness of SPG to the well-established theories in variational analysis, we
further prove that provided γ < 1

L
, the calmness of SPG is equivalent to the calmness of

the canonically perturbed stationary point set-valued map

Scano(p) := {x ∣∣ p ∈ ∇f (x) + ∂πg(x)
}
, (1.7)

or equivalently the metric subregularity of its inverse map S−1
cano(x) = ∇f (x) + ∂πg(x).

In this paper we will demonstrate that the sufficient conditions for the metric subregularity
of S−1

cano via variational analysis provide useful tools for convergence behavior analysis.
In particular, in the fully convex setting, the calmness of Scano is satisfied automatically
for the cases (C1)–(C3) without any compactness assumption on the solution set X . This
observation further justifies the advantage of using calmness of Scano as a replacement for
the Luo-Tseng error bound in linear convergence analysis.

When the function F is convex, by [9, Theorem 5] the calmness of Scano (or equivalently
the metric subregularity of the subgradient map ∂F (x)) is equivalent to the KL property of
F with an exponent of 1

2 . For the general nonconvex case, we are not aware of any relation-
ship between the KL property of F and the calmness of Scano. Recently it was shown in
[43, Proposition 3.1] that if x̄ is a local minimum of F(x) at which F is continuous, then
the KL property with order 1

2 at x̄ implies the metric subregularity of the limiting subdif-
ferential ∂F at (x̄, 0). Conversely in this paper, we show that when g is semi-convex in the
sense of Definition 3, together with a point-based version of the proper separation condi-
tion (see (3.3) in Assumption 4), the calmness of Scano implies the KL property with an
exponent of 1

2 . The relationship between the KL property and the calmness condition gives
us some insights into applications of the proposed calmness condition/metric subregularity
condition. For general nonconvex problems, if the accumulation point of the algorithm is a
local minimum and the objective function is continuous at this point, the calmness condition
together with the proper separation condition gives a possibly weaker sufficient condition
for linear convergence. One of the advantages of using the calmness/metric subregularity
over the KL property is the existence of checkable sufficient conditions. In particular for
problems where the function g is semiconvex, one can use the calmness condition together
with the proper separation condition to check the KL property with exponent of 1

2 . More
detailed discussions can be found in Section 5.

The perturbation analysis idea for the PG method sheds some light on answering question
Q. Indeed, the error bound condition we are looking for is the calmness condition for a per-
turbed set-valued map which is determined by the iterative scheme of the given first-order
algorithm with the perturbation parameter being the difference between the two consecutive
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generated points. To illustrate this point, we investigate the following two examples of the
first-order methods in Section 6.

(Ex1) We focus on the alternating direction method of multipliers (ADMM) for solv-
ing convex minimization model with linear constraints. The iteration scheme of
ADMM introduces the canonical type perturbation to the optimality condition
instead of the proximal type. Taking advantage of a specific feature of ADMM’s
iterative scheme by which part of the perturbation is automatically zero, the per-
turbation analysis technique motivates a partial calmness condition. The partial
calmness which derives the linear convergence rate of ADMM, is generally weaker
than known error bound conditions in the literature.

(Ex2) We conduct some discussion on the perturbation induced by the iteration schemes
of the primal-dual hybrid gradient (PDHG) method.

Based on all discussions we summarize the main contributions of this paper as follows.

– We have shown that the PG method converges to a proximal stationary point. This
observation has never been made in the literature before.

– We justify that the calmness of Scano defined as in (1.7) can be regarded as an appro-
priate point-based improvement for the Luo-Tseng error bound condition taking into
consideration that it meets requirements (R1)–(R5) simultaneously.

– We propose a perturbation analysis technique for finding an appropriate error bound
condition for the linear convergence analysis of the PG method. This technique is also
applicable for carrying out the linear convergence analysis for various other first-order
algorithms such as ADMM, PDHG, PPA and etc.

The remaining part of this paper is organized as follows. Section 2 contains notations
and preliminaries. Section 3 briefs the linear convergence analysis for the PG method under
the PG-iteration-based error bound. Section 4 starts with the introduction of a perturbation
analysis technique which determines an appropriate type of calmness conditions to ensure
the PG-iteration-based error bound. Calmness conditions of the various perturbed stationary
points set-valued maps and their relationship with the Luo-Tseng error bound condition and
KL property will also be presented in Section 4. In Section 5, verification of the desired
calmness condition for both structured convex problems and general nonconvex problems
are presented. Section 6 is dedicated to the application of the perturbation analysis technique
to convergence behavior analysis of ADMM and PDHG.

2 Preliminaries and Preliminary Results

We first give notation that will be used throughout the paper. The open unit ball and closed
unit ball around zero are given by B and B, respectively. B(x̄, r) := {x ∈ R

d | ‖x − x̄‖ < r}
denotes the open ball around x̄ ∈ R

d with radius r > 0. For two vectors a, b ∈ R
d , we

denote by 〈a, b〉 the inner product of a and b. For any x ∈ R
d , we denote by ‖x‖ its l2-

norm and ‖x‖1 its l1-norm. By o(·) we mean that o(α)/α → 0 as α → 0. x
D→ x̄ means

that x → x̄ with all x ∈ D. For a differentiable mapping P : R
d → R

s and a vector
x ∈ R

d , we denote by ∇P(x) the Jacobian matrix of P at x if s > 1 and the gradient vector
if s = 1. For a function ϕ : Rd → R, we denote by ϕxi

(x) and ∇2ϕ(x) the partial derivative
of ϕ with respect to xi and the Hessian matrix of ϕ at x, respectively. For a set-valued map
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Φ : Rd ⇒ R
s , the graph of Φ is defined as gph Φ := {(x, y) ∈ R

d × R
s | y ∈ Φ(x)} and

its inverse map is defined by Φ−1(y) := {x ∈ R
d : y ∈ Φ(x)}.

For a set-valued map Φ : Rd ⇒ R
s , we denote by

Limsup
x→x0

Φ(x) :=
{
ξ ∈ R

s
∣∣ ∃ sequences xk → x0, ξk → ξ,

with ξk ∈ Φ(xk) ∀k = 1, 2, . . .

}

the Painlevé-Kuratowski upper/outer limit. We say that a set-valued map Φ : Rd ⇒ R
s is

outer semicontinuous (osc) at x0 if Limsup
x→x0

Φ(x) ⊆ Φ(x0).

Definition 2 [50, Definitions 8.45 and 8.3 and comments on page 345] Let φ : R
d →

[−∞, ∞] and x0 ∈ domφ. The proximal subdifferential of φ at x0 is the set

∂πφ(x0) :=
{
ξ ∈ R

d
∣∣ ∃σ > 0, η > 0 s.t.
φ(x) ≥ φ(x0) + 〈ξ, x − x0〉 − σ‖x − x0‖2 ∀x ∈ B(x0, η)

}
.

The limiting (Mordukhovich or basic) subdifferential of φ at x0 is the closed set

∂φ(x0) =
{
ξ ∈ R

d
∣∣∃xk → x0, and ξk → ξ with ξk ∈ ∂πφ(xk), φ(xk) → φ(x0)

}
.

For any x0 ∈ domφ, the set-valued map ∂φ is osc at x0 with respect to xk → x0 satisfying
φ(xk) → φ(x0) (see, e.g., [50, Proposition 8.7]). In the case where φ is a convex function,
all subdifferentials coincide with the subdifferential in the sense of convex analysis, i.e.,

∂πφ(x0) = ∂φ(x0) =
{
ξ ∈ R

d
∣∣φ(x) − φ(x0) ≥ 〈ξ, x − x0〉, ∀x

}
.

Proposition 1 (Sum rule for limiting subdifferential) [50, Exercise 8.8] Let ϕ : Rd → R

be differentiable around x0 and φ : Rd → [−∞, ∞] be finite at x0. Then

∂(ϕ + φ)(x0) = ∇ϕ(x0) + ∂φ(x0).

Proposition 2 (Sum rule for proximal subdifferential) See [13, Exercise 2.10] and [14,
Lemma 2.2] Let ϕ : Rd → R be differentiable around x0 with ∇ϕ Lipschitz continuous
around x0 and φ : Rd → [−∞,∞] be finite at x0. Then

∂π (ϕ + φ)(x0) = ∇ϕ(x0) + ∂πφ(x0).

We introduce a local version of a semi-convex function, see, e.g., [8, Definition 10].

Definition 3 Let φ : Rd → [−∞, ∞] and x0 ∈ domφ. We say φ is semi-convex around x0
with modulus ρ > 0 if there exists η > 0 such that the function φ(x) + ρ

2 ‖x‖2 is convex on
B(x0, η). We say φ is semi-convex if it is semi-convex at every point in domφ with unified
modulus.

The following result follows from the calculus rules in Propositions 1 and 2 immediately.

Proposition 3 Let φ : Rd → [−∞, ∞] and x0 ∈ domφ. If φ is semi-convex around x0 on
B(x0, η) with η > 0, then ∂πφ(x) = ∂φ(x) for all x ∈ B(x0, η).
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Definition 4 [39, 50] Let D ⊆ R
d and x̄ ∈ D. The (Bouligand-Severi) tangent/contingent

cone to D at x̄ is a cone defined as

TD (x̄) :=
{
u ∈ R

d
∣∣ ∃ uk → u, tk ↓ 0 with x̄ + tkuk ∈ D for each k

}
.

The regular normal cone to D at x̄ is defined as

N̂D (x̄) :=
{
v ∈ R

d
∣∣ 〈v, x − x̄〉 ≤ o (‖x − x̄‖) for each x ∈ D

}
.

The limiting normal cone to D at x̄ is defined as

ND (x̄) := Limsup
x

D→x̄

N̂D (x̄) =
{
v ∈ R

d
∣∣ ∃ xk D→ x̄, vk → v with vk ∈ N̂D

(
xk
)

for each k
}

.

Recently, a directional version of the limiting normal cone was introduced in [26] and
extended to general Banach spaces by Gfrerer [21].

Definition 5 Let D ⊆ R
d and x̄ ∈ D. Given d ∈ R

d , the directional limiting normal cone
to D at x̄ in the direction d is defined as

ND (x̄; d) =
{
v ∈ R

d
∣∣ ∃ tk ↓ 0, vk → v, dk → d with vk ∈ N̂D

(
x̄ + tkdk

)
for each k

}
.

By definition, it is easy to see that ND (x̄; d) ⊆ ND (x̄) and ND (x̄; 0) = ND (x̄).
All these definitions are fundamental in variational analysis, and the following lemma

will be useful in this paper.

Lemma 1 [61, Proposition 3.3] Let D ⊆ R
d , D = D1 × . . .×Dm be the Cartesian product

of the closed sets Di and x̄ = (x̄1, . . . , x̄m) ∈ D. Then

TD (x̄) ⊆ TD1 (x̄1) × . . . × TDm (x̄m) ,

and for every d = (d1, . . . , dm) ∈ TD (x̄) one has

ND (x̄; d) ⊆ ND1 (x̄1; d1) × . . . × NDm (x̄m; dm) .

Furthermore, equalities hold in both inclusions if all except at most one of Di for
i = 1, . . . , m, are directionally regular at x̄i (see [61, Definition 3.3] for the defini-
tion of directional regularity). In particular, a set that is either convex or the union of
finitely many convex polyhedra sets is directionally regular. Moreover the second-order cone
complementarity set is also shown to be directionally regular in [61, Theorem 6.1].

Next we review some concepts of stability of a set-valued map.

Definition 6 [47] A set-valued map S : R
s ⇒ R

d is said to be upper-Lipschitz around
(p̄, x̄) ∈ gphS if there exist a neighborhood U(p̄) of p̄ and κ ≥ 0 such that

S(p) ⊆ S(p̄) + κ ‖p − p̄‖B, ∀p ∈ U(p̄). (2.1)

Definition 7 [3] A set-valued map S : R
s ⇒ R

d is said to be pseudo-Lipschitz (or
locally Lipschitz like or has the Aubin property) around (p̄, x̄) ∈ gphS if there exist a
neighborhood U(p̄) of p̄, a neighborhood U(x̄) of x̄ and κ ≥ 0 such that

S(p) ∩ U(x̄) ⊆ S(p′) + κ
∥∥p − p′∥∥B, ∀p, p′ ∈ U(p̄). (2.2)
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Equivalently, S is pseudo-Lipschitz around (p̄, x̄) ∈ gphS if there exist a neighborhood
U(p̄) of p̄, a neighborhood U(x̄) of x̄ and κ ≥ 0 such that

d(x,S(p′)) ≤ κd(p′,S−1(x)), ∀p′ ∈ U(p̄), x ∈ U(x̄),

i.e., the inverse map S−1 is metrically regular around (x̄, p̄).

Both upper-Lipschitz continuity and the pseudo-Lipschitz continuity are stronger than
the following concept which plays a key role in analyzing the linear convergence of some
algorithms.

Definition 8 [50, 59] A set-valued map S : Rs ⇒ R
d is said to be calm (or pseudo upper-

Lipschitz continuous) around (p̄, x̄) ∈ gphS if there exist a neighborhood U(p̄) of p̄, a
neighborhood U(x̄) of x̄ and κ ≥ 0 such that

S(p) ∩ U(x̄) ⊆ S(p̄) + κ ‖p − p̄‖B, ∀p ∈ U(p̄). (2.3)

Equivalently, S is calm around (p̄, x̄) ∈ gphS if there exist a neighborhood U(p̄) of p̄,
a neighborhood U(x̄) of x̄ and κ ≥ 0 such that

dist(x,S(p̄)) ≤ κ dist(p̄,S−1(x) ∩ U(p̄)), ∀x ∈ U(x̄), (2.4)

i.e., the inverse map S−1 is metrically subregular around (x̄, p̄).

Definition 9 [15] A set-valued map S : R
s ⇒ R

d is said to be isolated calm around
(p̄, x̄) ∈ gphS if there exist a neighborhood U(p̄) of p̄, a neighborhood U(x̄) of x̄ and
κ ≥ 0 such that

S(p) ∩ U(x̄) ⊆ x̄ + κ ‖p − p̄‖B, ∀p ∈ U(p̄).

Equivalently, S is isolated calm around (p̄, x̄) ∈ gphS if there exist a neighborhood
U(p̄) of p̄, a neighborhood U(x̄) of x̄ and κ ≥ 0 such that

‖x − x̄‖ ≤ κ dist(p̄,S−1(x) ∩ U(p̄)), ∀x ∈ U(x̄),

i.e., the inverse map S−1 is strongly metrical subregular around (x̄, p̄).

Note that by [15, Exercise 3H.4], the neighborhood U(p̄) in Definitions 8 and 9 can be
equivalently replaced by the whole space R

d .
Let S(p) := {x ∈ R

d |p ∈ −P(x) + D} where P(x) : Rd → R
s is locally Lipschitz

and D ⊆ R
s is closed. Then the set-valued map S is calm at (0, x̄) if and only if S−1 is

metrically subregular at (x̄, 0). For convenience we summarize some verifiable sufficient
conditions for the calmness of S; see more criteria for calmness in [25, Theorem 2] and
2]Gfrerer2017NewCQ and [4, 30, 31, 61].

Proposition 4 Let x̄ ∈ Ω := {x ∈ R
d |P(x) ∈ D}. Suppose that P(x) is continuously

differentiable and D is closed near P(x̄). Let T lin
Ω (x̄) := {w ∈ R

d |∇P(x̄)w ∈ TD(P (x̄))}
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be the linearized cone of Ω at x̄. Then the set-valued map S(p) := {x ∈ R
d |p ∈ −P(x) +

D} is calm at (0, x̄) if one of the following condition holds.

1. Linear CQ holds (see, e.g., [58, Theorem 4.3]): P(x) is piecewise affine and D is the
union of finitely many convex polyhedra sets.

2. No nonzero abnormal multiplier constraint qualification (NNAMCQ) holds at x̄ (see,
e.g., [58, Theorem 4.4])

0 ∈ ∂〈P, λ〉(x̄), λ ∈ ND(P (x̄)) =⇒ λ = 0.

3. First-order sufficient condition for metric subregularity (FOSCMS) at x̄ for the system
P(x) ∈ D at x̄ with P continuously differentiable at x̄ [23, Corollary 1]: for every
0 �= w ∈ T lin

Ω (x̄), one has

∇P(x̄)T λ = 0, λ ∈ ND(P (x̄); ∇P(x̄)w) =⇒ λ = 0.

4. Second-order sufficient condition for metric subregularity (SOSCMS) at x̄ for the sys-
tem P(x) ∈ D with P twice differentiable at x̄ and D is the union of finitely many
convex polyhedra sets [22, Theorem 2.6]: for every 0 �= w ∈ T lin

Ω (x̄) one has

∇P(x̄)T λ = 0, λ ∈ ND(P (x̄); ∇P(x̄)w), wT ∇2(λT P )(x̄)w ≥ 0 =⇒ λ = 0.

Remark 1 Recall that a set-valued map is called a polyhedral multifunction if its graph is
the union of finitely many polyhedral convex sets. For the case Proposition 4(1), since the
set-valued map S is a polyhedral multifunction, by [48, Proposition 1], the set-valued map is
upper-Lipschitz and hence calm around every point of the graph of S . By the Mordukhovich
criteria (see, e.g., [39]), NNAMCQ implies the pseudo-Lipschitz continuity of the set-valued
map S (see e.g., [58, Theorem 4.4]). FOSCMS in (3) in (3) holds automatically if

w ∈ T lin
Ω (x̄) =⇒ w = 0.

In this case, according to the graphical derivative criterion for strong metric subregularity
(see e.g., [15]), the set-valued map S is in fact isolated calm. SOSCMS is obvious weaker
than FOSCMS in general. Since the directional normal cone is in general a smaller set than
the limiting normal cone, FOSCMS is in general weaker than NNAMCQ. But in the case
when either ∇P(x̄) does not have full column rank or D is convex and there is w �= 0 such
that w ∈ T lin

Ω (x̄), then FOSCMS is equivalent to NNAMCQ [61, Theorem 4.3]. When
D = D1 × · · · × Dm is the Cartesian product of closed sets Di , by Lemma 1, we have for
x̄ = (x̄1, . . . , x̄m) ∈ D, d = (d1, . . . , dm) ∈ TD (x̄)

TD (x̄) ⊆ TD1 (x̄1) × . . . × TDm (x̄m) ,

ND (x̄; d) ⊆ ND1 (x̄1; d1) × . . . × NDm (x̄m; dm) .

Therefore we may replace TD(P (x̄)) and ND(P (x̄);P(x̄)w) by TD1 (P1(x̄)) ×
. . . × TDm (Pm(x̄)) and ND1 (P1(x̄); [P(x̄)w]1) × . . . × NDm (Pm(x̄); [P(x̄)w]m), where
[P(x̄)w]i denotes the ith component of the vector P(x̄)w, respectively, to obtain a sufficient
condition for calmness. These types of sufficient conditions would be stronger in general
but equivalent to the original one if all except at most one of the sets Di is directionally
regular.

We close this section with the following equivalence. Proposition 5 improves the result
[25, Proposition 3] in that gphQ is not assumed to be closed. When gphQ is not closed,
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the projection onto gphQ may not exist. However if one replaces the projection with an
approximate one, then the proof would go through and so we omit the proof.

Proposition 5 Let P(x) : R
d → R

s and Q : R
d ⇒ R

s be a set-valued map. Assume
that P is Lipschitz around x̄, then the set-valued map M1(x) := P(x) + Q(x) is metrically
subregular at (x̄, 0) if and only if the set-valued map

M2(x) :=
(

x

−P(x)

)
− gphQ

is metrically subregular at (x̄, (0, 0)).

3 Linear Convergence Under the PG-Iteration-Based Error Bound

The purpose of this section is to obtain the linear convergence result (3.5)–(3.6) under a
weak and basic error bound assumption (3.4) along with a proper separation of the stationary
value condition around the accumulation point (3.3). The main result is summarized in
Theorem 5. As a prerequisite of the analysis to be delineated, Lemma 2 can be derived
similarly as related results in the literature, see, e.g., [2, Section 5.1]. We state the results
now and leave the proof of Lemma 2 to the Appendix.

Lemma 2 Let {xk} be a sequence generated by the PG method. Suppose that γ < 1
L

. Then
the following statements are true.

(1) Sufficient descent: there exists a constant κ1 > 0 such that

F(xk+1) − F(xk) ≤ −κ1

∥∥∥xk+1 − xk
∥∥∥

2
. (3.1)

(2) Cost-to-go estimate: there exists a constant κ2 > 0 such that

F(xk+1) − F(x) ≤ κ2

(∥∥∥x − xk+1
∥∥∥

2 +
∥∥∥xk+1 − xk

∥∥∥
2
)

, ∀x. (3.2)

Note that the terminologies “sufficient descent” and “cost-to-go estimate” were first used
in [37, 54]. Based on the sufficient descent and the cost-to-go estimate properties in Lemma
2, which are two fundamental inequalities for the convergence proof of first order methods,
we prove the linear convergence of the PG method. Before presenting the result, we first
discuss the assumptions needed. The first one is a local version of the proper separation of
isocost surfaces condition (1.5).

Assumption 4 We say that the proper separation of isocost surfaces of F holds on x̄ ∈ X π

if

∃ε > 0 such that x ∈ X π ∩ B(x̄, ε) =⇒ F(x) = F(x̄). (3.3)

It is obvious that condition (3.3) is equivalent to

∃ε > 0, δ > 0 such that x, y ∈ X π ∩ B(x̄, ε) and F(x) �= F(y) =⇒ ‖x − y‖ > δ.

Hence condition (3.3) is weaker than (1.5).
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This assumption holds whenever the objective function takes on only a finite number of
values on X π locally around x̄, or whenever the connected components of X π around x̄ are
properly separated from each other [37]. Thus this assumption holds automatically when x̄

is an isolated stationary point. It also holds if the objective function F is convex, or f is
quadratic and g is polyhedral [38].

Definition 10 (PG-iteration-based error bound) Let the sequence
{
xk
}

be generated by the
PG method and x̄ is an accumulation point of

{
xk
}
. We say that the sequence

{
xk
}

satisfies
a PG-iteration-based error bound at x̄ if there exist κ, ε > 0 such that

dist
(
xk+1,X π

)
≤ κ

∥∥∥xk+1 − xk
∥∥∥ , for all k such that xk+1 ∈ B(x̄, ε). (3.4)

Theorem 5 shows the linear convergence of the PG method under the PG-iteration-based
error bound and the proper separation of stationary value (3.3). Most of the proof techniques
and methodology are mild modifications of the analysis based on the KL inequality [2]
and are inspired by [6, 18]. However, a critical phenomenon which has been completely
neglected in the literature leans on the fact that the PG method actually converges toward
the proximal stationary set X π . In spite of this interesting observation, we still leave the
proof of Theorem 5 in Appendix, as our main concern is when the PG-iteration-based error
bound can be met, which will be addressed in the forthcoming section.

Theorem 5 Assume that the step-size γ in the PG method (1.2) satisfies γ < 1
L

. Let
the sequence {xk}∞k=0 be generated by the PG method and x̄ be an accumulation point of{
xk
}∞
k=0. Then x̄ ∈ X π . Suppose that the PG-iteration-based error bound (3.4) along with

the proper separation of stationary value (3.3) hold at x̄. Then the sequence
{
xk
}∞
k=0 con-

verges to x̄ linearly with respect to the sequence of objective function values, i.e., there exist
k0 > 0 and 0 < σ < 1, such that for all k ≥ k0, we have

F(xk+1) − F(x̄) ≤ σ
(
F(xk) − F(x̄)

)
. (3.5)

Moreover we have the R-linear convergence of the generated sequence
{
xk
}
, i.e., for all

k ≥ k0,

∥∥∥xk − x̄

∥∥∥ ≤ ρ0 (
√

σ)k, (3.6)

for some ρ0 > 0.

4 Discussions on Various Error Bound Conditions

In Section 3, we have shown that linear convergence of the PG method relies heavily on
the PG-iteration-based error bound condition (3.4). In this section, we shall find an appro-
priate condition sufficient for the PG-iteration-based error bound condition (3.4) which is
independent of the iteration sequence. For this purpose, we propose a new perturbation anal-
ysis technique which determines an appropriate error bound type condition for convergence
analysis. In fact all results in this section remind true if one replace the proximal stationary
point set X π by the limiting stationary point set XL.
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4.1 A Perturbation Analysis Technique

We recall by the PG iteration scheme that given xk , xk+1 is an optimal solution to the
optimization problem

min
x∈Rn

〈∇f (xk), x − xk〉 + 1

2γ
‖x − xk‖2 + g(x).

By the calculus rule in Proposition 2,

0 ∈ ∇f (xk) + 1

γ

(
xk+1 − xk

)
+ ∂πg

(
xk+1

)
. (4.1)

Denote by pk+1 := xk − xk+1. Then the above inclusion can be rewritten as
pk+1

γ
∈ ∇f

(
xk+1 + pk+1

)
+ ∂πg(xk+1). (4.2)

It follows that condition (3.4) can be rewritten as

dist
(
xk+1,X π

)
≤ κ ‖pk+1‖ , for all k s.t. xk+1 ∈ B(x̄, ε). (4.3)

where pk+1 satisfies (4.2). Inspired by (4.2), we define the following set-valued map
induced by the PG method

SPG (p) :=
{
x
∣∣ p

γ
∈ ∇f (x + p) + ∂πg (x)

}
, (4.4)

By Definition 8 and the comment after that, the set-valued map SPG is calm around
(0, x̄) if and only if there exist κ > 0 and a neighborhood U(x̄) of x̄ such that

d(x,X π ) ≤ κ‖p‖, ∀x ∈ U(x̄), p ∈ S−1
PG(x). (4.5)

By taking x = xk+1 and pk+1 = xk −xk+1 for sufficently large k in the above condition,
one can see that the calmness of SPG at (0, x̄) is a sufficient condition for condition (4.3) or
equivalently the PG-iteration-based error bound condition (3.4) to hold and it is independent
of the iteration sequence.

4.2 Interplay Between Error Bound Conditions

The question is now how to find verifiable sufficient conditions for the calmness of SPG

and what are the relationships with other related set-valued maps and the Luo-Tseng error
bound.

In order to paint a complete picture, we define the following three set-valued maps.
Firstly, by taking xk = xk+1 + pk+1, in (4.2), the PG also induces the following set-valued
map:

SPGb (p) :=
{
x
∣∣ p

γ
∈ ∇f (x) + ∂πg (x − p)

}
.

Secondly, we define the set-valued map SPPA induced by the PPA1 as

SPPA (p) :=
{
x
∣∣ p

γ
∈ ∇f (x − p) + ∂πg (x − p)

}
.

1The iteration scheme of PPA for problem (1.1) can be written as xk+1 = Proxγ

f +g

(
xk
)
. Straightforward

calculation further implies pk+1
γ

∈ ∇f
(
xk − pk+1

)+ ∂πg
(
xk − pk+1

)
with pk+1 = xk − xk+1.
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Note that

Scano(0) = SPG(0) = SPGb(0) = SPPA(0) = X π

and hence all these four set-valued maps are solutions of the proximal stationary point set
X π perturbed in certain way.

On the other hand, we may define the following pointwise extension of the Luo-Tseng
error bound (1.4) in the general nonconvex case. We say that the proximal error bound holds
at x̄∈ X π if there exist constants κ > 0 and δ > 0, such that

dist
(
x,X π

) ≤ κdist(x, Proxγ
g (x − γ∇f (x))), ∀x ∈ B (x̄, δ) . (4.6)

In fact, the pointwise extension of the Luo-Tseng error bound (1.4), i.e., proximal
error bound (4.6) is nothing but the metric subregularity of the proximal residue r(x) :=
dist(x, Proxγ

g (x − γ∇f (x))) at (x̄, 0).
The connections we intent to prove can be illustrated in the the following Fig. 1,

justifying the promised (R4) in Section 1.
The following theorem clarifies all the details in Fig. 1 except the implication that the

verifiable sufficient condition implies the calmness of Scano. This implication will be dis-
cussed Section 5. Since the results of the following theorem are of independent interests,
we will state the assumptions whenever needed instead of using Assumption 1.

Theorem 6 Consider the optimization problem minx f (x) + g(x) where f, g : R
n →

(−∞,∞] are proper lsc and f is smooth in its domain. Let x̄ ∈ X π . Then the following
conclusions hold.

(i) The calmness of SPG at (0, x̄) is equivalent to the calmness of SPGb at (0, x̄).
(ii) Assume that ∇f is Lipschitz continuous on a neighborhood of x̄ with constant L > 0.

Then the calmness of Scano at (0, x̄) implies the calmness of SPG at (0, x̄) and the
reverse direction holds provided that γ < 1

L
.

(iii) The calmness of SPPA at (0, x̄) is equivalent to the calmness of Scano at (0, x̄).

Fig. 1 Relationships between the calmness of SPPA, Scano, SPGb and SPG, the Luo-Tseng error bound
condition (1.4), the proximal error bound condition (4.6) and KL property with an exponent of 1

2 . The dotted
arrow means that extra conditions are required
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(iv) The calmness of SPGb at (0, x̄) implies the proximal error bound condition (4.6) at
x̄. The reversed direction also holds when g is semi-convex around x̄ with modulus ρ

and γ ≤ 1
ρ

.
(v) Suppose that g is convex and continuous in its domain. Then the Luo-Tseng error

bound condition (1.4) implies the proximal error bound condition (4.6). If the set of
stationary points X is compact and F is coercive, then the proximal error bound
condition (4.6) holding at each point x̄ ∈ X if and only if the Luo-Tseng error bound
condition (1.4) holds.

(vi) Assume that ∇f is Lipschitz continuous on a neighborhood of x̄ with constant L > 0.
When g is semi-convex around x̄ with modulus ρ, if the proper separation of station-

ary value (3.3) and the proximal error bound (4.6) at x̄ holds with γ < min
{

1
ρ
, 1

L

}
,

then F satisfies the KL property with an exponent of 1
2 at x̄.

Proof (i): Suppose the calmness of SPG at (0, x̄) holds. It follows by definition that there
exist a neighborhood U(x̄) of x̄ and κ > 0 such that

dist (x,SPG (0)) ≤ κ ‖p‖ , ∀x ∈ U(x̄), p ∈ S−1
PG(x). (4.7)

Take arbitrary x ∈ SPGb (p). Then by definition

p

γ
∈ ∇f (x) + ∂πg(x − p),

which can be written as
p

γ
∈ ∇f (x̃ + p) + ∂πg(x̃),

with x̃ := x − p and hence x̃ ∈ SPG(p). Let U0(x̄) be a neighborhood of x̄ and δ > 0 be
such that

x̃ = x − p ∈ U(x̄), ∀x ∈ U0(x̄), ‖p‖ ≤ δ.

Then by using (4.7), for any x ∈ U0(x̄), ‖p‖ ≤ δ with p ∈ S−1
PGb(x), we have

dist (x,SPGb (0)) ≤ dist (x − p,SPGb (0)) + ‖p‖ = dist (x̃,SPG (0)) + ‖p‖ ≤ (κ + 1) ‖p‖ ,

which implies that SPGb is calm at (0, x̄). The proof of the reverse direction is similar and
hence omitted.

(ii): We rewrite SPG(p) as

SPG (p) := {x ∣∣ 0 ∈ M (p, x)
}
,

where

M(p, x) := G(p, x) + gph
(
∂πg

)
, G(p, x) :=

( −x

−p
γ

+ ∇f (x + p)

)
.

Following the technique presented in [24], we introduce two multifunctions HM : Rn ⇒
R

n × R
n × R

n and Mp : Rn ⇒ R
n × R

n defined by

HM (p) := {(x, y)
∣∣ y ∈ M (p, x)

}
and Mp (x) := {y ∣∣ y ∈ M (p, x)

}
.
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By [24, Theorem 3.3], if M0(x) := M(0, x) is metrically subregular at (x̄, 0) and M
has the restricted calmness property with respect to p at (0, x̄, 0), i.e., if there are real
numbers κ > 0 and ε > 0 such that

dist ((x, 0) , HM (0)) ≤ κ ‖p‖ , ∀ ‖p‖ ≤ ε, ‖x − x̄‖ ≤ ε, (x, 0) ∈ HM (p) ,

then SPG is calm at (0, x̄). Based on this result we can show that the calmness of Scano

implies the calmness of SPG.

– We can show that M has the restricted calmness property with respect to p at (0, x̄, 0).
Indeed, since ∇f (x) is Lipschitz around x̄ with constant L > 0, there is a neighbor-
hoods U(0) of 0 as well as U(x̄) of x̄ such that G is also Lipschitz continuous with
modulus L on U(0) × U(x̄) ⊆ R

n × R
n. Given (p, x, 0) where p ∈ U(0), x ∈ U(x̄)

and (x, 0) ∈ HM(p), by definition, 0 ∈ M(p, x) = G(p, x)+ gph(∂πg). As a conse-
quence, G(0, x) − G(p, x) ∈ G(0, x) + gph(∂πg) and hence (x,G(0, x) − G(p, x)) ∈
HM(0). Therefore we have the following inequality

dist ((x, 0),HM(0)) ≤ ‖(x, 0) − (x,G(0, x) − G(p, x))‖
≤ ‖G(0, x) − G(p, x)‖ ≤ L ‖p‖ ,

which means that M has the restricted calmness property with respect to p at (0, x̄, 0);
– We can show that M0(x) := M(0, x) is metrically subregular at (x̄, 0) provided that

Scano is calm at (0, x̄). Indeed by Proposition 5, M0(x) is metrically subregular at
(x̄, (0, 0)) if and only if ∇f (x) + ∂πg(x) is metrically subregular at (x̄, 0), which is
equivalent to the calmness of Scano at (0, x̄).

Conversely suppose that SPG is calm at (0, x̄). Thanks to the equivalence between calm-
ness of SPG and SPGb, we have that SPGb is calm at (0, x̄) as well. By definition, there
exist a neighborhood U(x̄) of x̄ and δ > 0, κ > 0 such that

dist (x,SPGb (0)) ≤ κ ‖p‖ , ∀x ∈ U(x̄), p ∈ S−1
PGb(x), ‖p‖ ≤ δ. (4.8)

Take any x ∈ Scano(p). By definition, p ∈ ∇f (x) + ∂πg(x), which can be rewritten as,

γp + x − γ∇f (x) ∈ x + γ ∂πg(x).

Since ∇f is Lipschitz continuous with modulus L, I − γ∇f where I is the identity
matrix of size n, is maximally monotone and strongly monotone with constant 1 − γL if
γ < 1

L
. Therefore, (I − γ∇f )−1 is well defined and Lipschitz continuous with modulus

1
1−γL

. That is, there exists x̃ such that

γp + x − γ∇f (x) = x̃ − γ∇f (x̃), (4.9)

and consequently

‖x̃ − x‖ =
∥∥∥(I − γ∇f )−1 (γp + x − γ∇f (x)) − (I − γ∇f )−1 (x − γ∇f (x))

∥∥∥ ≤ γ

1 − γL
‖p‖ .

(4.10)

Plugging (4.9) into (4.2), we have x̃−x
γ

∈ ∇f (x̃) + ∂πg (x̃ − x̃ + x), and as a result
x̃ ∈ SPGb (x̃ − x). Moreover by (4.10), there exist U0(x̄), a neighborhood of x̄ such that

x̃ ∈ U(x̄), ∀x ∈ U0(x̄), ‖p‖ ≤ δ.
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To summarize, by (4.8), for any x, p with x ∈ U0(x̄), ‖p‖ ≤ δ, p ∈ S−1
cano(x), we have

the estimate

dist (x,Scano(0)) ≤ dist (x̃,Scano(0)) + ‖x̃ − x‖ = dist (x̃,SPGb(0)) + ‖x̃ − x‖
≤ (κ + 1) ‖x̃ − x‖ ≤ (κ + 1) γ

1 − γL
‖p‖ .

Hence the calmness of Scano at (0, x̄) follows by definition.
(iii): We assume that Scano is calm at (0, x̄). Then there is a neighborhood U(x̄) of x̄ and

δ > 0, κ > 0 such that

dist (x,Scano (0)) ≤ κ ‖p‖ , ∀x ∈ U(x̄), p ∈ S−1
cano(x), ‖p‖ ≤ δ. (4.11)

Let x ∈ SPPA (p). Then by definition

p

γ
∈ ∇f (x − p) + ∂πg (x − p) .

Let x̃ = x − p, then
p

γ
∈ ∇f (x̃) + ∂πg(x̃),

which implies x̃ ∈ Scano

(
p
γ

)
. Let U0(x̄) be a neighborhood of x̄ and δ > 0 be such that

x̃ = x − p ∈ U(x̄), ∀x ∈ U0(x̄), ‖p‖ ≤ δ.

Then by (4.11), we have for any x, p with x ∈ U0(x̄), ‖p‖ < δ, p ∈ S−1
PPA(x),

dist (x,SPPA (0)) ≤ dist (x − p,SPPA (0)) + ‖p‖
= dist (x̃,Scano (0)) + ‖p‖ ≤ (κ/γ + 1)‖p‖,

which means that SPPA is calm at (0, x̄).
Conversely, we now assume that SPPA is calm at (0, x̄). Then there is a neighborhood

U(x̄) of x̄ and δ > 0, κ > 0 such that

dist (x,SPPA (0)) ≤ κ ‖p‖ , ∀x ∈ U(x̄), p ∈ S−1
PPA(x), ‖p‖ ≤ δ. (4.12)

Let x ∈ Scano (p). Then p ∈ ∇f (x) + ∂πg(x). Denote by x̃ = x + γp. Then p ∈
∇f (x̃ − γp) + ∂πg(x̃ − γp). Hence x̃ ∈ SPPA (γp). Let U0(x̄) be a neighborhood of x̄

and δ > 0 be such that

x̃ = x + γp ∈ U(x̄), ∀x ∈ U0(x̄), ‖p‖ ≤ δ.

Then by (4.12), we have for any x, p with x ∈ U0(x̄), ‖p‖ < δ, p ∈ S−1
cano(x),

dist(x,Scano(0)) ≤ dist (x + γp,Scano(0)) + γ ‖p‖
= dist (x̃,SPPA(0)) + γ ‖p‖ ≤ γ (κ + 1) ‖p‖ .

Hence Scano is calm at (0, x̄).
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(iv) Suppose that SPGb is calm at (0, x̄). Then there is a neighborhood U(x̄) of x̄ and
κ > 0 such that

dist (x,SPGb(0)) ≤ κ ‖p‖ ∀x ∈ U(x̄) ∩ SPGb(p). (4.13)

Let x ∈ U(x̄) and any x+ ∈ Proxγ
g (x − γ∇f (x)). Then by the definition of the proximal

operator and the optimality condition,

0 ∈ γ ∂πg(x+) + x+ − (x − γ∇f (x)) , (4.14)

Or equivalently

x − x+

γ
∈ ∇f (x) + ∂πg

(
x − (x − x+)) .

It follows that

x ∈ SPGb

(
x − x+) . (4.15)

Putting p = x−x+ in (4.13) and noticing that (4.15) holds and x+ is an arbitrary element
in Proxγ

g (x − γ∇f (x)), we have

dist
(
x,X π

) ≤ κ dist(x, Proxγ
g (x − γ∇f (x))), ∀x ∈ U(x̄).

That is, the proximal error bound holds at x̄.
Next let us consider the reverse direction. Suppose there exists U(x̄) such that

dist
(
x,X π

) ≤ κ dist(x, Proxγ
g (x − γ∇f (x))), ∀x ∈ U(x̄). (4.16)

Without loss of generality, assume that g is a semi-convex function on U(x̄) with modu-
lus ρ. Then when γ ≤ 1

ρ
, the function g(x) + 1

2γ
‖x‖2 is convex on U(x̄) and consequently

g(x) + 1
2γ

‖x − a‖2 is convex on U(x̄) for any a. Let U0(x̄) be a neighborhood of x̄ and
δ > 0 be such that x − p ∈ U(x̄), ∀x ∈ U0(x̄), ‖p‖ ≤ δ. Then by the optimality condition
and the convexity of x′ → g(x′) + 1

2γ
‖x′ − x + γ∇f (x)‖2, for any x ∈ U0(x̄), ‖p‖ ≤ δ,

x − p ∈ Proxγ
g (x − γ∇f (x)) ⇐⇒ p

γ
∈ ∇f (x) + ∂πg (x − p) .

It follows from the proximal error bound (4.16) that

dist
(
x,X π

) ≤ κ‖p‖, ∀x ∈ U0(x̄), x ∈ SPGb(p), ‖p‖ ≤ δ,

i.e., SPGb is calm at (0, x̄).
(v): When g is continuous in its domain, the function F(x) is continuous in its

domain. Let δ0 > 0 be constant such that ξ := supx∈B(x̄,δ0)∩dom F F (x) < +∞.
Since Proxγ

g (a) is a continuous mapping (see, e.g., [50, Theorem 2.26]), the function∥∥x − Proxγ
g (x − γ∇f (x))

∥∥ is continuous. Let ξ ≥ infx∈Rn F (x) and ε > 0 be the
constants found in the definition of the Luo-Tseng error bound condition (1.4). By the con-
tinuity, we can find some positive constant δ0 > δ > 0 such that when x ∈ B(x̄, δ),∥∥x − Proxγ

g (x − γ∇f (x))
∥∥ ≤ ε and F(x) ≤ ξ . Hence the proximal error bound condition

(4.6) holds. Conversely suppose that the proximal error bound condition (4.6) holds at each
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point x̄ ∈ X and the set X is compact. Since the proximal error bound condition (4.6) holds
at each point x̄ ∈ X π , the inequality

dist(x,X π ) ≤ κ
∥∥x − Proxγ

g (x − γ∇f (x))
∥∥ ∀x ∈ B (x̄, δ) (4.17)

holds with constant κ, δ depends on x̄. But since the set X is compact, we can find a finite
number of open balls B (x̄1, δ1) , · · · ,B (x̄m, δm) with x̄i ∈ X (i = 1, . . . , m) such that
X π ⊆ ∪m

i=1B (x̄i , δi) and the inequality (4.17) holds with constant κi for all x ∈ B (x̄i , δi)

and i = 1, . . . , m. Choosing κ := maxi κi and δ := mini δi , i = 1, . . . , m, we obtain

dist(x,X π ) ≤ κ
∥∥x − Proxγ

g (x − γ∇f (x))
∥∥ ∀x ∈ X π + B(0, δ).

To obtain the Luo-Tseng error bound condition (1.4), it suffices to show that for any
ξ ≥ infx∈Rn F (x), there exists constant ε > 0 such that

{
x
∣∣ ‖x − Proxγ

g (x − γ∇f (x)) ‖ ≤ ε and F(x) ≤ ξ
} ⊆ X π + B(0, δ).

We prove it by contradiction. If this is not true, then there exist ξ ≥ infx∈Rn F (x)

and a sequence {xk} such that F(xk) ≤ ξ , ‖xk − Proxγ
g (xk − γ∇f (xk)) ‖ → 0 as

k → ∞ and dist(xk,X π ) ≥ δ. As F is coercive and each xk is an optimal solution, we
may assume without loss of generality that x̃ is a limiting point of {xk}. It follows that
‖x̃ − Proxγ

g (x̃ − γ∇f (x̃)) ‖ = limk→∞ ‖xk − Proxγ
g (xk − γ∇f (xk)) ‖ = 0 which means

that x̃ ∈ X π . But this impossible since dist(x̃,X π ) = limk→∞ dist(xk,X π ) ≥ δ.
(vi): We now suppose that g is semi-convex around x̄ with modulus ρ. It directly follows

from (i)(ii)(iv) that if the proximal error bound (4.6) at x̄ holds with γ < min{1/ρ, 1/L},
then the calmness of Scano at (0, x̄) holds, i.e., there exist κ, ε1 > 0 such that

dist
(
x,X π

) ≤ κdist(0, ∂πF (x)), ∀x ∈ B (x̄, ε1) . (4.18)

Moreover, thanks to the proper separation of stationary value (3.3), there exists ε2 > 0
such that

X π ∩ B (x̄, ε2) ⊆ {x | F(x) = F(x̄)}. (4.19)

Let ε := min{ε1, ε2}. Inspired by the technique in [16, Proposition 3.8], without loss of
generality, assume that ∇f is Lipschitz continuous with modulus L and g is semi-convex
around with modulus ρ on B (x̄, ε). Let fτ (x) := f (x) + τ

2 ‖x‖2. Since ∇f is Lipschitz
continuous with modulus L, for any τ ≥ L, we have ∀x1, x2 ∈ domf ∩ B (x̄, ε),

〈∇fτ (x1) − ∇fτ (x2), x1 − x2〉 = 〈∇f (x1) − ∇f (x2), x1 − x2〉 + τ‖x1 − x2‖2

≥ −L‖x1 − x2‖2 + τ‖x1 − x2‖2 ≥ 0,

implying fτ is convex on B (x̄, ε) and thus f is semi-convex at x̄. It follows that F = f +g

is semi-convex around x̄ since g is semi-convex around x̄ as well. Without loss of generality,
we assume that F is a semi-convex function on B (x̄, ε). Then for x ∈ B (x̄, ε) , we have
∂πF (x) = ∂F (x) by Proposition 3. Moreover since a semi-convex function is a difference
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of a convex function and a positive multiple of the function ‖x‖2, it is easy to verify that
there exists C ≥ 0 such that for any x1, x2 ∈ domF ∩ B (x̄, ε) and ξ ∈ ∂πF (x1)

F (x2) ≥ F(x1) + 〈ξ, x2 − x1〉 − C‖x2 − x1‖2.

Now, given any x ∈ B (x̄, ε/2), since ∂πF (x) = ∂F (x), X π is closed and and hence we
can find x0, the projection of x on X π , i.e., ‖x0 − x‖ = dist(x,X π ). Then

‖x0 − x̄‖ ≤ ‖x0 − x‖ + ‖x − x̄‖ ≤ 2‖x − x̄‖ ≤ ε,

and thus by (4.19), F(x0) = F(x̄). Therefore, for any ξ ∈ ∂πF (x), we have

F(x̄) = F(x0) ≥ F(x) + 〈ξ, x0 − x〉 − C‖x0 − x‖2 ≥ F(x) − ‖ξ‖‖x0 − x‖ − C‖x0 − x‖2.

By the arbitrariness of ξ , we have

F(x̄) ≥ F(x) − dist(0, ∂πF (x))dist(x,X π ) − Cdist2(x,X π ).

Combing with (4.18), we get

F(x) − F(x̄) ≤ (C + κ)dist2(0, ∂πF (x)), ∀x ∈ B

(
x̄,

ε

2

)
.

By definition, F satisfies the KL property with an exponent of 1
2 at x̄.

4.3 Calmness ofScano in Convergence Analysis and KL Exponent Calculus

We next discuss applications of the calmness of Scano in convergence analysis and KL
exponent calculus, justifying the promised (R2) and (R3) in Section 1. As discussed at the
beginning of this section, the calmness of SPG at (0, x̄) is a sufficient condition for the PG-
iteration-based error bound to hold at x̄. Hence we obtain the following linear convergence
result of the PG method for nonconvex problems.

Theorem 7 Assume γ < 1
L

. Let the sequence {xk} be generated by the PG method with x̄

as an accumulation point. Then x̄ ∈ X π . Moreover if the proper separation of stationary
value (3.3) holds at x̄ and the set-valued map Scano is calm at (0, x̄), then the sequence{
xk
}

converges to x̄ linearly in the sense of Theorem 5.

Proof The conclusion x̄ ∈ X π follows from Theorem 5 and hence we only need to prove
the linear convergence. By Theorem 6(ii), the calmness of SPG at (0, x̄) follows from the
assumed calmness of Scano at (0, x̄). And thus there exist κ > 0 and ε > 0 such that

d(x,X π ) ≤ κ‖p‖, ∀x ∈ B(x̄, ε), p ∈ S−1
PG(x).

Using the perturbation analysis technique as in Section 4.1, we obtain (4.2), i.e., xk+1 ∈
SPG(pk+1), where pk+1 := xk − xk+1. By taking x = xk+1 and p = pk+1 for sufficiently
large k in the above condition, the PG-iteration-based error bound condition (3.4) at x̄ holds.
Then the convergence result of the sequence {xk} follows from Theorem 5 immediately.
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In [35, Theorem 4.1], assuming that g is convex, the authors show that Luo-Tseng error
bound (1.4) together with the proper separation of stationary value (1.5) are sufficient for
the KL property of F with exponent 1

2 . Theorem 6 inspires a weaker sufficient condition
for the KL property as follows.

Theorem 8 Let x̄ ∈ X π . Suppose that g is semi-convex around x̄ with modulus ρ, the
proper separation of stationary value (3.3) at x̄ holds and the set-valued map Scano is calm
at (0, x̄). Then F has the KL property at x̄ with an exponent of 1

2 .

Proof First, since Scano is calm at (0, x̄), by Theorem 6(ii), SPG is calm at (0, x̄) as well.
It follows by Theorem 6(i)(iv) that the proximal error bound condition (4.6) at x̄ holds with
any γ > 0. Then, as g is semi-convex around x̄ with modulus ρ and the proper separation
of stationary value (3.3) at x̄ holds, the KL property with an exponent of 1

2 of F at x̄ follows
from Theorem 6(vi).

5 Verification of the Calmness ofScano

Based on recent developments in variational analysis, there are more and more sufficient
conditions for verifying calmness of Scano available (see Section 2 for references and dis-
cussions). In this section, we will summarize some of these conditions and demonstrate how
we could verify the desired calmness condition, both for structured convex problems and
general nonconvex problems. Moreover for the structured convex case, we shall discuss the
advantage of using the calmness of Scano instead of the Luo-Tseng error bound in both the
convergence analysis and KL exponent calculus.

5.1 The Calmness ofScano for Structured Convex Problems

It is known that under the structured convex assumption 3, the solution set can be rewritten
as X = {x|0 = Ax − ȳ, 0 ∈ ḡ + ∂g(x)}, where ȳ, ḡ are some constants; see e.g., [60,
Lemma 2]. It then follows that under the structured convex assumption 3, the calmness of
Scano is equivalent to the calmness of the following perturbed solution map:

Γ (p1, p2) = {x|p1 = Ax − ȳ, p2 ∈ ḡ + ∂g(x)}; (5.20)

see e.g., [60, Proposition 7]. The mapping Γ (p1, p2) is the intersection of two mappings
Γ1(p1) and Γ (p2) with Γ1(p1) := {x|p1 = Ax − ȳ} and Γ2(p2) := {x|p2 ∈ ḡ + ∂g(x)}.
Since Γ −1

1 (x) = Ax − ȳ is metrically subregular at (x̄, 0) and Lipschitz continuous, by the
calmness intersection theorem [33, Theorem 3.6], if ∂g is metrically subregular at (x̄,−ḡ)

(equivalently Γ −1
2 (x) = ḡ + ∂g(x) is metrically subregular at (x̄, 0)) and the mapping

Γ̂ (p1) := Γ1(p1) ∩ Γ2(0) is calm at (0, x̄) , then Γ (p1, p2) is calm at (0, 0, x̄). Applying
this technique to the case of g being the group LASSO regularizer, we have the following
linear convergence result.

Proposition 6 Consider the convex optimization problem (1.1) where f satisfies Assump-
tion 3 and g is the group LASSO regularizer. Assume γ < 1

L
. Let the sequence {xk} be

generated by the PG method. Then the sequence
{
xk
}

converges to an optimal solution x̄

linearly in the sense of Theorem 5.
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Proof When g is the group LASSO regularizer, ∂g is metrically subregular at (x̄,−ḡ)

by [64, Proposition 8] and the set {x|0 ∈ ḡ + ∂g(x)} is a convex polyhedral set by
[64, Proposition 7]. Therefore by the well-known Hoffman’s lemma [32], the mapping
Γ̂ (p1) := Γ1(p1) ∩ Γ2(0) is calm at (0, x̄). Hence by using the calmness intersection the-
orem, Γ (p1, p2) is metrically subregular at (0, 0, x̄) which is equvalent to saying that the
set-valued map Scano is calm at (0, x̄) for any x̄ ∈ X . As F is convex, the proper separation
of stationary value (3.3) holds at x̄ for any x̄ ∈ X . Then the linear convergence of sequence
{xk} follows from Theorem 7 immediately.

Recall that the classical result of linear convergence of the PG method under (C3) was
shown by using the Luo-Tseng error bound (see, e.g. [37, 38, 53, 54]). By Theorem 6, when
g is convex, the Luo-Tseng error bound is in general stronger than all calmness conditions
unless the set of stationary points are compact. Hence using the point-based calmness con-
dition instead of the Luo-Tsend error bound, the above result improves the classical result
by removing the compactness assumption on the solution set. This example demonstrates
the advantage of using the point-based calmness condition over the Luo-Tseng error bound
condition and justifies (R5) we have promised in Section 1.

Now consider the structured convex case where g is a convex piecewise linear-quadratic
(PLQ) function. In this case ∂g is a polyhedral multifunction, i.e., its graph is the union of
finitely many polyhedral convex sets. Hence by Robinson’s polyhedral multifunction theory,
Γ is a polyhedral multifunction and hence upper-Lipschitz continuous. Consequently, Γ is
calm at (0, 0, x̄) and therefore the set-valued map Scano is calm at (0, x̄) for any feasible
solution x̄ of (1.1). It follows from Theorem 6 that we have the following result which
has improved the result obtained in [35, Proposition 4.1] by eliminating the compactness
assumption of the solution set.

Proposition 7 Consider convex optimization problem (1.1). If f satisfies Assumption 3 and
g is a convex piecewise linear-quadratic (PLQ) function, then F has the KL property at x̄

with an exponent of 1
2 .

Proof When g is a convex piecewise linear-quadratic (PLQ) function, ∂g is a poly-
hedral multifunction. Hence Γ as defined in (5.20) is a polyhedral multifunction and
upper-Lipschitz continuous by Robinson’s polyhedral multifunction theory (see, e.g.,
[49, Proposition 1]). Thus for any x̄ ∈ X , Γ is calm at (0, 0, x̄), equivalently Scano is
calm at (0, x̄). As F is convex, the proper separation of stationary value (3.3) holds at
x̄. Then we obtained the KL property of F at x̄ with an exponent of 1

2 from Theorem 8
immediately.

Again the improvement is due to the replacement of the Luo-Tseng error bound by the
point-based calmness condition. Moreover this example justifies (R3) we have promised in
Section 1.

5.2 The Calmness ofScano for General Nonconvex Problems

We next develop some verifiable sufficient conditions for the calmness in terms of the prob-
lem data by using Proposition 4(1–3); and then illustrate them by some concrete applications
popularly appearing in statistical learning fields. Note that the condition that gph (∂πg)

is closed around the point (x̄,−∇f (x̄)) is equivalent to the condition gph (∂πg(x)) =
gph (∂g(x)) holds around (x̄,∇ − f (x̄)).
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Theorem 9 Let x̄ ∈ X π . Then the set-valued map Scano is calm at (0, x̄) if one of the
following conditions holds.

1. The mapping ∇f is piecewise affine and ∂πg is a polyhedral multifunction.
2. gph (∂πg) is closed around the point (x̄,−∇f (x̄)) and NNAMCQ holds at x̄:

0 ∈ ξ + ∂〈−∇f, η〉(x̄), (ξ, η) ∈ Ngph(∂π g)(x̄,−∇f (x̄)) =⇒ (ξ, η) = 0.

When g is separable, i.e., g(x) = ∑n
i=1 gi(xi) and f is twice continuoulsy

differentiable, NNAMCQ holds at x̄ if

0 = ξi − ∇fxi
(x̄)T η, (ξi , ηi) ∈ Ngph(∂π gi )(x̄i ,−fxi

(x̄)), i = 1, . . . , n

=⇒ (ξ, η) = 0,

where fxi
denotes the partial derivative of f with respect to xi .

3. gph (∂πg) is closed around the point (x̄, −∇f (x̄)) and FOSCMS holds at x̄: f is twice
continuously differentiable and for every w �= 0 such that

(w,−∇2f (x̄)w) ∈ Tgph(∂π g)(x̄,−∇f (x̄))

one has

0 = ξ−∇2f (x̄)η, (ξ, η) ∈ Ngph(∂π g)((x̄,−∇f (x̄)); (w,−∇2f (x̄)w)) =⇒ (ξ, η) = 0.

When g is separable, FOSCMS holds at x̄ provided that f is twice continuoulsy
differentiable and for every 0 �= w such that

(wi,−∇fxi
(x̄)T w) ∈ Tgph(∂π gi )(x̄i ,−fxi

(x̄)), i = 1, . . . , n,

one has

0 = ξi − ∇fxi
(x̄)T η, (ξi , ηi) ∈ Ngph(∂π gi )((x̄i , −fxi

(x̄)); (wi, −∇fxi
(x̄)T w)), i = 1, . . . , n,

=⇒ (ξ, η) = 0.

Proof Since

X π := {x ∣∣ 0 ∈ ∇f (x) + ∂πg(x)
} = {x ∣∣ (x,−∇f (x)) ∈ gph(∂πg)

}
,

by Proposition 5, the set-valued map M1(x) := ∇f (x)+ ∂πg(x) is metrically subregular at
(x̄, 0) if and only if the set-valued map M2(x) := (−x, ∇f (x)) + gph(∂πg) is metrically
subregular at (x̄, 0, 0). For the nonseparable case, the results follow from Proposition 4(1-
3) and the nonsmooth calculus rule in Proposition 1 by taking P(x) := (x,−∇f (x)) and
D := gph(∂πg). For the separable case, x ∈ X π if and only if

0 ∈ fxi
(x) + ∂πgi(xi) i = 1, 2, . . . , n.

Equivalently x ∈ X π if and only if

(xi,−fxi
(x)) ∈ gph(∂πgi) i = 1, 2, . . . , n.

Denote by

Pi(x) := (xi,−fxi
(x)), Di := gph(∂πgi).

Then x ∈ X π if and only if

Pi(x) ∈ Di, i = 1, 2, . . . , n.
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Table 1 Practical scenarios set II leading to the calmness of Scano under conditions

Scenarios Case 5 Case 6 Case 7 Case 8

f (x)
N∑

i=1
− log

(
1 + edi c

T
i x
) N∑

i=1
e−di c

T
i x

N∑
i=1

− log
(

1 + edi c
T
i x
) N∑

i=1
e−di c

T
i x

g(x) SCAD SCAD MCP MCP

Let P(x) := (P1(x), . . . , Pn(x)) and D := D1 × . . . Dn. Applying Proposition 4(2–3)
and Lemma 1, we obtain the desired results for the separable case.

We list in Table 1 four scenarios of our interest for which the calmness conditions can be
verified according to Theorem 9(2–3). For these four cases, f is chosen from two popular
loss functions, e.g., logistic loss and exponential loss, while g is chosen from SCAD and
MCP penalty functions. The definition of SCAD penalty function is defined as follows, see,
e.g., [19],

SCAD :=
n∑

i=1

φ(xi), where φ(θ) :=

⎧⎪⎨
⎪⎩

λ|θ |, |θ | ≤ λ,
−θ2+2aλ|θ |−λ2

2(a−1)
, λ < |θ | ≤ aλ,

(a+1)λ2

2 , |θ | > aλ,

with θ ∈ R, a > 2 and λ > 0. Straightforward calculation reveals that φ is proximally
regular and

∂φ(θ) = ∂πφ(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, θ < −aλ,

− 1
a−1θ − aλ

a−1 , −aλ ≤ θ < −λ,

−λ, −λ ≤ θ < 0,

[−λ, λ] , θ = 0,

λ, 0 < θ ≤ λ,

− 1
a−1θ + aλ

a−1 , λ < θ ≤ aλ,

0, θ > aλ.

The graph of ∂φ(θ) is marked in bold in Fig. 2.

Fig. 2 Graph of the limiting subdifferential of SCAD penalty
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The definition of MCP penalty function is as follows, see, e.g., [63],

MCP :=
n∑

i=1

ψ(xi), where ψ(θ) :=
{

λ|θ | − θ2

2a
, |θ | ≤ aλ,

aλ2

2 , |θ | > aλ,

with θ ∈ R, a > 1 and λ > 0. In Table 1, we assume that x, ci ∈ R
n, di ∈ R.

We next illustrate how Theorem 9(2-3) can be applied to verify the calmness of Scano

pointwisely of the four cases in Table 1. For simplicity we focus on the case where f (z) =
e−bT z with z, b ∈ R

n and g(z) = ∑n
i=1 φ(zi) is a SCAD penalty. The same technique can

be applied to all the cases listed in Table 1. For simplicity, our discussion is based on a two-
dimensional case. We discuss three kinds of points at which the first point satisfies the strong
metric subregularity (isolated calmness), the second point satisfies the metric subregularity
(calmness) and the third point satisfies the metric regularity (pseudo Lipschitz continuity).

Example 1 Consider problem (1.1) with f (z) = e−b1z1−b2z2 and g(z) = φ(z1)+φ(z2). By
straightforward calculation, we have

∇f (z) = −e−bT zb, ∇fzi
(z) = e−bT zbib, ∇fzi

(z)T w = e−bT zbib
T w.

Case (i): z̄1 = 0, −λ < e−bT z̄ b1 < λ and z̄2 = 0, e−bT z̄ b2 = λ. In this case, from
Fig. 2 it is easy to see that

Tgph(∂π φ)

(
z̄1, e

−bT z̄ b1

)
= {0} × R, Tgph(∂φ)

(
z̄2, e−bT z̄ b2

)
= ({0} × R−) ∪ R+ × {0}).

It follows that w �= 0 such that (wi, −∇fzi
(z̄)T w) ∈ Tgph(∂φ)(z̄i , −fzi

(z̄)), if and only
if w �= 0 and

(w1,−e−bT z̄b1b
T w) ∈ {0} × R, (w2, −e−bT z̄b2b

T w) ∈ ({0} × R−) ∪ R+ × {0}).
(5.21)

However if w �= 0 and (5.21) hold, then w1 = 0, w2 �= 0 and (w2,−e−bT z̄b2b
T w) ∈

R+ × {0}. But this is impossible since e−bT z̄ b2 = λ > 0 implies bT w = 0 which means
w2 = 0. Consequently, T lin

X̃ (z̄) = {0}, which means that FOSCMS holds. In fact in this
case, the set-valued map Scano is actually isolated calm at (0, z̄).

Case (ii): z̄1 = 0, e−bT z̄ b1 = −λ and λ < z̄2 < aλ, e−bT z̄ b2 = λ + z̄2−λ
1−a

and
b2 �= −1/(z̄2 − aλ). In this case, it is easy to see from Fig. 2 that

Tgph(∂φ)

(
z̄1, e−bT z̄ b1

)
= (R− × {0}) ∪ {0} × R+), and

Tgph(∂φ)

(
z̄2, e−bT z̄ b2

)
=
{
t (1,

1

1 − a
) : t ∈ R

}
.

It follows that
(
wi,−∇fzi

(z̄)T w
) ∈ Tgph(∂φ)(z̄i , −fzi

(z̄)), i = 1, 2 if and only if

(w1, −e−bT z̄b1b
T w) ∈ (R− × {0}) ∪ {0} × R+) (w2,−e−bT z̄b2b

T w) = t

(
1,

1

1 − a

)
.

for some t ∈ R. Because e−bT z̄ b1 < 0, if (w1,−e−bT z̄b1b
T w) ∈ (R−×{0}), then bT w = 0

and hence t = 0, w2 = 0. Moreover, since bT w = 0, b1 �= 0, then w1 = 0 as well.
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Therefore (w1, w2) �= 0 such that
(
wi, −∇fzi

(z̄)T w
) ∈ Tgph(∂φ)(z̄i ,−fzi

(z̄)), i = 1, 2 if
and only if (w1, w2) �= 0 such that

(w1,−e−bT z̄b1b
T w) ∈ {0} × R+, (w2,−e−bT z̄b2b

T w) = t

(
1,

1

1 − a

)
,

for some t ∈ R\{0}, if and only if

(w1,−e−bT z̄b1b
T w) = (0, t1), t1 �= 0 (w2,−e−bT z̄b2b

T w) = t2

(
1,

1

1 − a

)
, t2 �= 0.

From Fig. 2, since z̄1 = 0, e−bT z̄b1 = −λ, we have

Ngph(∂φ)

(
(z̄1, e

−bT z̄b1); (0, 1)
)

= R × {0}. (5.22)

Since λ < z̄2 < aλ, e−bT z̄ b2 = λ + z̄2−λ
1−a

, we have

Ngph(∂φ)

(
(z̄2, e

−bT z̄b2); (1,
1

1 − a
)

)
= {u(1, a − 1) : u ∈ R} . (5.23)

Suppose that

(w1, w2) �= 0,
(
wi,−∇fzi

(z̄)T w
)

∈ Tgph(∂φ)(z̄i ,−fzi
(z̄)), i = 1, 2,

0 = ξi − ∇fzi
(z̄)T η, (ξi , ηi) ∈ Ngph(∂φ)((z̄i ,−fzi

(z̄));
(
wi,−∇fzi

(z̄)T w
)
), i = 1, 2.

Then from the analysis above,

(w1, −e−bT z̄b1b
T w) = (0, t1), t1 �= 0 (w2, −e−bT z̄b2b

T w) = t2

(
1,

1

1 − a

)
, t2 �= 0

0 = ξ1 − e−bT z̄ b1(b1η1 + b2η2), 0 = ξ2 − e−bT z̄ b2(b1η1 + b2η2), (5.24)

(ξ1, η1) ∈ R × {0}, (ξ2, η2) ∈ {u(1, a − 1) : u ∈ R} ,

where the last inclusions follow by (5.22) and (5.23). It follows that η1 = 0, ξ2 = u, η2 =
u(a − 1). Hence (5.24) becomes

0 = ξ1 − e−bT z̄ b1b2u(a − 1), 0 = u − e−bT z̄ b2
2u(a − 1).

From the second equality, we have

u − b2u(a − 1)e−bT z̄ b2 = u

(
1 − b2(a − 1)(λ + z̄2 − λ

1 − a
)

)

= u (1 + b2(z̄2 − aλ)) = 0,

which implies that u = 0 provided b2 �= −1/(z̄2 − aλ) and hence that ξ1 = 0. It follows
that (ξ, η) = 0. Hence FOSCMS holds at z̄ which implies that the set-valued map Scano is
calm around (0, z̄).
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Case (iii): z̄1 = 0, −λ < e−bT z̄ b1 < λ and 0 < z̄2 < λ, e−bT z̄ b2 = λ. We first
calculate the limiting normal cone to gph (∂φ) at (z̄i , e−bT z̄ bi). From Fig. 2, since z̄1 =
0,−λ < e−bT z̄ b1 < λ, we have

Ngph(∂φ)

(
z̄1, e

−bT z̄b1

)
= R × {0}. (5.25)

Since 0 < z̄2 < λ, e−bT z̄ b2 = λ, we have

Ngph(∂φ)

(
z̄2, e

−bT z̄b2

)
= {0} × R. (5.26)

Suppose that

0 = ξi − ∇fzi
(x̄)T η, (ξi , ηi) ∈ Ngph(∂φ)(z̄i ,−fzi

(z̄)), i = 1, 2.

It follows that

0 = ξ1 − e−bT z̄ b1(b1η1 + b2η2), ξ2 − e−bT z̄ b2(b1η1 + b2η2) = 0.

Then by (5.25)–(5.26) and η1 = 0, ξ2 = 0, it follows that

0 = ξ1 − e−bT z̄ b1b2η2, −b2η2e
−bT z̄ b2 = 0.

which implies ξ1 = η2 = 0. Hence NNAMCQ holds at z̄. So in this case, the set-valued
map Scano is actually pseudo-Lipschitz around (0, z̄).

6 Application of the Perturbation Analysis Technique

Our last goal is to provide an answer to Q. Roughly speaking, the new perturbation analysis
technique determines an appropriately perturbed stationary point set-valued map and hence
the calmness condition tailored to the algorithm under investigation. For example, the per-
turbation analysis technique has shown its power in the recent work [62] for studying linear
convergence of ADMM and its variants, i.e., the original ADMM, the linearized ADMM
and the generalized proximal ADMM. Although the original ADMM and the linearized
ADMM are special cases of the generalized proximal ADMM, we conduct linear conver-
gence analysis separately rather than just for the generalized proximal ADMM as a whole.
Indeed, by adopting the perturbation analysis technique for the original ADMM, the lin-
earized ADMM and the generalized proximal ADMM, the accordingly induced error bound
conditions are significantly different to each other. That is, for a given algorithm, the per-
turbed solution set-valued maps induced by the perturbation analysis technique shed lights
on special algorithmic structures. This enables us to take advantage of special algorithmic
structures more effectively and thus to derive some specific properties. This striking fea-
ture of our study has led to some new results; see, e.g., [36]. After employing perturbation
analysis techniques to identify appropriate forms of the metric subregularity, existing veri-
fiable sufficient conditions for the calmness (see, e.g., Proposition 4) can be thereby used
to verify the error bound conditions. For practical applications with underlying structures,
we may also penetrate the model’s structures to re-characterize the desired subregularity
conditions step by step to find application-driven verifiable characterizations (see, e.g., [60,
62]). In this part, we take the generalized proximal ADMM and PDHG to illustrate how to
determine an appropriate algorithm-tailored error bound condition.
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6.1 Error Bound and Linear Convergence of ADMM

To recall the ADMM, we focus on the convex minimization model with linear constraints
and an objective function which is the sum of two functions without coupled variables:

min
x∈X,y∈Y

θ1(x) + θ2(y)

s.t . Ax + By = b,
(6.27)

where θ1 : Rn1 → R and θ2 : Rn2 → R are both convex (not necessarily smooth) functions,
A ∈ R

m×n1 and B ∈ R
m×n2 are given matrices, X ⊆ R

n1 and Y ⊆ R
n2 are convex sets,

and b ∈ R
m. Define the mapping φ : Rn1 × R

n2 × R
m ⇒ R

n1 × R
n2 × R

m by

φ(x, y, λ) =
⎛
⎝

∂θ1(x) − AT λ + NX(x)

∂θ2(y) − BT λ + NY (y)

Ax + By − b

⎞
⎠ . (6.28)

Then it is obvious that the KKT system can be written as 0 ∈ φ(x, y, λ), where λ

is a multiplier. The iterative scheme of the generalized proximal version of the ADMM
(GPADMM for short) for (6.27) reads as

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xk+1 = arg min
x∈X

{θ1(x) − (λk)T (Ax + Byk − b) + β

2
‖Ax + Byk − b‖2 + 1

2
‖x − xk‖2

D1
},

yk+1 = arg min
y∈Y

{θ2(y) − (λk)T (Axk+1 + By − b) + β

2
‖Axk+1 + By − b‖2 + 1

2
‖y − yk‖2

D2
},

λk+1 = λk − β(Axk+1 + Byk+1 − b),

(6.29)
where λk is an estimate of the Lagrange multiplier, β > 0 is a penalty parameter and D1, D2
are positive semidefinite matrices. By the optimality conditions for the subproblem in each
iteration, we have

⎛
⎜⎝

D1(x
k − xk+1) − βAT B(yk − yk+1)

D2(y
k − yk+1)

1
β
(λk − λk+1)

⎞
⎟⎠ ∈ φ(xk+1, yk+1, λk+1). (6.30)

Following the perturbation technique, we introduce the perturbation based on the
difference between two consecutive generated points, i.e.,

qk+1 = (qk+1
1 , qk+1

2 , qk+1
3 ) :=

(
xk − xk+1, yk − yk+1, λk − λk+1

)
∈ R

n1 × R
n2 × R

m.

The approximate KKT condition (6.30) consequently results in the following inclusion
in a more compact form

pk+1 := H

⎡
⎢⎣

qk+1
1

qk+1
2

qk+1
3

⎤
⎥⎦ ∈ φ(xk+1, yk+1, λk+1), (6.31)

with

H =
⎡
⎣

D1 −βAT B 0
0 D2 0
0 0 1

β
I

⎤
⎦ .
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The compact form (6.31) simply motivates the canonically perturbed KKT solution map
S : Rn1 × R

n2 × R
m ⇒ R

n1 × R
n2 × R

m

S(p) := {(x, y, λ) | p ∈ φ(x, y, λ)} (6.32)

where p = (p1, p2, p3) ∈ R
n1 × R

n2 × R
m is regarded as the canonical perturbation.

Given the convergence of GPADMM, the proof for its linear convergence rate toward a KKT
solution (x∗, y∗, λ∗) is purely technical under the calmness of S(p) at (0, x∗, y∗, λ∗)(see,
e.g., [36, 57]).

If we focus on proximal version of the ADMM (PADMM for short), i.e., D2 = 0 in the
GPADMM (6.29) (including the original ADMM where D1 = D2 = 0), (6.31) reduces as

H0q
k+1 =

⎛
⎝

D1(x
k − xk+1) − βAT B(yk − yk+1)

0
1
β
(λk − λk+1)

⎞
⎠ ∈ φ(xk+1, yk+1, λk+1),

where

qk+1 = (qk+1
1 , qk+1

2 , qk+1
3 ) :=

(
xk − xk+1, yk − yk+1, λk − λk+1

)
∈ R

n1 × R
n2 × R

m,

and

H0 =
⎡
⎣

D1 −βAT B 0
0 0 0
0 0 1

β
I

⎤
⎦ .

In fact, the PADMM iteration introduces no perturbation to the KKT component Sg

where

Sg := {(x, y, λ) | 0 ∈ ∂θ2(y) − BT λ + NY (y)}.
Inspired by this observation, in the recent paper [36], the perturbation technique moti-

vates a partially perturbed KKT mapping SP : R
n1 × R

m ⇒ R
n1 × R

n2 × R
m

as

SP (p) := {(x, y, λ) ∈ Sg | p ∈ φP (x, y, λ)},
where φP : Rn1 × R

n2 × R
m ⇒ R

n1 × R
m is defined as

φP (x, y, λ) =
(

∂θ1(x) − AT λ + NX(x)

Ax + By − b

)
.

The calmness of SP , which is specifically tailored to the sequence {(xk, yk, λk)} gener-
ated by the PADMM, is in general weaker than the calmness of S. However, the calmness
of SP suffices to ensure the linear rate convergence (see [36] for more details).

6.2 Error Bound and Linear Convergence of PDHG

We close this section by considering the min-max problem

min
x

max
y

φ(x, y) := φ1(x) + 〈y,Kx〉 − φ2(y), (6.33)

where x ∈ R
n, y ∈ R

m, φ1 : Rn → (−∞,∞] and φ2 : Rm → (−∞,∞] are convex,
proper, lower semicontinuous convex functions and K ∈ R

m×n is a coupling matrix.
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The work [12] proposed a first-order primal-dual type method named primal-dual hybrid
gradient (PDHG) method, where at any iteration both primal variable x and dual variable
y are updated by descent and ascent gradient projection steps respectively. If the PDHG
method in [12] is applied to the saddle-point problem (6.33) with parameter θ = 1, the
iteration scheme reads as the following.

⎧⎪⎪⎨
⎪⎪⎩

xk+1 = arg min
x

{
φ1(x) + 〈yk,Kx〉 + 1

2τ
‖x − xk‖2

}
,

yk+1 = arg max
y

{
〈y,K(2xk+1 − xk)〉 − φ2(y) − 1

2σ
‖y − yk‖2〉

}
,

where τ, σ > 0 are step size parameter. At iteration k of the PDHG, the optimality condition
expresses as

0 ∈
(

∂φ1(x
k+1) + KT yk+1

∂φ2(y
k+1) − Kxk+1

)
+
( 1

τ
I −KT

−K 1
σ

)(
xk+1 − xk

yk+1 − yk

)
.

Following the perturbation technique, we introduce perturbation to the place where the
difference between two consecutive generated points appears, which further induces the
canonically perturbed solution map S : Rn × R

m ⇒ R
n × R

m

S(p) := {(x, y) | p ∈ T (x, y)}

where p = (p1, p2) ∈ R
n × R

m represents the canonical perturbation, T : Rn+m ⇒ R
n+m

is a set-valued map defined as following

T (x, y) :=
(

∂φ1(x) + KT y

∂φ2(y) − Kx

)
.

Under the calmness of S, the linear convergence of PDHG is purely technical (see [28,
29] for details).

Appendix A

A.1 Proof of Lemma 2

(1) Since xk+1 is the optimal solution of the proximal operation (1.3) with a = xk −
γ∇f (xk), we have

g(xk+1) + 1

2γ

∥∥∥xk+1 −
(
xk − γ∇f (xk)

)∥∥∥
2 ≤ g(xk) + 1

2γ

∥∥∥γ∇f (xk)

∥∥∥
2
,

which can be reformulated as

g(xk+1) + 1

2γ

∥∥∥xk+1 − xk
∥∥∥

2 +
〈
∇f (xk), xk+1 − xk

〉
− g(xk) ≤ 0. (A.34)
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Furthermore, since ∇f (x) is globally Lipschitz continuous with the Lipschitz constant
L, we have

f (xk+1) ≤ f (xk) +
〈
∇f (xk), xk+1 − xk

〉
+ L

2

∥∥∥xk+1 − xk
∥∥∥

2
.

Adding the above inequality to (A.34) we obtain

F(xk+1) − F(xk) ≤
(

L

2
− 1

2γ

)∥∥∥xk+1 − xk
∥∥∥

2
.

As a result if γ < 1
L

we have (3.1) with κ1 := 1
2γ

− L
2 .

(2) By the optimality of xk+1 we have that for any x,

g(xk+1) + 1

2γ

∥∥∥xk+1 − xk + γ∇f (xk)

∥∥∥
2 ≤ g(x) + 1

2γ

∥∥∥x − xk + γ∇f (xk)

∥∥∥
2
,

which can be reformulated as

g(xk+1) − g(x) ≤ 1

2γ

∥∥∥x − xk
∥∥∥

2 − 1

2γ

∥∥∥xk+1 − xk
∥∥∥

2 +
〈
∇f (xk), x − xk+1

〉
.

By the Lipschitz continuity of ∇f (x),

f (x) ≥ f (xk+1) +
〈
∇f (xk+1), x − xk+1

〉
− L

2

∥∥∥x − xk+1
∥∥∥

2
.

By the above two inequalities we obtain

F(xk+1) − F(x) ≤ 1

2γ

∥∥∥x − xk
∥∥∥

2 − 1

2γ

∥∥∥xk+1 − xk
∥∥∥

2 +
〈
∇f (xk), x − xk+1

〉

−
〈
∇f (xk+1), x − xk+1

〉
+ L

2

∥∥∥x − xk+1
∥∥∥

2

≤ 1

γ

∥∥∥x − xk+1
∥∥∥

2 + 1

γ

∥∥∥xk+1 − xk
∥∥∥

2 − 1

2γ

∥∥∥xk+1 − xk
∥∥∥

2

+
〈
∇f (xk) − ∇f (xk+1), x − xk+1

〉
+ L

2

∥∥∥x − xk+1
∥∥∥

2

≤ 1

γ

∥∥∥x − xk+1
∥∥∥

2 + 1

γ

∥∥∥xk+1 − xk
∥∥∥

2 − 1

2γ

∥∥∥xk+1 − xk
∥∥∥

2

+L

2

∥∥∥xk+1 − xk
∥∥∥

2 + 1

2

∥∥∥x − xk+1
∥∥∥

2 + L

2

∥∥∥x − xk+1
∥∥∥

2

=
(

1

γ
+ L + 1

2

)∥∥∥x − xk+1
∥∥∥

2 +
(

L

2
+ 1

2γ

)∥∥∥xk − xk+1
∥∥∥

2
,

from which we can obtain (3.2) with κ2 := max
{(

1
γ

+ L+1
2

)
,
(

L
2 + 1

2γ

)}
.
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A.2 Proof of Theorem 5

In the proof, we denote by ζ := F(x̄) for succinctness. And we recall that the proper
separation of the stationary value condition holds on x̄ ∈ X π , i.e., there exists δ > 0 such
that

x ∈ X π ∩ B(x̄, δ) =⇒ F(x) = F(x̄). (A.35)

Without lost of generality, we assume that ε < δ/(κ + 1) throughout the proof.
Step 1. We prove that x̄ is a stationary point and

lim
k→∞ ‖xk+1 − xk‖ = 0. (A.36)

Adding the inequalities in (3.1) starting from iteration k = 0 to an arbitrary positive
integer K , we obtain

K∑
k=0

∥∥∥xk+1 − xk
∥∥∥

2 ≤ 1

κ1

(
F(x0) − F(xK+1)

)
≤ 1

κ1

(
F(x0) − Fmin

)
< ∞.

It follows that
∑∞

k=0

∥∥xk+1 − xk
∥∥2

< ∞, and consequently (A.36) holds. Let {xki }∞i=1
be a convergent subsequence of

{
xk
}

such that xki → x̄ as i → ∞. Then by (A.36), we
have

lim
i→∞ xki = lim

i→∞ xki−1 = x̄. (A.37)

Since

xki ∈ Proxγ
g

(
xki−1 − γ∇f (xki−1)

)
, (A.38)

let i → ∞ in (A.38) and by the outer semicontinuity of Proxγ
g (·) (see [50, Theorem 1.25])

and continuity of ∇f , we have

x̄ ∈ Proxγ
g (x̄ − γ∇f (x̄)) ,

Using the definition of the proximal operator and applying the optimality condition and
we have

0 ∈ ∇f (x̄) + ∂πg (x̄) ,

and so x̄ ∈ X π .
Step 2. Given ε̂ > 0 such that ε̂ < δ/ε − κ − 1, for each k > 0, we can find x̄k ∈ X π

such that

∥∥∥x̄k − xk
∥∥∥ ≤ min

{√
d
(
xk,X π

)2 + ε̂‖xk − xk−1‖2, d
(
xk,X π

)
+ ε̂‖xk − xk−1‖

}
.

It follows by the cost-to-estimate condition (3.2) we have

F(xk) − F(x̄k) ≤ κ̂2

(
dist

(
xk,X π

)2 +
∥∥∥xk − xk−1

∥∥∥
2
)

, (A.39)
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with κ̂2 = κ2(1 + ε̂). Now we use the method of mathematical induction to prove that there
exists k� > 0 such that for all j ≥ k�,

xj ∈ B (x̄, ε) , xj+1 ∈ B (x̄, ε) , F (x̄j ) = ζ, F (x̄j+1) = ζ , (A.40)

F(xj+1) − ζ ≤ κ̂2

(
dist

(
xj+1,X π

)2 +
∥∥∥xj+1 − xj

∥∥∥
2
)

, (A.41)

j∑
i=k�

∥∥∥xi − xi+1
∥∥∥ ≤

∥∥xk�−1 − xk�
∥∥− ∥∥xj − xj+1

∥∥
2

+c
[√

F(xk�) − ζ −
√

F(xj+1) − ζ
]
,

(A.42)

where the constant c := 2
√

κ̂2(κ
2+1)

κ1
> 0.

By (A.37) and the fact that F is continuous in its domain, there exists k� > 0 such that
xk� ∈ B (x̄, ε), xk�+1 ∈ B (x̄, ε),

∥∥∥xk� − x̄

∥∥∥+
∥∥xk�−1 − xk�

∥∥
2

+ c
[√

F(xk�) − ζ
]

≤ ε

2
, (A.43)

∥∥∥xk+1 − xk
∥∥∥ <

ε

2
, ∀k ≥ k� − 1, (A.44)

∥∥∥x̄k� − x̄

∥∥∥ ≤
∥∥∥x̄k� − xk�

∥∥∥+
∥∥∥xk� − x̄

∥∥∥
(3.4)≤ (κ + ε̂)

∥∥∥xk� − xk�−1
∥∥∥+

∥∥∥xk� − x̄

∥∥∥ < (κ + ε̂ + 2)ε/2 < δ,

which indicates x̄k� ∈ X π ∩ B (x̄, δ). It follows by the proper separation of the stationary
value condition (A.35) that F

(
x̄k�
) = ζ .

Before inducing (A.40)–(A.42), we should get ready by showing that for j ≥ k�, if
(A.40) and (A.41) hold, then

2
∥∥∥xj − xj+1

∥∥∥ ≤ c
[√

F(xj ) − ζ −
√

F(xj+1) − ζ
]

+
∥∥xj − xj+1

∥∥+ ∥∥xj−1 − xj
∥∥

2
.

(A.45)
Firstly, since xj ∈ B (x̄, ε), F(x̄j ) = ζ and (A.39) holds, it follows from (3.4) that

F(xj ) − ζ ≤ κ̂2(κ‖xj − xj−1‖2 + ‖xj − xj−1‖2) = κ2
3 ‖xj − xj−1‖2, (A.46)

where κ3 :=
√

κ̂2
(
κ2 + 1

)
. Similarly, since xj+1 ∈ B (x̄, ε) and F(x̄j+1) = ζ , by (A.39)

and condition (3.4), we have

F(xj+1) − ζ ≤ κ2
3

∥∥∥xj+1 − xj
∥∥∥

2
. (A.47)

As a result, we can obtain

√
F(xj ) − ζ −

√
F(xj+1) − ζ =

(
F(xj ) − ζ

)− (F(xj+1) − ζ
)

√
F(xj ) − ζ +√F(xj+1) − ζ

= F(xj ) − F(xj+1)√
F(xj ) − ζ +√F(xj+1) − ζ

(3.1)(A.46)(A.47)≥ κ1
∥∥xj+1 − xj

∥∥2

κ3
(∥∥xj − xj−1

∥∥+ ∥∥xj+1 − xj
∥∥) .
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After defining c := 2κ3
κ1

, we have

(
c
[√

F(xj ) − ζ −
√

F(xj+1) − ζ
])(∥∥xj − xj+1

∥∥+ ∥∥xj−1 − xj
∥∥

2

)
≥
∥∥∥xj+1 − xj

∥∥∥
2
,

from which by applying ab ≤ ( a+b
2

)2
we establish (A.45).

Next we proceed to prove the three properties (A.40)–(A.42) by induction on j . For
j = k�, we have

xk� ∈ B (x̄, ε) , xk�+1 ∈ B (x̄, ε) , F (x̄k� ) = ζ,

and similar to the estimate of
∥∥x̄k� − x̄

∥∥, we can show

∥∥∥x̄k�+1 − x̄

∥∥∥ ≤ δ.

It follows by (A.35) that F(x̄k�+1) = ζ , and hence by (A.39),

F(xk�+1) − ζ ≤ κ̂2

(
dist

(
xk�+1,X π

)2 +
∥∥∥xk�+1 − xk�

∥∥∥
2
)

,

which is (A.41) with j = k�. Note that property (A.42) for j = k� can be obtained directly
through (A.45).

Now suppose (A.40) (A.41) and (A.42) hold for certain j > k�. By induction we also
want to show that (A.40) (A.41) and (A.42) hold for j + 1. We have

∥∥∥xj+2 − x̄

∥∥∥ ≤
∥∥∥xk� − x̄

∥∥∥+
j∑

i=k�

∥∥∥xi − xi+1
∥∥∥+

∥∥∥xj+1 − xj+2
∥∥∥

<

∥∥∥xk� − x̄

∥∥∥+
∥∥xk�−1 − xk�

∥∥− ∥∥xj − xj+1
∥∥

2

+c
[√

F(xk�) − ζ −
√

F(xj+1) − ζ
]

+ ε

2

≤
∥∥∥xk� − x̄

∥∥∥+
∥∥xk�−1 − xk�

∥∥
2

+ c
[√

F(xk�) − ζ
]

+ ε

2
≤ ε,

where the second inequality follows from (A.42) and (A.44) and the last inequality follows
from (A.43). Since xj+2 ∈ B(x̄, ε), by the definition of x̄j and (3.4), there holds that

∥∥∥x̄j+2 − x̄

∥∥∥ ≤ ‖x̄j+2 − xj+2‖ + ‖xj+2 − x̄‖
≤ (κ + ε̂)‖xj+2 − xj+1‖ + ε

< (κ + ε̂ + 2)ε/2 < δ,

where the third inequality follows from (A.44). It follows from the proper separation of
stationary value assumption (A.35) that F(x̄j+2) = ζ . Consequently by (A.39), we have

F(xj+2) − ζ ≤ κ̂2

(
dist

(
xj+2,X π

)2 +
∥∥∥xj+2 − xj+1

∥∥∥
2
)

.
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So far we have shown that (A.40)-(A.41) hold for j + 1. Moreover

j+1∑
i=k�

∥∥∥xi − xi+1
∥∥∥

(A.42)≤
∥∥xk�−1 − xk�

∥∥− ∥∥xj − xj+1
∥∥

2
+ c

[√
F(xk�) − ζ −

√
F(xj+1) − ζ

]

+
∥∥∥xj+1 − xj+2

∥∥∥
(A.45)≤

∥∥xk�−1 − xk�
∥∥− ∥∥xj − xj+1

∥∥
2

+ c
[√

F(xk�) − ζ −
√

F(xj+1) − ζ
]

+c
[√

F(xj+1) − ζ −
√

F(xj+2) − ζ
]

+
∥∥xj+1 − xj+2

∥∥+ ∥∥xj − xj+1
∥∥

2

−
∥∥∥xj+1 − xj+2

∥∥∥

=
∥∥xk�−1 − xk�

∥∥− ∥∥xj+1 − xj+2
∥∥

2
+ c

[√
F(xk�) − ζ −

√
F(xj+2) − ζ

]
,

from which we obtain (A.42) for j + 1. The desired induction on j is now complete. In
summary, we have now proved the properties (A.40)–(A.42).

Step 3. We prove that the whole sequence {xk} converges to x̄ and (3.5)–(3.6) hold.
By (A.42), for all j ≥ k�

j∑
i=k�

∥∥∥xi − xi+1
∥∥∥ ≤

∥∥xk�−1 − xk�
∥∥− ∥∥xj − xj+1

∥∥
2

+ c
[√

F(xk�) − ζ −
√

F(xj+1) − ζ
]

≤
∥∥xk�−1 − xk�

∥∥
2

+ c
√

F(xk�) − ζ < ∞,

which indicates that
{
xk
}

is a Cauchy sequence. It follows that the whole sequence con-
verges to the stationary point x̄. Further for all k ≥ k�, we have xk ∈ B(x̄, ε). As a result, the
PG-iteration-based error bound condition (3.4) holds on all the iteration points

{
xk
}
k>k�

.
Recall that by (3.1) and (A.47), we have

F(xk+1) − F(xk) ≤ −κ1

∥∥∥xk+1 − xk
∥∥∥

2
,

F (xk+1) − ζ ≤ κ̂2

(
κ2 + 1

) ∥∥∥xk+1 − xk
∥∥∥

2
,

which implies that

F(xk) − F(xk+1) ≥ κ1

κ̂2
(
κ2 + 1

)
(
F(xk+1) − ζ

)
.

We can observe easily that

F(xk) − ζ + ζ − F(xk+1) ≥ κ1

κ̂2
(
κ2 + 1

)
(
F(xk+1) − ζ

)
.
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Thus we have

F(xk+1) − ζ ≤ σ
(
F(xk) − ζ

)
, with σ := 1

1 + κ1
κ̂2(κ2+1)

< 1,

which completes the proof of (3.5).
Inspired by [6], we have following linear convergence result for sequence {xk}. Recall

the sufficient descent property (3.1),

F(xk+1) − F(xk) ≤ −κ1

∥∥∥xk+1 − xk
∥∥∥

2
,

which indicates that there exists a constant C such that

∥∥∥xk+1 − xk
∥∥∥ ≤

√
1

κ1

(
F(xk) − F(xk+1)

) ≤
√

1

κ1

(
F(xk) − ζ

) ≤ C
√

σ
k
.

In addition, we have that

∥∥∥xk − x̄

∥∥∥ ≤
∞∑
i=k

∥∥∥xi − xi+1
∥∥∥ ≤

∞∑
i=k

C
√

σ
i ≤ C

1 − √
σ

√
σ

k
,

which implies (3.6) with ρ0 = C
1−√

σ
.

Acknowledgments The authors would like to thank the anonymous referees for their helpful suggestions
and comments.

References

1. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection meth-
ods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper.
Res. 35(2), 438–457 (2010)

2. Attouch, H., Bolte, J., Svaiter, B.: Convergence of descent methods for semi-algebraic and tame prob-
lems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Math.
Program. 137(1), 91–129 (2013)

3. Aubin, J.: Lipschitz behavior of solutions to convex minimization problems. Math. Oper. Res. 9(1),
87–111 (1984)

4. Bai, K., Ye, J.J., Zhang, J.: Directional quasi-/pseudo-normality as sufficient conditions for metric
subregularity. SIAM J. Optim. 29(4), 2625–2649 (2019)

5. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci. 2(1), 183–202 (2009)

6. Bello-Cruz, J., Li, G., Nghia, T.T.A.: On the Q-linear convergence of forward-backward splitting method
and uniqueness of optimal solution to lasso. arXiv:1806.06333 (2018)

7. Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with
applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2007)

8. Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of Łojasiewicz inequalities: subgradient
flows, talweg, convexity. Trans. Amer. Math. Soc. 362(6), 3319–3363 (2010)

9. Bolte, J., Nguyen, T.P., Peypouquet, J., Suter, B.W.: From error bounds to the complexity of first-order
descent methods for convex functions. Math. Program. 165, 471–507 (2017)

10. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and
nonsmooth problems. Math. Program. 146(1), 459–494 (2014)
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