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Abstract. Discrete approximation, which has been the prevailing scheme in stochas-
tic programming in the past decade, has been extended to distributionally robust op-

timization (DRO) recently. In this paper, we conduct rigorous quantitative stability

analysis of discrete approximation schemes for DRO, which measures the approxi-
mation error in terms of discretization sample size. For the ambiguity set defined

through equality and inequality moment conditions, we quantify the discrepancy be-

tween the discretized ambiguity sets and the original set with respect to the Wasser-
stein metric. To establish the quantitative convergence, we develop a Hoffman error

bound theory with Hoffman constant calculation criteria in a infinite dimensional
space, which can be regarded as a byproduct of independent interest. For the ambi-

guity set defined by Wasserstein ball and moment conditions combined with Wasser-

stein ball, we present similar quantitative stability analysis by taking full advantage
of the convex property inherently admitted by Wasserstein metric. Efficient nu-

merical methods for specifically solving discrete approximation DRO problems with

thousands of samples are also designed. In particular, we reformulate different types
of discrete approximation problems into a class of saddle point problems with com-

pletely separable structures. The stochastic primal-dual hybrid gradient (PDHG) al-
gorithm where in each iteration we update a random subset of the sampled variables

is then amenable as a solution method for the reformulated saddle point problems.

Some preliminary numerical tests are reported.
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1. Introduction

Making an optimal decision under uncertain conditions is typically a challenging

task in decision analysis. The quality of such decisions relies heavily on the information

concerning the underlying uncertainties. Stochastic programming (SP) is a powerful

tool if the uncertainty distributions are completely known. The history of SP can be

traced back to the middle of the last century. So far, a variety of SP models have been

proposed to handle the presence of random data in optimization problems. Prevailing

examples include chance-constrained models, two-and multi-stage models, and mod-

els involving risk measures. For recent developments on SP, we refer the readers to

a monograph [39] and references therein.

Unfortunately, in most real-life applications such as signal processing of mobile ad

hoc networks, the number of samples collected is relatively small. Evaluating the exact

probability of safe operation is somewhat challenging. One remedy for this difficulty is

to adopt a distributionally robust approach. That is, constructing an ambiguity set of

distributions with historical data, computer simulations or subjective judgements that

contains the true distribution with certain confidence. Thus we may choose an optimal

decision on the basis of the worst-case distribution over the ambiguity set. For exam-

ple, some samples can be obtained, it may be more reliable to estimate the moment

information than to evaluate the exact probability. This type of robust optimization

framework can be traced back to the earlier work by Scarf [40]. It has been thoroughly

investigated through research, see, e.g., Žáčková [51], Dupačová [14], and Shapiro

and Ahmed [42]. Over the past few years, it has gained substantial popularity through

further contributions by Bertsimas and Popescu [5], Betsimas et al. [4], Delage and

Ye [11], Goldfarb and Iyengar [19], Mehrotra and Papp [27], Pflug et al. [31], Wiese-

mann et al. [46,47].

One important issue concerning distributionally robust optimization (DRO) is the

design of numerical solvers. Unlike robust optimization problems, DRO problems usu-

ally contain functional variables. Designing implementable and efficient numerical

schemes for solving DRO becomes extraordinarily challenging. Most studies of DRO

have focused on a dual approach. In summary, the technical framework of such ap-

proach has three steps:

• Consider the Lagrange dual of the inner max problem.

• Reformulate the min-max problem as a min-min (combining the min-min by min)

problem with semi-infinite constraints.

• Recast the semi-infinite constraints as a linear semi-definite constraint by S-Lem-

ma or dual method again.

In particular, Wiesemann et al. [48] provides a unified framework of the semi-definite

programming (SDP) reformulation for DRO problems where the ambiguity set is con-

structed through some probabilistic and moment constraints.
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Apart from the mentioned conic reformulation, another important approach pio-

neered by Pflug and Wozabal [31] is to discretize the ambiguity set of DRO problems.

The validity of this scheme depends on the fact that the discretized min-max optimiza-

tion problem is readily tractable in the numerical optimization context. More recently,

Mehrotra and Papp [27] popularize this discretization approach to a general class of

DRO problems. In particular, they design a process that generates a cutting surface of

the inner optimal value at each iteration. Xu et al. [49] also suggest discretizing DRO

problems with moment ambiguity sets, while cutting-plane methods are used to solve

the discretized subproblems. Liu et al. [26] introduce a primal-dual type method to

solve the discrete approximations of DRO problems.

Unlike the dual (tractable reformulation) approach whose validity relies heavily on

specific structures of involved functions and ambiguity set, the discrete approximation

method usually works under less restrictive conditions. Thanks to this feature, the dis-

crete approximation method allows decision makers to construct more informative am-

biguity set and hence broaden the applicable horizon of DRO model to a wider setting.

Typically, the discrete approximation method stays effective when the ambiguity set is

constructed through moment condition with bounded support set, or characterized by

combining the moment information and statistical-based distance. However, practical

implementation of the discrete approximation method requires solving a sequence of

discretized min-max subproblems. The efficiency of this approach then relies substan-

tially on the load of computing subproblems. When the sample size is larger, solving

subproblems becomes a more challenging task. In order to address this issue, it is cru-

cial to establish quantitative proximity from the approximated solution to the optimal

solution in terms of the sample size. In stochastic programming, this stability analy-

sis technique which is pioneered by Römisch in the 1980’s [36], has become widely-

adopted. It has been intensively studied for a wide range of stochastic programming

models, such as chance-constrained problems [38] and stochastic dominance [12]; see

the survey paper [37] and references therein.

Stability analysis of DRO problems with respect to perturbation on the ambigu-

ity set, however, is still in its infancy. It has been recently studied in two notable

works [44, 52]. They present an asymptotic stability analysis of DRO problems under

total variation metric. That is, as the difference between two ambiguity sets tends to

zero under the total variation metric, the associated difference between the optimal so-

lutions/optimal values vanishes. However, the total variation metric between a discrete

probability and a continuous probability equal to 1. Apparently this distance character-

ization is far from suitably acceptable, so the total variation metric cannot be regarded

as an appropriate measure for discrete approximation schemes on DRO problems. To

overcome this issue, one work analyzes the quantitative stability for DRO problems un-

der Wasserstein metric (see, e.g., [15, 25]). They derive a new variant of Hoffman’s

error bound lemma for the moment problem under the Slater condition [25], i.e., the

distance between certain probability measure and the ambiguity set P under a generic

metric with ζ-structure can be estimated through the residual of the moment system.

Unfortunately, the prerequisite Slater condition excludes those cases where the ambi-
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guity sets are defined through equality moment conditions. As commented in [25],

“this is a significant limitation.”

This present paper aims to complete the picture of stability analysis of the discrete

approximation on DRO problems. The main contributions of our paper can be summa-

rized as follows.

• Both recent articles [44, 52] are closely related to error bound theory, while the

difference between these two papers is the spaces where the linear systems are

embedded. Note that the probability space under total variation metric is indeed

a Banach space. Based on this observation, in this present paper, we aim to

illuminate and simplify some of the results in [44, 52]. In particular, inspired by

the celebrated Hoffman lemma in Banach space [6, Theorem 2.200], we shall

provide a new proof of error bound in Theorem 3.1 in order to streamline the

arguments in two previous works [44,52].

• By taking advantage of some established results in [30], together with the cal-

culus criteria for Hoffman’s error bound radius in Euclidean space [24], we shall

establish a quantitative estimation for the distance between P and its discretized

counterpart under Wasserstein metric in terms of the Hausdorff distance between

the support sets of the two ambiguity sets of probability measures, see, e.g., The-

orem 3.2. Our new results further streamline and illuminate the arguments in

three previous works [25,44,52], while improving their results in two ways.

1. Compared to [44,52], we present the quantitative stability of ambiguity sets

through the more appropriate Wasserstein metric instead of total variation

metric.

2. Compared to [25], we focus on more general ambiguity sets which are de-

fined through both equality and inequality moment conditions instead of

only inequality constraints. Moreover, we encounter a surprise that the

quantitative error bound estimation can be established in the absence of

any regularity conditions. This error bound result significantly improves the

previous works [25, 44, 52] where the Slater (or Slater type) conditions are

required.

We also consider the ambiguity set which is characterized through moment in-

formation together with probability distance. This new characterization helps

us to exclude pathological distributions more efficiently. By taking advantage of

the convexity inherently obsessed by Wasserstein metric, we present a quantita-

tive connection between the distance between certain ambiguity set and its dis-

cretized counterpart under Wasserstein metric, see, e.g., Theorem 3.5. Moreover,

with quantification of the difference between the ambiguity set and its discrete

approximation, we present the quantitative stability analysis of discrete approx-

imation schemes for DRO problems, which can be regarded as an extension of

Römisch’s [37] stability results on stochastic programming problem to DRO prob-

lem, see, e.g., Theorem 4.2.
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• To efficiently reduce the computation cost associated with large sample size in

an efficient manner, we reformulate the approximation problem as a saddle point

problem with completely separable structures. A stochastic version primal-dual

hybrid gradient (PDHG) algorithm [8] is therefore amenable as a solution method.

We report the numerical results on a practical portfolio application that demon-

strate the superiority of our approach.

An important byproduct of our analysis, worthy of independent interest, relates

the error bound radius of a generalized linear system in infinite dimensional space.

In fact, in Theorem 3.3, we improve the celebrated Hoffman’s error bound in Banach

space (see [6, Theorem 2.200]) in the sense that we shall provide an explicit calculus

criterion of Hoffman constant.

Throughout this paper, we use the following notations. For vectors a, b ∈ IRn, aT b
denotes the scalar product, ‖a‖, ‖a‖1 and ‖a‖∞ denote the Euclidean norm, 1-norm and

supremum norm, respectively. 〈·, ·〉 denotes a bilinear representation of the expected

value. The dual norm of ‖ · ‖p, p = 1, 2,∞, is ‖a‖p∗ := max{aT b : b ∈ IRn, ‖b‖p = 1}.

Let dp(x,D) := infx′∈D ‖x − x′‖p denote the p-distance from a point x to a set D. For

two compact sets C and D, D(C,D) := supx∈C dp(x,D) denotes the deviation of C from

D and H(C,D) := max(D(C,D),D(D, C)) denotes the Hausdorff distance between C
and D. Moreover, C + D denotes the Minkowski addition of the two sets, that is,

{C +D : C ∈ C,D ∈ D}. For a sequence of subsets {Ck} in a metric space, we follow

the standard notation [35] by using lim supk→∞ Ck to denote its outer limit, that is,

lim supk→∞ Ck = {x : lim infk→∞ d(x, Ck) = 0}.

2. Metrics of probability measures

In probability theory, various metrics have been introduced to quantify the differ-

ence between two probability measures; see [2, 18]. In this part, we specifically focus

on the Wasserstein metric and the total variation metric, which have been widely used

to study distributionally robust optimization problems, see, e.g., [15,44].

Definition 2.1. Let P,Q ∈ P(Ξ). The Wasserstein metric between P and Q is defined

as

dlW(P,Q) := sup
g∈G

∣

∣EP [g(ξ)] − EQ[g(ξ)]
∣

∣,

where P(Ξ) denotes the set of all probability measures over the set Ξ and

G =
{

g : Ξ → R : g is Lipschitz continuous and Lipschtiz modulus Lg ≤ 1
}

.

By the Kantorovich-Rubinstein theorem, the Wasserstein metric is equivalent to the

Kantorovich metric. Then for any P,Q ∈ P(Ξ), we have

dlW(P,Q) = inf

{
∫

Ξ2

‖ξ1 − ξ2‖π(dξ1, dξ2)

}

,
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where π is a joint distribution of ξ1 and ξ2 with marginal P and Q, respectively, and the

‘inf ’ is taken over all joint distributions π.

Based on the Wasserstein metric, for subsets Q and Q′ of P(Ξ), we may define the

distance from a point Q to the set Q as

dlW(Q,Q) := inf
P∈Q

dlW(Q,P ),

the deviation from the set Q′ to the other set Q as

DW(Q
′,Q) := sup

Q∈Q′

dlW(Q,Q),

the Hausdorff distance between Q and Q′ in the space of probability measures P(Ξ)
as

HW(Q
′,Q) := max

{

DW(Q
′,Q), DW(Q,Q

′)
}

.

Definition 2.2. Let P,Q ∈ P(Ξ). The total variation metric between P and Q is

defined as

dlT(P,Q) := sup
g∈G

∣

∣EP [g(ξ)] − EQ[g(ξ)]
∣

∣,

where

G :=
{

g : Ξ → R : g is B measurable, sup
ξ∈Ξ

|g(ξ)| ≤ 1
}

.

The deviation from one set to the other and the Hausdorff distance between two

sets in the space of probability measures P(Ξ) under total variation metric are defined

respectively as

DT(Q
′,Q) := sup

Q∈Q′

dlT(Q,Q),

HT(Q
′,Q) := max

{

DT(Q
′,Q),DT(Q,Q

′)
}

.

3. Stability of the ambiguity sets

The key issue in stability analysis is to quantify stability of feasible set [12,37] with

respect to some probability metrics. Under extra Lipscthiz and/or growth condition

of the objective function, the stability of optimal value and optimal solutions can be

further quantified. In DRO problems, the ambiguity set is regarded as the feasible set.

In this section, we focus on the quantitative stability of ambiguity sets under certain

perturbations.

3.1. Moment type ambiguity set

There are different approaches to construct the ambiguity set of distributions for the

DRO problem. Among them, the moment type condition gains popularity. The moment
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condition is motivated by the fact that given some historical data, the estimation of

the moments of random parameters is typically easier than the derivation of their true

probability distributions. Over the past several years, DRO problems with moment

constraints have been intensively studied, see, e.g., [11,44,48,55]. Our purpose in this

subsection is to study the moment type ambiguity set

P :=
{

P ∈ P(Ξ) : EP [ψE(ξ)] = µE,EP [ψI(ξ)] ≤ µI

}

, (3.1)

where P(Ξ) denotes the set of all probability measures over the set Ξ, ψE : Ξ → IRp

and ψI : Ξ → IRq−p are random mappings and (µE, µI) is the prior moment information

of (ψE, ψI).
The next theorem is first established by Sun and Xu in [44]. It states that the

distance between a given probability Q and P under total variation metric is linearly

bounded by the residual of the moment system. As promised, we significantly simplify

the proof and illuminate the result in [44] from an error bound perspective.

Theorem 3.1. Assume the Slater type conditions hold, i.e.,

0q ∈ int
{

EP [ψ(ξ)] : P ∈ P(Ξ)
}

−K,

where int denotes the interior of a set,

ψ(ξ) :=

[

ψI(·)
ψE(·)

]

and K := 0p × IRq−p+ . Then there exists a positive constant κ1 such that

dlT(Q,P) ≤ κ0
(

‖〈Q,ψE(ξ)〉 − µE‖+ ‖(〈Q,ψI(ξ)〉 − µI)+‖
)

, ∀Q ∈ P(Ξ). (3.2)

Proof. Obviously, we have

P =
{

P ∈ P(Ξ) : EP [ψE(ξ)] = µE,EP [ψI(ξ)] ≤ µI

}

=
{

P ∈ M+(Ξ) : 〈P, 1〉 = 1, 〈P,ψE(ξ)〉 = µE, 〈P,ψI(ξ)〉 ≤ µI

}

,

where M+(Ξ) denotes the set of all measures on Ξ. Note that total variation is a norm

defined on the space of measures with bounded variation and thus M+(Ξ) is a Banach

space equipped with total variation norm. By [6, Theorem 2.200], straightforwardly

there exists a positive number κ0 such that

dlT(Q,P) ≤ κ0
(

‖〈Q, 1〉 − 1‖+ ‖〈Q,ψE(ξ)〉 − µE‖

+ ‖(〈Q+ ψI(ξ)〉 − µI)+‖
)

, ∀Q ∈ M+(Ξ).

Subsequently, by restricting Q ∈ P(Ξ), we prove (3.2).

Following [44], Zhang et al. [52] extend the error bound result to a general cone

constrained moment system. The proofs in both [44,52] depend on the reformulation
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of the distance as a min-max linear programming problem through the Lagrangian

duality. We provide a more transparent proof in terms of celebrated error bound theory

which streamlines the arguments in [44] and [52].

Moreover, based on Theorem 3.1, Sun and Xu [44] consider the canonically per-

turbed system

P̃ :=
{

P ∈ P(Ξ) : EP [ψE(ξ)] = µN

E ,EP [ψI(ξ)] ≤ µN

I

}

,

and quantify the proximity from P̃ to P under the total variation metric

HT(P̃ ,P) ≤ κ0
(

‖µN

I − µI‖+ ‖µN

E − µE‖
)

. (3.3)

Note that (3.3) has been used to study the stability of one-stage DRO problems when

the prior information (µE, µI) is perturbed. However, Theorem 3.1 fails to offer an

appropriate measure for a discrete approximation of the ambiguity set since the total

variation between a discrete probability and a continuous probability is identically 1.

In order to characterize the convergence of discrete distributions of the ambiguity

set, Liu et al. [25] study the stability under Wasserstein metric instead of total variation

metric. Moreover, an explicit expression of the error bound constant κ0 has been pro-

vided. In particular, [25] considers the case where the ambiguity set is defined through

moment inequality constraints

C =
{

P ∈ P(Ξ) : EP [ψI(ξ)] ≤ µI

}

as well as its discrete approximation

CN =
{

P ∈ P(ΞN) : EP [ψI(ξ)] ≤ µI

}

,

where P(ΞN) denotes the set of all probability measures over the support ΞN and

ΞN := {ξ1, · · · , ξN} is a set of points in Ξ. As ΞN is a discrete set, CN is set of discrete

distributions. Under the Slater condition, i.e., there exists P̄ ∈ P(Ξ) and a positive

number δ > 0 such that EP̄ [ψI(ξ)] + δ ≤ µI, [25, Theorem 12] provides a quantitative

description for the difference between two ambiguity sets

HW(CN, C) ≤ κ2βN, (3.4)

where κ2 is a positive number depending on the diameter of Ξ and the Lipschitz mod-

ulus of ψI, and

βN := max
ξ∈Ξ

min
1≤i≤N

d(ξ, ξi). (3.5)

Compared with the results in [44] (see also (3.3)), (3.4) sheds some light on nu-

merical implementation of the discrete approximation scheme for DRO problems; see,

e.g., [31,49]. However, the Slater condition restricts the application of (3.4) to moment

constraint system with equality constraints. This fact limits the scientific contributions

of (3.4) as a large number of interesting moment based ambiguity sets in the literature

involving equality constraints.
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The limitation inspires us to revisit discrete approximation techniques for DRO

problems. We shall establish error bound results for ambiguity sets defined through

equality and inequality moment constraints, which can be regarded as an extension of

(3.4). Compared with existing results, we mainly focus on the proximity of PN in (3.6)

to P in (3.1) and hence present a quantitative stability analysis without any Slater type

conditions. To streamline the idea of discretization, we let ΞN := {ξ1, · · · , ξN} ⊂ Ξ
be a set of points in Ξ. These points may be samples of ξ or selected in deterministic

manner. We then consider the discrete approximation of P defined in (3.1) as

PN :=
{

P ∈ P(ΞN) : EP [ψE(ξ)] = µE,EP [ψI(ξ)] ≤ µI

}

, (3.6)

where P(ΞN) denotes the set of all probability measures over the support ΞN. Obvi-

ously, PN ⊂ P as ΞN ⊆ Ξ. However, the difference between PN and P is unclear.

Before presenting the quantitative convergence of PN to P, we recall some necessary

preliminaries. For given ΞN = {ξ1, · · · , ξN}, let {Ξ1, · · · ,ΞN} be a Voronoi tessellation of

Ξ (see [30]), i.e.,

Ξi ⊆
{

y ∈ Ξ : ‖y − ξi‖ = min
1≤k≤N

‖y − ξk‖
}

for i = 1, . . . , N

are pairwise disjoint subsets forming a partition of Ξ. For a fixed P ∈ P(Ξ), let

pi = P{ξ ∈ Ξi} for i = 1, . . . , N and define

P rN (·) :=
N
∑

i=1

pi δξi(·).

We call P rN (·) the Voronoi projection of the probability measure P on space P(ΞN). By

definition of Wasserstein metric dlW(·) and (3.5), the following estimation holds [30]

dlW(P,P
r
N ) =

∫

min
1≤i≤N

d(ξ, ξi)dP =
N
∑

i=1

∫

Ξi

d(ξ, ξi)dP ≤ βN. (3.7)

Another result we need is the error bound condition of the linear system in Eu-

clidean space. Since the first paper by Hoffman [20] on 1950’s, many efforts have been

devoted to the calculus of error bound radius. We recall the calculus criteria introduced

in [24]. Before we can do so, we first define a linear system

F :=
{

x ∈ IRn : Ax ≤ b, Cx = d
}

.

Then, according to [24], the distance from any given point x to F can be estimated,

d1(x,F) ≤ κ
(

‖(Ax− b)+‖1 + ‖Cx− d‖1
)

, (3.8)

where

κ := sup























‖u, v‖∞,

‖ATu+ CTv‖∞ = 1, the rows of
(

A
C

)

corresponding to nonzero

elements of

(

u
v

)

are linearly independent























. (3.9)
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We are now ready to present the main theorem of this section, i.e., a quantitative

approximation of PN to P under Wasserstein metric. Together with the Voronoi projec-

tion and Hoffman error bound radius calculation in finite dimensional spaces, we take

full advantage of some intrinsic properties of Wasserstein metric.

Theorem 3.2. Suppose, (a) Ξ is compact, and (b) ψE(·) and ψI(·) are Lipschitz continuous

on Ξ with bounded modulus Lψ. Then, for any N ,

HW(PN,P) ≤ κ1βN, (3.10)

where βN is defined in (3.5) and

κ1 := (1 + κNqLψDiamΞ) (3.11)

with κN estimated by (3.9), q denoting the dimension of (ψE, ψI) and DiamΞ denoting the

diameter of Ξ.

Proof. By the definitions of P and PN, PN ⊂ P in that ΞN ⊂ Ξ. It is sufficient to

show that (3.10) holds for the deviation DW(P,PN). Recall that for any fixed P ∈ P,

P rN denotes Voronoi projection of P . If P rN ∈ PN, then

dlW(P,PN) ≤ dlW(P,P
r
N ) ≤ βN, (3.12)

where the second inequality follows from (3.7). Thus, we are left with the case with

P rN 6∈ PN. As Ξ is a compact set, PN is weakly compact with respect to topology of

weak convergence [30]. Then we may denote QN as the projection of P rN on PN, that

is, QN ∈ PN and dlW(P
r
N , QN) = dlW(P

r
N ,PN). By the triangle inequality of the Wasserstein

metric, we have

dlW(P,PN) ≤ dlW(P,QN) ≤ dlW(P,P
r
N ) + dlW(P

r
N , QN). (3.13)

In what follows, we present an upper bound of dlW(P
r
N , QN) with βN.

By the Kantorovich-Rubinstein theorem, the Wasserstein metric is equivalent to the

Kantorovich metric. Then by the definition of Kantorovich metric, we have

dlW(P
r
N , QN) ≤ DiamΞ‖P

r
N −QN‖1, (3.14)

where DiamΞ denotes the diameter of Ξ. Note that P rN and QN are in Euclidean space,

and Hoffman error (3.8) implies

‖P rN −QN‖1 = d1(P
r
N ,PN)

≤ κN

(

‖〈P rN , ψE(ξ)〉 − µE‖1 + ‖(〈P rN , ψI(ξ)〉 − µI)+‖1
)

≤ κN

(

‖〈P rN , ψE(ξ)〉 − 〈P,ψE(ξ)〉‖1 + ‖〈P rN , ψI(ξ)〉 − 〈P,ψI(ξ)〉‖1
)

≤ κNqLψdlW(P,P
r
N )

≤ κNqLψβN, (3.15)
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where the first inequality follows from the Hoffman error bound (3.8), the second

inequality follows from the feasibility of P which means

〈P,ψE(ξ)〉 = 0, 〈P,ψI(ξ)〉 ≤ 0,

the third inequality follows from the definition of dlW(·) and the Lipschitz continuity of

ψE(·) and ψE(·).
Combining (3.12)-(3.15), we obtain that desired inequality that

dlW(P,PN) ≤ (1 + κNqLψDiamΞ)βN.

This completes the proof.

As we emphasized, Theorem 3.2 illuminates the arguments in [44, 52] from an

error bound perspective, while simplifying and improving their results. Moreover, in

the absence of the Slater condition, Theorem 3.2 also extends [25] to the case where

the ambiguity set is defined through equality and inequality constraints.

Remark 3.1. It is known that the propagation of the discrepancy (approximation error)

for a DRO problem quantifies the difference between the discretized ambiguity set

and the original one under some appropriate metrics. Based on Theorem 3.2, it is

not difficult to quantify the optimal values and optimal solutions of one-stage DRO

problem [25,44,52] or two-stage DRO problem [32] where the ambiguity set is defined

by generalized prior equality and inequality moment conditions.

The discrete set ΞN can be generated in different ways. If ΞN is constructed in

a deterministic way, we can explicitly characterize κN through (3.9). Moreover, for the

discrete sets ΞN’ ⊂ ΞN”, the Hoffman constant κN” ≤ κN’. Therefore, κ1 in Theorem 3.2

is monotonically decreasing with respect to increasing N . This observation inspires an

approachable scheme to estimate κN; see the following simple Example 3.1 for illustra-

tion.

Example 3.1. Consider the following ambiguity set

P =

{

P ∈ P([a, b]) :
EP [ξ] = µ0,
EP

[

(ξ − µ0)(ξ − µ0)
]

≤ σ0

}

,

where µ0 and σ0 denote the estimation of mean and variance of the random variable ξ
respectively, 0 < a < b <∞. The first equality constraint means that we have complete

information on mean value. Let ΞN := {ξ1, · · · , ξN} ⊆ [a, b]. We may consider the

discrete approximation

PN =

{

P ∈ P(ΞN) :
EP [ξ] = µ0,
EP [(ξ − µ0)(ξ − µ0)] ≤ σ0

}

.

The estimation of the Hoffman constants can be obtained by solving a convex program-

ming problem in the form of (3.9). Obviously, the feasible set of optimization problem

in the form of (3.9) turns out to be
{

(u, v); v ≥ 0, |uξi + v(ξi − µ0)
2| ≤ 1, i = 1, . . . , N

}

.
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WhenN increases, the above feasible set is shrinking. Thus ΞN’ ⊆ ΞN” ifN ′′ > N ′, which

implies that κN” ≤ κN’. Subsequently, we may first calculate κM with ΞM := {ξ1, · · · , ξM}
and then set κN := κM for N ≥ M if the sample is chosen in a proper way. Note that in

this setting κN can be determined regardless of the value of N .

Example 3.1 reveals the underlying monotonicity of the Hoffman constant of dis-

crete ambiguity set PN with respect to the change of N . This observation motivates

an approachable scheme to calculate a predeterminable error bound constant κ1 in

(3.10). Note that this scheme is implementable without the Slater condition. The

results in [25] have been improved by Theorem 3.2.

It is worth mentioning that (3.10) in Theorem 3.2 is not a standard error bound

admitted by the moment system (3.1). Indeed, the residual function in (3.10) is βN

which cannot match the canonical perturbation to the moment system (3.1). We may

next present the typical Hoffman’s error bound of system (3.1) under Wasserstein met-

ric, where the insight in Example 3.1 is still indispensable. Before we can do so, for

simplicity, we rewrite system (3.1) as

P :=
{

P ∈ P(Ξ) : 〈P,ψE(ξ)〉 = µE, 〈P,ψI(ξ)〉 ≤ µI

}

,

where µE and µI are scalars.

Theorem 3.3. Suppose, (a) Ξ is compact, and (b) ψE(·) and ψI(·) are Lipschitz continuous

on Ξ with bounded modulus Lψ. Then,

dlW(P,P) ≤ κW

(

|〈P,ψE(·)〉 − µE|+ (〈P,ψI(·)〉 − µI)+
)

, ∀P ∈ P(Ξ), (3.16)

where κW = DiamΞκM, with DiamΞ denoting the diameter of Ξ and κM
† is the Hoffman

constant of the discrete approximation PM which can be calculated by (3.8).

Proof. In order to prove (3.16), we shall show that, there exists a constant κW such

that, for any ǫ > 0,

dlW(P,P) ≤ ǫ+ κW

(

|〈P,ψE(·)〉 − µE|+ (〈P,ψI(·)〉 − µI)+
)

, ∀P ∈ P(Ξ). (3.17)

Let ΞN := {ξ1, · · · , ξN} ⊆ Ξ. Throughout this proof, we set that ΞN’ ⊆ ΞN” for any

N′ ≤ N′′. Denote the Hoffman constant of linear system

PN :=
{

P ∈ P(ΞN) : 〈P,ψE(ξ)〉 = µE, 〈P,ψI(ξ)〉 ≤ µI

}

under 1-norm as κN, that is

d1(PN,PN) ≤ κN

(

‖〈PN, ψE(ξ)〉 − µE‖1 + ‖(〈PN, ψI(ξ)〉 − µI)+‖1
)

, ∀P ∈ P(ΞN).

Then, by the analysis of Example 3.1, κN” ≤ κN’ for any N′ ≤ N′′.

†κM is a constant which is monotonically decreasing in M , that is, κM” ≤ κM’ if ΞM’ ⊆ ΞM”, see Example 3.1

for details.
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For any given ǫ > 0, there exists a sufficiently large N and the corresponding set

ΞN := {ξ1, · · · , ξN} ⊆ Ξ such that βN ≤ ǫ/κ∗, where βN is defined as in (3.5),

κ∗ = 2DiamΞκMLψ + 1

and κM (M ≤ N) is the Hoffman constant of linear system under 1-norm which is

estimated in terms of (3.9). Recall that for any fixed P ∈ P(Ξ), P rN denotes Voronoi

projection of P onto P(ΞN). Hence,

dlW(P,P)

≤ dlW(P,P
r
N ) + dlW(P

r
N ,P)

≤ dlW(P,P
r
N ) + dlW(P

r
N ,PN)

≤ dlW(P,P
r
N ) + DiamΞκM

(

|〈P rN , ψE(·)〉 − µE|+ (〈P rN , ψI(·)〉 − µI)+
)

≤ dlW(P,P
r
N ) + DiamΞκM

(

|〈P rN − P,ψE(·)〉|+ |〈P,ψE(·)〉 − µE|

+ |〈P rN − P,ψI(·)〉|+ (〈P,ψI(·)〉 − µI)+
)

≤
ǫ

κ∗
+

2

κ∗
DiamΞLψκMǫ+ DiamΞκM

(

|〈P,ψE(·)〉 − µE|+ (〈P,ψI(·)〉 − µI)+
)

≤ ǫ+ DiamΞκM

(

|〈P,ψE(·)〉 − µE|+ (〈P,ψI(·)〉 − µI)+
)

,

where the first inequality follows from the triangle inequality of Wasserstein metric, the

second inequality follows from the fact that PN ⊆ P, and the third inequality follows

from the (3.14), (3.15) and the fact that κN ≤ κM for any M ≤ N, the last inequality

follows from the definition of κ∗. The proof is then complete.

Theorem 3.3 acts as the Hoffman’s lemma in infinite dimension space. The modulus

κM can be calculated first for any given sample ΞM := {ξ1, · · · , ξM} ⊆ Ξ. In fact, the er-

ror bound modulus calculation can be further enhanced while larger M induces tighter

estimation. As we commented at the beginning of this section, [6, Theorem 2.200]

presents a similar result for a linear system in Banach Space. Consider the linear sys-

tem

Ψ(y, b) :=
{

x ∈ X,Ax = y, 〈x∗, x〉 ≤ b
}

,

where X and Y are Banach spaces and X∗ is the dual space of X. [6, Theorem 2.200]

shows that there exists a constant κ such that

dist
(

x,Ψ(y, b)
)

≤ κ
(

‖Ax− y‖+ [〈x∗, x〉 − b]+
)

.

Theorem 3.3 differs from [6, Theorem 2.200] on several aspects. First, under the

Wasserstein metric, the probability space is actually a Polish space instead of a Banach

space. Second, [6, Theorem 2.200], which is based on the open mapping Theorem,

only states the existence of the Hoffman constant. However, Theorem 3.3 which takes

full advantage of the monotonicity of Hoffman constant in finite dimensional space,

presents an explicit estimation of the Hoffman constant. Thus Theorem 3.3 offers more

appropriate a tool for quantitative stability analysis; see, e.g., Example 3.2. Together
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with Theorem 3.1, Theorem 3.3 significantly improves the results in [44, 52]. On the

other hand, [25, Theorem 2] also presents a Hoffman’s lemma with explicit modulus

estimation equipped with a more general probability metric, i.e., ζ-structure metric.

Unfortunately, their contribution is limited by strict assumption, i.e., the Slater con-

straint qualification.

Remark 3.2. As far as we know, Theorem 3.3 turns out to be the first Hoffman’s lemma

in infinite dimensional non-Banach space with explicit error bound modulus estimation.

The simple technique in the proof of Theorem 3.3 may shed some light on studying

Hoffman error bound admitted by distributionally robust ambiguity set under different

probability metrics such as bounded Lipschitz metric, Fortet-Mourier metric.

We close this part with an illustrative example which emphasizes our improvement

to [44,52].

Example 3.2. Sun and Xu [44] consider the canonically perturbed ambiguity set (3.1)

to P as

P ′ :=
{

P ∈ P(Ξ) : EP [ψE(ξ)] = µ′E,EP [ψI(ξ)] ≤ µ′I
}

.

In particular, [44] shows that there exists a constant κ such that

HT(P
′,P) ≤ κ

(

‖µ′E − µE‖+ ‖µ′I − µI‖
)

.

By Theorem 3.3, we arrive at the error bound

HW(P
′,P) ≤ κW

(

‖µ′E − µE‖+ ‖µ′I − µI‖
)

, (3.18)

where κW admits an explicit estimation while [44] only concerns the existence of κ.

Moreover, we may consider the following perturbed system:

P ′
N :=

{

P ∈ P(ΞN) : EP [ψE(ξ)] = µ′E,EP [ψI(ξ)] ≤ µ′I
}

.

By Theorems 3.2 and 3.3, it is easy to see that

HW(P
′
N,P) ≤ max{κW, κ1}

(

‖µ′E − µE‖+ ‖µ′I − µI‖+ βN

)

. (3.19)

Unfortunately, [44] fails to characterize the proximity of P ′
N to P as the total variation

metric between a discrete probability distribution and a continuous probability distri-

bution is identically 1. Leveraging (3.18) and (3.19) opens a new door to quantifying

the stability of DRO problem; details are discussed in the next section.

3.2. Distance type ambiguity set

Another popular characterization of ambiguity set is through certain distance de-

fined in probability space, such as Kullback-Leibler divergence [21, 22], Wasserstein

metric [15, 30, 31, 53]. In particular, the ambiguity set contains a collection of distri-

butions that are sufficiently close to a given nominal distribution with respect to given
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metric. Moreover, the distance type ambiguity sets offer powerful out-of-sample per-

formance guarantees and enjoy convergence properties [15].

In this part, we consider the case that the ambiguity set is defined as a Wasserstein

ball

PW :=
{

Q ∈ P(Ξ) : dlW(Q,P0) ≤ c
}

, (3.20)

where P0 is a nominal probability distribution and c is a small positive number rep-

resenting the robustness of the ambiguity set. Of course, with the growth of c,PW

becomes larger and hence admits a higher probability to contain the true distribution.

When the nominal distribution is in the form of empirical distributions, the parameter

c can be chosen appropriately by statistical methods. Suppose that the empirical dis-

tribution, denoted by PN , is constructed through collections of historical data. If there

exists a constant α > 1 such that EP [exp(‖ξ‖
α)] < ∞, Esfahani and Kuhn [15] have

shown that for a general k-dimension (e.g., k > 2) supporting space Ξ,

P
(

dlW(P,PN ) ≤ θ
)

≥ 1− C
(

exp
(

− cNθk
)

1{θ≤1} + exp
(

− cNθα
)

1{θ>1}

)

, (3.21)

where N is the number of historical data, and C and c are positive constant numbers.

The Eq. (3.21) provides finite sample guarantee property as well as asymptotic guar-

antee property. This nice feature allows us to adjust the radius θ of the Wasserstein

ball such that the ambiguity set contains the true distribution P with a given proba-

bility threshold. Moreover, (3.21) implies that the ambiguity set converges to the true

distribution P as the sample size N goes to infinity. See [53] for similar statistical

evidence.

Under certain structural conditions, the popular tractable conic reformulation ap-

proach works for DRO problems with ambiguity set PW; see, e.g., [15,53]. Apart from

the dual trackable scheme, recently, Shafieezadeh-Abadeh et al. [41] and Gao et al. [16]

establish an equivalence between DRO problems with ambiguity set PW and certain reg-

ularized reformulations. This equivalence paves a new way to investigate solving DRO

numerically when the regularization admits explicit expression. In particular, when the

objective function follows linear structure, which gains popularity in statistics, efficient

algorithms can be designed accordingly.

In this present paper, we focus on the discrete approximation method which to

some extent offers a complementarity for the dual tractable approach and equivalent

regularization scheme. In fact, the discrete method has been discussed in generative

adversarial networks [1]. Consider the discrete approximation of PW:

PN

W :=
{

Q ∈ P(ΞN) : dlW(Q,P0) ≤ c
}

, (3.22)

where ΞN := {ξ̂1, · · · , ξ̂N}. The following theorem estimates the proximity from PN
W to

PW.

Theorem 3.4. Suppose Ξ is compact. Then, for any N ,

HW(P
N

W,PW) ≤ 2βN, (3.23)

where βN is defined in (3.5).
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Proof. By the definitions of PN
W and PW, PN

W ⊆ PW since ΞN ⊂ Ξ. In order to prove

(3.23), it is sufficient to show that the deviation DW(PW,P
N
W) ≤ 2βN. For any P ∈ PW, P rN

denotes Voronoi projection of P . Then by the triangle inequality of Wasserstein metric,

dlW(P
r
N , P0) ≤ dlW(P

r
N , P ) + dlW(P,P0) ≤ βN + c.

Denote λ = βN

βN+c
and Pλ := (1 − λ)P rN + λP0. By the convexity inherently obsessed by

Wasserstein metric [30, Lemma 2.10],

dlW(P
r
N , Pλ) ≤ (1− λ)dlW(P

r
N , P

r
N ) + λdlW(P

r
N , P0) ≤ λ(βN + c) = βN,

dlW(Pλ, P0) ≤ (1− λ)dlW(P
r
N , P0) + λdlW(P0, P0) ≤ (1− λ)(βN + c) = c.

Subsequently, Pλ ∈ PN
W and

dlW(P,P
N

W) ≤ dlW(P,P
r
N ) + dlW(P

r
N , Pλ) ≤ 2βN.

The proof is complete.

As we may observe, the convexity admitted by the Wassertein metric plays a key role

in the proof of Theorem 3.4. In particular, the convexity ensures the connectedness of

the space P(Ξ) and hence the existence of Pλ. In fact, for other distance type ambiguity

sets, the result in Theorem 3.4 remains valid once the associated distance admits the

convex property. Thanks to Theorem 3.4, the discrete approximation scheme for DRO

problems with distance type ambiguity set can be therefore quantified.

3.3. Mixture of moment conditions and Wasserstein metric

A friendly ambiguity set should be informative enough to include the true distribu-

tion and meanwhile precise enough to exclude pathological distributions. Although the

moment type ambiguity is usually the first option, unfortunately, as aforementioned,

the moment type ambiguity set does not enjoy a convergence property. The distance

type ambiguity set, on the other hand, enjoys the convergence property. However, it

fails to characterize distributions with desired moment information. In order to meet

the needs, it is then natural for us to consider a mixture of these two types ambiguity

set. To this end, we shall define ambiguity set as

Q =

{

P ∈ P(Ξ) :
EP [ψE(ξ)] = µE, EP [ψI(ξ)] ≤ µI,
dlW(P,P0) ≤ c

}

, (3.24)

where µE and µI are defined in (3.1) and c is defined in (3.20). Ambiguity set Q
characterizes both the moment information and distance information, thus pathological

distributions should be ruled out efficiently.

Ambiguity set defined in Q (3.24) has been studied by Gao and Kleywegt [17].

In particular, [17] establishes the dual tractable reformulation of the DRO problem

with ambiguity set Q, i.e., the DRO problem can be reformulated as a semi-definite

programming when the involved objective function is piecewise linear. Moreover, the
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numerical experiments in [17] indicate a superior out-of-sample performance. In this

part, we mainly focus on the cases where the DRO problem with ambiguity set Q that

can not be reformulated as a semi-definite programming. For example, the support set

Ξ is bounded and the objective does not have the special structure. In particular, we

consider the discrete approximation schemes for the DRO problem with ambiguity set

Q. For this purpose, we first define the discrete approximation of Q on P(ΞN)

QN =

{

P ∈ P(ΞN) :
EP [ψE(ξ)] = µE, EP [ψI(ξ)] ≤ µI,
dlW(P,P0) ≤ c

}

. (3.25)

In what follows, we shall quantify the converge of QN to Q. Recall that

Q = P ∩ PW, QN = PN ∩ PN

W,

where P,PN and PW,P
N
W are defined in Sections 3.1 and 3.2, respectively. The following

theorem presents the quantitative convergence of the discrete approximation QN to Q.

Theorem 3.5. Suppose (a) the conditions of Theorems 3.2 and 3.4, (b) for any given N ,

P0 ∈ QN. Then, for any N ,

HW(QN,Q) ≤ κ3βN, (3.26)

where βN is defined in (3.5) and κ3 := (2κ1 + 3) with κ1 is defined as in (3.11).

Proof. By the definitions of Q and QN, QN ⊂ Q in that ΞN ⊂ Ξ. It is sufficient to

show (3.26) holds for the deviation DW(Q,QN). Denotes Voronoi projection of P ∈ Q
as P rN . If P rN ∈ QN, then

dlW(P,QN) ≤ dlW(P,P
r
N ) ≤ βN,

where the second inequality follows from (3.7). Thus, we are left with the case with

P rN 6∈ QN.

Denote Q1 as the projection of P rN on PN under the dlW(·). Then

dlW(P
r
N , Q1) = dlW(P

r
N ,PN) ≤ κ1βN,

where the second inequality follows from Theorem 3.2. If Q1 ∈ QN,

dlW(P,QN) ≤ dlW(P,P
r
N ) + dlW(P

r
N , Q1) ≤ (κ1 + 1)βN.

If Q1 6∈ QN,

c < dlW(Q1, P0) ≤ dlW(Q1, P ) + dlW(P,P0) ≤ (κ1 + 1)βN + c,

where c is the parameter in (3.25).

Denote

λ =
(κ1 + 1)βN

(κ1 + 1)βN + c
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and Qλ := (1−λ)Q1+λP0. Since Q1 and P0 are contained in PN and PN is a convex set,

Qλ ∈ PN. Moreover, by the convex property of Wasserstein metric [30, Lemma 2.10],

dlW(Q1, Qλ) ≤ (1− λ)dlW(Q1, Q1) + λdlW(Q1, P0)

≤ λ
(

(κ1 + 1)βN + c
)

= (κ1 + 1)βN,

dlW(Qλ, P0) ≤ (1− λ)dlW(Q1, P0) + λdlW(P0, P0)

≤ (1− λ)
(

(κ1 + 1)βN + c
)

= c.

Then Qλ ∈ QN and

dlW(P,QN) ≤ dlW(P,P
r
N ) + dlW(P

r
N , Q1) + dlW(Q1, Qλ)

≤ (2κ1 + 3)βN.

The proof is complete.

Compared to the moment type ambiguity set P and distance type ambiguity set

PW, Q is more informative by nature. The mixture of moment information and prob-

ability distance helps to exclude pathological distributions efficiently, unfortunately,

it prevents the application of the tractable conic reformulation scheme. The validity

of the dual tractable approach usually requires sophisticated problem structures. The

discrete approximation method, on the other hand, works under less restrictive condi-

tions. Therefore, it seems for solving DRO problems with ambiguity set Q, the discrete

approximation method serves as a reliable numerical scheme. In order to quantify the

proximity of the approximation method through sample size in theory, Theorem 3.5

presents a quantitative description for the difference between two ambiguity sets QN

and Q in terms of Wasserstein metric.

Remark 3.3. The proof of Theorem 3.5 depends on two facts:

(a) the error bound conditions on PN and PN
W share the same residual βN,

(b) the convexity of the Wasserstein metric [30, Lemma 2.10].

According to error bound theory, in general, the intersection of finitely many sets can-

not guarantee the existence of a local error bound even if each single set admits a error

bound. Usually, certain regularity condition, for instance, the bounded linear regularity

condition‡ should be imposed. In fact, if QN (QN = PN∩P
N
W) satisfies the bounded linear

regularity conditions, we may arrive at (3.10) through Theorems 3.2 and 3.4 directly.

However, it is difficult to verify the bounded linear regularity condition even under the

case that PN is a polyhedral set and P0 ∈ PN ∩ PN
W. The underlying reason is that the

Wasserstein metric is not a standard metric in Euclidean space. This feature prevents

us from applying the established results in Banach space.

‡Let C1, · · · , Ck be closed subsets with a non-empty intersection C. We say that the collection C1, · · · , Ck

is boundedly linearly regular if for every bounded subset B, there exists a constant κ such that

d(c, C) ≤ κmax d(c, Ci), ∀c ∈ B.

A sufficient condition of the bounded linear regularity is that Ci, i = 1,m are polyhedral and ∩m
i=1Ci ∩

m
i=1

riCi 6= ∅.
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4. Quantitative stability analysis for DRO problems

With established quantification of the difference between PN and P in the preceding

section, we are now able to investigate how this quantitative difference propagates in

DRO problems. In particular, we trace the changes of optimal values, optimal solutions

as the underlying probability measure varies under appropriate metrics. Indeed, the

stability analysis technique has been intensively adopted for standard stochastic pro-

grams; see [12, 37, 38] and reference therein. We next employ the stability analysis

technique from stochastic programming problems to DRO problems. For this purpose,

we focus on a general form of DRO problem

min
x∈X

sup
P∈P

EP [f(x, ξ)]

s.t. sup
P∈P

EP [g(x, ξ)] ≤ 0,
(4.1)

and its discrete approximation

min
x∈X

sup
P∈PN

EP [f(x, ξ)]

s.t. sup
P∈PN

EP [g(x, ξ)] ≤ 0,
(4.2)

where X is a nonempty compact subset of IRn, f : IRn × Ξ → IR and g : IRn × Ξ → IRd

are Lipschitz continuous functions, and for every ξ ∈ Ξ, g(·, ξ) : IRn → IR is convex and

continuously differentiable. We shall build the relationship between optimal values and

optimal solutions to the approximation problem (4.2) and optimal values and optimal

solutions to the true problem (4.1). Before we can present our main theory, we shall

need the following assumptions.

Assumption 4.1. Assume that problem (4.1) satisfies the following error bound con-

dition:

d(x,F) ≤ κF

∥

∥

∥

(

sup
P∈P

EP [g(x, ξ)]
)

+

∥

∥

∥

1
, ∀x ∈ X, (4.3)

where F denotes the feasible set to problem (4.1) and κF > 0 is the error bound

constant.

Note that (4.3) is an error bound condition for the system of inequalities in the

constraints of problem (4.1). The error bound theory has been well studied, see survey

papers [3, 29]. Under Assumption 4.1, we present the quantitative stability of the

feasible sets of the problems (4.1) and (4.2). For simplicity, we consider the case d = 1,

that is, g(x, ξ) is a scalar function, Note that our result can be extended to vector

function case easily.

Theorem 4.1. Let X be a compact set. Denote F and FN as the feasible sets to problems

(4.1) and (4.2), respectively. Suppose g(x, ·) is Lipschitz continuous in ξ with bounded

Lipschitz modulus L∗ for any x ∈ X. Then
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(i) lim
N→∞

FN = F ,

(ii) if Assumption 4.1 additionally holds, then we have

H (FN,F) ≤ 2L∗κFκβN,

where κF is defined in (4.1) and κ := κ1 for moment type ambiguity set (3.1), κ2
for distance type ambiguity set (3.20) or κ3 for mixed type ambiguity set (3.24).

Proof. Part (i). For any x ∈ F ,

0 ≥ sup
P∈P

EP [g(x, ξ)] ≥ sup
P∈PN

EP [g(x, ξ)],

where the second inequality follows from the fact that PN ⊆ P. Then F ⊂ FN and we

only need to show lim supN→∞FN ⊆ F . Note that

∣

∣

∣
sup
P∈PN

〈P, g(x, ξ)〉 − sup
P∈P

〈P, g(x, ξ)〉
∣

∣

∣
≤ 2L∗

HW(PN,P), (4.4)

where the inequality follows from the Lipschitz continuity of g(x, ·). Let x∗ be an accu-

mulation point of the sequence {xN} with xN ∈ FN. It is easy to show that

lim
N→∞

sup
P∈PN

〈P, g(xN , ξ)〉 = sup
P∈P

〈P, g(x∗, ξ)〉 ≤ 0.

Then we have lim supN→∞FN ⊆ F .

Part (ii). We only have to estimate the deviation D(FN,F) as F ⊆ FN. By Assump-

tion 4.1, for any x ∈ FN, we have

d(x,F) ≤ κF

∣

∣

∣

∣

(

sup
P∈P

EP [g(x, ξ)]
)

+

∣

∣

∣

∣

= κF

(

(

sup
P∈P

EP [g(x, ξ)]
)

+
−

(

sup
P∈PN

EP [g(x, ξ)]
)

+

)

≤ κF

(

sup
P∈P

EP [g(x, ξ)] − sup
P∈PN

EP [g(x, ξ)]

)

≤ 2L∗κFDW(P,PN),

where the second inequality follows from the fact that supP∈PN
EP [g(x, ξ)] ≤ 0, and the

last inequality follows from (4.4). Then, by Theorem 3.2, we have

H (FN,F) ≤ 2L∗κFκβN,

where κF and κ are defined in (4.3) and (3.11), respectively.

With the quantitative stability results of the feasible sets, we are ready to present

the stability of the optimal values.
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Theorem 4.2. Assume the conditions of Theorem 4.1. Assume also that f(·) is Lipschitz

with modulus Lf . Denote SN and S as the sets of optimal solutions to problems (4.2)

and (4.1), respectively, θN and θ be the corresponding optimal values. Then the following

stability properties hold:

(i)

|θ − θN | ≤ (1 + 2L∗κF)LfκβN, (4.5)

where Lf is the Lipschitz modulus of f(·), L∗ is the Lipschitz modulus of g(x, ·) for

any x ∈ X, κF, κ and βN are defined in (4.1), (3.11) and (3.5) respectively,

(ii) lim sup
N→∞

SN ⊆ S,

(iii) if in addition, supP∈P EP [f(x, ξ)] satisfies the growth condition, that is, there exists

a positive constant γ such that

sup
P∈P

EP [f(x, ξ)]− θ ≥ γd(x, S), x ∈ X,

then

D(SN, S) ≤
2

γ
(1 + L∗κF)LfκβN,

where Lf , L
∗, κF, κ and βN are presented in part (i).

Proof. With the convergence of feasible solutions, it is easy to study the stability of

the optimal values and optimal solutions. We sketch the proof for completeness.

Part (i). Let x1 ∈ SN and x2 ∈ S. Denote the projections of x1 and x2 on the sets F
and FN by x∗1 and x∗2, respectively. If θN ≥ θ, then we have

|θ − θN | = sup
P∈PN

EP [f(x1, ξ)]− sup
P∈P

EP [f(x2, ξ)]

≤ sup
P∈PN

EP [f(x
∗
2, ξ)]− sup

P∈P
EP [f(x2, ξ)]

≤
∣

∣

∣
sup
P∈PN

EP [f(x
∗
2, ξ)] − sup

P∈P
EP [f(x

∗
2, ξ)]

∣

∣

∣

+
∣

∣

∣
sup
P∈P

EP [f(x
∗
2, ξ)]− sup

P∈P
EP [f(x2, ξ)]

∣

∣

∣

≤ LfκβN + 2LfL
∗κFκβN

= (1 + 2L∗κF)LfκβN,

where the first inequality follows from the fact that x∗2 ∈ FN, the first item of the third

inequality follows from the definition of dlW(·) and the Lipschitz continuity of f(x, ξ)
with bounded modulus Lf , the second item of the third inequality follows from part

(ii) of Theorem 4.1 and the Lipschitz continuity of f(x, ξ) with bounded modulus Lf .

On the other hand, if θ ≥ θN , then we have

|θ − θN | = sup
P∈P

EP [f(x2, ξ)]− sup
P∈PN

EP [f(x1, ξ)]
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≤ sup
P∈P

EP [f(x
∗
1, ξ)] − sup

P∈PN

EP [f(x1, ξ)]

≤
∣

∣

∣
sup
P∈P

EP [f(x
∗
1, ξ)]− sup

P∈PN

EP [f(x
∗
1, ξ)]

∣

∣

∣

+
∣

∣

∣
sup
P∈PN

EP [f(x
∗
1, ξ)]− sup

P∈PN

EP [f(x1, ξ)]
∣

∣

∣

= (1 + 2L∗κF)LfκβN.

Summarizing the discussion above, we arrive at (4.5).

Part (ii). Let {xN} be a sequence of optimal solutions to the problem (4.2). Taking

a subsequence if necessary, we may assume that limN→∞ xN = x∗. By Theorem 4.1,

x∗ ∈ F . Moreover, note that f(xN ) ≤ θ as F ⊆ FN, then f(x∗) = θ which means

x∗ ∈ S. By the definition of outer limit of set, lim supN→∞ SN ⊆ S.

Part (iii). Let xN ∈ SN be an optimal solution to the problem (4.2). Then we have

γd(xN , S) ≤ sup
P∈P

EP [f(xN , ξ)]− θ

≤
∣

∣

∣
sup
P∈P

EP [f(xN , ξ)]− sup
P∈PN

EP [f(xN , ξ)]
∣

∣

∣

+
∣

∣

∣
sup
P∈PN

EP [f(xN , ξ)]− θ
∣

∣

∣

≤ LfκβN + (1 + 2L∗κF)LfκβN

= 2(1 + L∗κF)LfκβN,

where the first inequality follows from the growth condition, and the third inequality

follows from the Lipschitz continuity of f(x, ξ) with bounded modulus Lf and part (i).

Subsequently, we have

d(xN , S) ≤
2

γ
(1 + L∗κF)LfκβN.

The rest follows from the arbitrariness of xN ∈ SN. The proof is complete.

We close this section with two illustrative examples; one is the standard one stage

DRO problem while the other is the stochastic problem with the distributionally robust

stochastic second order dominance constraints.

Example 4.1. Consider the DRO problem:

min
x∈X

max
P∈P

EP [f(x, ξ)],

where X is a nonempty compact subset of IRn, f : IRn×Ξ → IR is Lipschitz continuous

functions, and P is defined as in Section 3. By introducing an auxiliary variable t, we

may reformulate the DRO problem above as

min
x∈X,t∈IR

t

s.t. max
P∈P

EP [f(x, ξ)]− t ≤ 0.
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Under moderate conditions, for example, the Lipschitz continuity of f(x, ξ) on compact

set X × Ξ, the Slater constraint qualification holds. According to [50], Assumption 4.1

automatically holds, and Theorem 4.2 can be applied to quantify the error proxim-

ity from discrete approximation problems to the original problem in terms of optimal

values and optimal solutions.

Example 4.2. Dentcheva and Ruszczyński [13] propose the following stochastic prob-

lem with the distributionally robust stochastic second order dominance constraints§:

min
x∈X

sup
P∈P

EP [f(x, ξ)]

s.t EP [(t−G(x, ξ))+] ≤ EP [(t− Y (ξ))+], ∀t ∈ T0, P ∈ P,
(4.6)

where X is a nonempty compact subset of IRn, f : IRn × Ξ → IR and G : IRn × Ξ → IR
are Lipschitz continuous functions, and for every ξ ∈ Ξ, G(·, ξ) : IRn → IR is concave

and continuously differentiable, Y (ξ) is a random variable which is usually taken as

the benchmark. If problem (4.6) satisfies the uniform robust dominance condition

(see [13, Definition 3] for the details), it is easy to show that Assumption 4.1 holds.¶

Then the requirements of Theorem 4.2 are met, and hence the discrete approximation

approach can be employed to design algorithms.

5. Numerical implementation

In this section, we focus on the numerical implementation of the discrete approx-

imation scheme. We are motivated by a very recent paper [26] which appears to be

the first work applying primal-dual type methods to solve the DRO problems. In [26],

the suggested approach gains its strength from the fact that the DRO problem is ap-

proximated by a sequence of min-max subproblem in a finite Euclidean space, with the

ambiguity set P replaced by a set of discrete distributions. For the development on

numerical schemes for min-max subproblems, there is a vast set of literature. Follow-

ing this thought, [26] suggests applying the discretization technique to approximate

the DRO problem, and then consider the lifting technique to further reformulate the

discretized DRO subproblem as a min-max problem with certain separable structure.

In particular, [26] considers the following DRO problem which is a special case of (4.1)

min
x∈X

max
P∈P

EP [f(x, ξ)]. (5.1)

Denote ΞN := {ξ̂1, · · · , ξ̂N} and restrict the ambiguity set P to P(ΞN), that is, PN :=
P ∩ P(ΞN). By introducing an auxiliary variable t, the discrete approximation of (5.1)

reads as

min
(x,t)∈S

max
P∈PN

〈P, t〉, (5.2)

§The constraints in problem (4.6) is a relaxation of distributionally robust stochastic second order domi-

nance constraints as the index set T is a subset of IR.
¶The norm ‖ · ‖1 in Assumption 4.1 should be replaced by the norm ‖ · ‖∞ with respect to t.
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where

S :=

{

(x, t) :

{

x ∈ X, |ti| ≤ tmax,

f(x, ξ̂i) ≤ ti, i = 1, . . . , N

}

with tmax := maxx∈X,ξ∈Ξ |f(x, ξ)|. Then, [26] implements the primal-dual hybrid

gradient (PDGH) proposed in [7] to the reformulated min-max subproblem (5.2).

That is, starting with some given initial point (x0, t0;P0), PDHG generates a sequence

(xk, tk;Pk) via the scheme























(xk+1, tk+1) = argmin(x,t)∈S

{

1

2τ
‖t− (tk − τ Pk)‖

2

}

,

P̂k+1 = Pk + σ(2tk+1 − tk),

Pk+1 = argminP∈PN

{

1

2σ
‖P − P̂k+1‖

2

}

,

where τ > 0, σ > 0 and στ < 1.

However, in actual applications of DRO, the discrete approximation likely requires

more than thousands of samples PN for the discrete approximation to perform prop-

erly. When the sample size N increases large, this PDHG scheme for solving min-max

subproblems becomes conceptual, and not really a “true” algorithm, in the sense that

it suffers from (at least) two main drawbacks.

• First, each step k requires exact minimization of two large-scale convex optimiza-

tion problems in updating (xk+1, tk+1) and Pk+1. Some parallel computation

techniques can be adopted for updating (xk+1, tk+1), see, e.g., [9, Algorithm 1].

However, the updating for Pk+1 cannot be implemented in parallel as the compo-

nents of variable P is by nature not completely separable. Thus exact minimiza-

tion of at least one large-scale convex optimization problem is inevitable, see,

e.g., step 6 of [9, Algorithm 1]. Consequently, the total computation load in each

iteration k cannot be truly reduced to a friendly level by the parallel technique

considered in [9].

• Secondly, it is a nested scheme which implies two nontrivial issues: (i) accumula-

tions of computational errors in each step k, and (ii) how and when to stop each

step k before passing to the next iteration k + 1.

5.1. Separable reformulation and stochastic primal-dual type method

Seeking to address the above issues, in this work, instead of solving the discretized

min-max subproblem directly, we reformulated the approximation subproblem into

saddle point problem form with the help of Fenchel conjugate. As well known, a very

popular algorithm to solve standard saddle point problems is the PDHG. Its popularity

stems from two facts: First, it is easy to implement. Second, it involves only simple

operations like matrix-vector multiplications and evaluations of proximal operations
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which are usually in closed form. However, for large problems even these simple op-

erations might be still too expensive to perform too often. The reformulated saddle

point subproblems of our interest are usually large as the sample size increases. Under

some problem data assumptions, we shall observe an interesting fact that such saddle

point problems always admit completely separable structures, see, e.g., Examples 5.1-

5.3. Thanks to the separable structures, these operations of standard PDHG can be

implemented in a parallel fashion. In this paper, we may adopt a stochastic extension

of the PDHG for separable saddle point problem where not all but only a few of these

operations are performed in each iteration.

We next illustrate how to reformulate the discrete approximation problem (5.2)

into completely separable saddle point problems by three types of examples. We shall

need the structural problem data assumption.

Assumption 5.1. For each fixed ξ, the objective function f(x, ξ) is piecewise linear.

Example 5.1. Consider the discrete approximation of DRO with moment type ambigu-

ity set:

min
x∈X

sup
P∈PK

EP [f(x, ξ)], (5.3)

where

PK :=
{

P ∈ P(ΞK) : EP [ψE(ξ)] = 0,EP [ψI(ξ)] ≤ 0
}

,

and ΞK = {ξ̂1, · · · , ξ̂K}. Reformulating the inner max problem of (5.3) by the Lagrange

dual method, we arrive at the following minimization problem:

inf
x∈X, λ0,λ1,··· ,λp,λp+1≥0,··· ,λq≥0

λ0

s.t. f(x, ξ̂j)−

q
∑

i=1

λiψi(ξ̂j) ≤ λ0,

j = 1, . . . ,K.

(5.4)

If f(x, ξ) satisfies Assumption 5.1, i.e.

f(x, ξ) := max
t=1,...,T0

(

ξTAtx+ bt
)

,

problem (5.4) can be further rewritten as:

inf
x∈X,λ0,λ1,··· ,λp,λp+1≥0,··· ,λq≥0

λ0

s.t. ξ̂Tj Atx+ bt −

q
∑

i=1

λ̂iψi(ξ̂j) ≤ λ0,

j = 1, . . . ,K, t = 1, . . . , T0.

(5.5)

The number of constraints of problem (5.5) depends on the discrete set ΞK, which

can be huge when the sample size increases. This results in ill-conditioned coefficient
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matrix of the constraints in (5.5), and therefore causes difficulty for numerical schemes.

It is then often advantageous to reformulate problem (5.5) as a saddle point problem

by Fenchel conjugate, i.e.,

inf
x∈X,λ∈Λ

max
µ≥0

λ0 +

K
∑

j=1

T0
∑

t=1

µj,t

(

ξ̂Tj Atx+ bt −

q
∑

i=1

λiψi(ξ̂j)− λ0

)

, (5.6)

where

λ := (λ0, · · · , λq)
T ∈ IRq+1, Λ :=

{

λ ∈ IRq+1 : λp+1 ≥ 0, · · · , λq ≥ 0
}

and

µj ∈ IRT0 , j = 1, . . . ,K, µ :=
(

µT1 , · · · , µ
T
K

)T
∈ IRKT0 .

Denote

Aj =







ξ̂Tj A1 −ψ1(ξ̂j) · · · −ψq(ξ̂j) −1
...

...
...

...
...

ξ̂Tj A1 −ψ1(ξ̂j) · · · −ψq(ξ̂j) −1






∈ IRT0×(n+q+1),

B = [b1, · · · , bT0 ]
T ∈ IRT0 , z =

[

xT , λ1, · · · , λq, λ0
]T

∈ IR(n+q+1).

Eq. (5.6) can be reformulated as

inf
x∈X,λ∈Λ

max
µ≥0

λ0 +
K
∑

j=1

(

µTj Ajz +BTµj
)

. (5.7)

Example 5.2. Consider the discrete approximation of DRO with distance type ambigu-

ity set

min
x∈X

sup
P∈PK

W

EP [f(x, ξ)], (5.8)

where

PK
W :=

{

Q ∈ P(ΞK) : dlW(P,P0) ≤ c
}

,

ΞK := {ξ̂1, · · · , ξ̂K} and the nominal distribution P0 is an empirical probability distribu-

tion generated by sample ΞN := {ξ̄1, · · · , ξ̄N}. By employing Lagrange dual method,

we may reformulated problem (5.8) as

inf
x∈X,λ0≥0,λ1,··· ,λN

λ0c+
λ1 + · · ·+ λN

N

s.t. f(x, ξ̂j)− λ0‖ξ̂j − ξ̄i‖ ≤ λi,

j = 1, . . . ,K, i = 1, . . . , N.

(5.9)

Consider the case that f(x, ξ) is piecewise linear function,

f(x, ξ) := max
t=1,...,T0

ξTAtx+ bt.
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Problem (5.9) can be reformulate as

inf
x∈X,λ0≥0,λ1,··· ,λN

λ0c+
λ1 + · · · + λN

N

s.t. ξ̂Tj Atx+ bt − λ0‖ξ̂j − ξ̄i‖ ≤ λi,

j = 1, . . . ,K, t = 1, . . . , T0, i = 1, . . . , N.

(5.10)

We next reformulate problem (5.10) as a saddle point problem by Fenchel conjugate,

i.e.,

inf
x∈X, λ∈Λ

max
µ≥0

λ0c+
λ1 + · · ·+ λN

N

+

K
∑

j=1

T0
∑

t=1

N
∑

i=1

µj,t,i

(

ξ̂Tj Atx+ bt − λ0‖ξ̂j − ξ̄i‖ − λi

)

, (5.11)

where

λ = (λ0, λ1, · · · , λN )
T ∈ IR1+N , Λ :=

{

λ ∈ IR1+N : λ0 ≥ 0
}

,

and

µj = (µ1,1, µ1,2, · · · , µT0,N ) ∈ IRT0N , j = 1, . . . ,K,

µ :=
(

µT1 , · · · , µ
T
K

)T
∈ IRT0KN .

Denote

Aj =





























ξ̂Tj A1 −‖ξ̂j − ξ̄1‖ −1 0 · · ·
...

...
...

...
...

ξ̂Tj A1 −‖ξ̂j − ξ̄N‖ 0 · · · −1
...

...
...

...
...

ξ̂Tj AT0 −‖ξ̂j − ξ̄1‖ −1 0 · · ·
...

...
...

...
...

ξ̂Tj AT0 −‖ξ̂j − ξ̄N‖ 0 · · · −1





























∈ IRT0N×(n+1+N),

B = [b1, · · · , b1, · · · , bT0 , · · · , bT0 ]
T ∈ IRT0N ,

z =
[

xT , λ0, λ1, · · · , λN
]T

∈ IRn+1+N .

We may rewrite the problem (5.11) into a compact form:

inf
x∈X, λ∈Λ

max
µ≥0

λ0c+
λ1 + · · ·+ λN

N
+

K
∑

j=1

(

µjAjz +BTµj
)

. (5.12)
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Example 5.3. Consider the discrete approximation DRO with moment and distance

mixture type ambiguity set

min
x∈X

sup
P∈QN

EP [f(x, ξ)], (5.13)

where

QN =

{

P ∈ P(ΞK) :
EP [ψE(ξ)] = 0, EP [ψI(ξ)] ≤ 0,
dlW(P,P0) ≤ c

}

,

ΞK := {ξ̂1, · · · , ξ̂K} and the nominal distribution P0 is an empirical probability distri-

bution generated by sample {ξ̄1, · · · , ξ̄N}. Similar to the analysis in Examples 5.1 and

5.2, by taking the Lagrange dual of the inner maximum problem of (5.13), we arrive at

inf
x∈X, γ∈Γ,λ∈Λ

λ0c+
λ1 + · · ·+ λN

N

s.t. f(x, ξ̂j)−
q
∑

ς=1
γςψς(ξ̂j)− λ0‖ξ̂j − ξ̄i‖ ≤ λi,

j = 1, . . . ,K, i = 1, . . . , N,

(5.14)

where γ := (γ1, · · · , γq)
T , λ := (λ0, λ1, · · · , λN )

T and

Γ =
{

γ ∈ IRq : γp+1 ≥ 0, · · · , γq ≥ 0
}

, Λ :=
{

λ ∈ IRN+1 : λ0 ≥ 0
}

.

Suppose that f(x, ξ) is piecewise linear function, i.e.

f(x, ξ) := max
t=1,...,T0

(

ξTAtx+ bt
)

.

Problem (5.14) is further expressed as

inf
x∈X, γ∈Γ,λ∈Λ

λ0c+
λ1 + · · ·+ λN

N

s.t. ξ̂Tj Atx+ bt −
q
∑

ς=1
λςψς(ξ̂j)− λ0‖ξ̂j − ξ̄i‖ ≤ λi,

j = 1, . . . ,K, t = 1, . . . , T0, i = 1, . . . , N.

(5.15)

In order to address the issue caused by the ill-conditioned coefficient matrix, we refor-

mulate problem (5.14) as a saddle point problem, i.e.,

inf
x∈X, γ∈Γ,λ∈Λ

max
µ≥0

λ0c+
λ1 + · · · + λN

N
+

K
∑

j=1

T0
∑

t=1

N
∑

i=1

µj,t,i

(

ξ̂Tj Atx

+ bt −

q
∑

ς=1

λςψς(ξ̂j)− λ0‖ξ̂j − ξ̄i‖ − λi

)

, (5.16)

where

µj = (µ1,1, µ1,2, · · · , µT0,N ) ∈ IRT0N , j = 1, . . . ,K,

µ :=
(

µT1 , · · · , µ
T
K

)T
∈ IRT0KN .



Discrete Approximation Scheme in Distributionally Robust Optimization 29

Denote

Aj =





























ξ̂Tj A1 −ψ1(ξ̂j) · · · −ψq(ξ̂j) −‖ξ̂j − ξ̄1‖ −1 0 · · ·
...

...
...

...
...

...
...

...

ξ̂Tj A1 −ψ1(ξ̂j) · · · −ψq(ξ̂j) −‖ξ̂j − ξ̄N‖ 0 0 −1
...

...
...

...
...

...
...

...

ξ̂Tj AT0 −ψ1(ξ̂j) · · · −ψq(ξ̂j) −‖ξ̂j − ξ̄1‖ −1 0 · · ·
...

...
...

...
...

...
...

...

ξ̂Tj AT0 −ψ1(ξ̂j) · · · −ψq(ξ̂j) −‖ξ̂j − ξ̄N‖ 0 0 −1





























∈ IRT0N×(n+q+1+N),

B = [b1, · · · , b1, · · · , bT0 , · · · , bT0 ]
T ∈ IRT0N ,

z =
[

xT , γ1, · · · , γq, λ0, λ1, · · · , λN
]T

∈ IR(n+q+1+N).

Eq. (5.16) can be reformulated as

inf
x∈X, γ∈Γ,λ∈Λ

max
µ≥0

λ0c+
λ1 + · · ·+ λN

N
+

K
∑

j=1

(

µTj Ajz +BTµj
)

. (5.17)

Observation on structures of the reformulated subproblems (5.7), (5.12) and (5.17)

inspires the following a class of convex-concave saddle point problems with separable

structures in variable t:

min
s

max
t
φ1(s) +

M
∑

m=1

〈Ams, tm〉+ φ2(t), (5.18)

where Am are bounded linear operators and φ2(·) are block separable, i.e.

φ2(t) :=

M
∑

m=1

θm(tm).

In general, the saddle point problem (5.18) is numerically trackable by the PDHG.

Specifically, the proximal operators involved in the PDHG are simple and in closed-form

for subproblems (5.7), (5.12) and (5.17) of our interest, see, e.g., Tables 1-3.

In Tables 1-3, given a closed set C,ProjC(a) denotes the projection of point a on

C. Given a convex function g, proximal operator (or proximity/resolvent operator) is

defined as

Proxg(y
∗) = argminy∈Y g(y) +

1

2
‖y − y∗‖2.

Tables 1-3 reveal that, when implementing the PDHG on (5.7), (5.12) and (5.17),

variables µ whose dimension is determined by the sample size K, can be updated in

parallel. This parallel operation may address the computation cost issue when the sam-

ple size K is large. In this present paper, we are more interested in the case where
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Table 1: Closed form of proximal operators: moment type.

s (x, λ)

t µ

φ1(s) λ0 + δX×Λ(x, λ)

φ2(t)
K
∑

j=1

(

BTµj

)

Proxφ1
(s∗) ProjX(x∗)× (λ∗0 − 1, λ∗2 · · · , λ

∗

p)×max{(λ∗p+1, · · · , λ
∗

q), 0}

Proxφ2
(t∗) µ∗

j − BT , j = 1, . . . ,K

Table 2: Closed form of proximal operators: distance type.

s (x, λ)

t µ

φ1(s) λ0c+
λ1+···+λN

N
+ δX×Λ(x, λ)

φ2(t)
K
∑

j=1

(

BTµj

)

Proxφ1
(s∗) ProjX (x∗)×max{λ∗0 − c, 0} × (λ∗1 −

1

N
, · · · , λ∗N − 1

N
)

Proxφ2
(t∗) µ∗

j −BT , j = 1, . . . ,K

Table 3: Closed form of proximal operators: mixture type.

s (x, γ, λ)

t µ

φ1(s) λ0c+
λ1+···+λN

N
+ δX×Γ×Λ(x, γ, λ)

φ2(t)
K
∑

j=1

(

BTµj

)

Proxφ1
(s∗) ProjX(x∗)× (γ∗1 , · · · , γ

∗

p)×max{(γ∗p+1, · · · , γ
∗

q ), 0}

×max{λ∗0 − c, 0} × (λ∗1 −
1

N
, · · · , λ∗N − 1

N
)

Proxφ2
(t∗) µ∗

j −BT , j = 1, . . . ,K

the sample size K is huge. To this end, we adopt the PDHG algorithm in a stochastic

setting proposed in [8] where in each iteration we update a random subset of the sam-

pled variables. Denoting A = (A1; · · · ;AM ), the iteration scheme of stochastic PDHG

for (5.18) reads in Algorithm 5.1. Chambolle et al [8] has studied the convergence and

linear convergence of the stochastic PDHG (under some strongly convex condition) and

shows that stochastic PDHG significantly outperform the PDHG variant on a variety of

imaging tasks.

5.2. Portfolio optimization problem

In this section, we consider the DRO formulation of a portfolio optimization prob-

lem. The stochastic PDHG presented in Algorithm 5.1 to the discretized reformulation
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Algorithm 5.1 Stochastic PDHG method for problem (5.18)

Require: s0, t0, ǫ > 0, τ > 0, σ > 0 and στ < 1
for k = 0, 1, . . . do































sk+1 = Proxφ1
(

sk − τAT t̄k
)

,

select subset Ik+1 of {1, . . . ,M},

tk+1 =

{

Proxφ2
(

tki − σAis
k+1

)

, if i ∈ Ik+1,

tki , if i 6∈ Ik+1,

t̄k+1 = tk+1 − θ(tk+1 − tk).

end for

of the DRO model is implemented. We are interested in maximizing the expected utility

while minimizing the risk which is characterized by the conditional value at risk (CVaR

for short)

min
x∈X

max
P∈P

EP [−f(x, ξ)] + CVaRPα
(

− f(x, ξ)
)

, (5.19)

where

f(x, ξ) := r1x1 + · · ·+ rkxk,

and CVaRPα is short for conditional value-at-risk and ‘α’ is the confidence level of α
under the distribution P . For simplicity, we assume no trading fee. By employing the

reformulation of CVaR [34], problem (5.19) can be reformulated as

min
x∈X,τ∈IR

max
P∈P

EP

[

max{a1f(x, ξ) + b1τ, a2f(x, ξ) + b2τ}
]

, (5.20)

where

a1 = −1, a2 = −1−
ρ

α
, b1 = ρb2 = ρ(1−

1

α
),

see [15,34] for details.

Obviously, when the ambiguity sets in (5.20) are constructed as introduced in Exam-

ples 5.1-5.3, (5.20) can be reformulated as completely separable saddle point problem

(5.18). We then implement the stochastic PDHG to find an optimal portfolio selec-

tion. Particularly, in the numerical test, the three types of ambiguity sets are defined as

follows.

Moment type: PM :=

{

P ∈ P(Ξ) :
−ǫ ≤ (EP [ξ]− µ̄)i ≤ ǫ, i = 1, . . . ,m,
∥

∥EP

[

(ξ − µ̄)(ξ − µ̄)T
]

− Σ̄
∥

∥

∗
≤ σ

}

,

where ‖A‖∗ = max |aij |, µ̄ and Σ̄ are sample mean and sample covariance. See [45]

for the motivation and more discussion on PM .

Distance type: PD :=
{

Q ∈ P(Ξ) : dlW(P,P0) ≤ c
}

,
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where P0 is the empirical distributions [15,53].

Mixture type: PJ :=
{

Q ∈ P(Ξ) : PD ∩ PM
}

.

The parameters ǫ, σ, c are fixed as 0.05, 0.0025, 0.01, respectively. Moreover, the maxi-

mal iteration limitation is set to 107.

We collect the following ten stocks: Aberdeen Asset Management plc, Admiral

Group PLC, AMEC PLC, Anglo American PLC, Antofagasta PLC, AstraZeneca PLC, Aviva

PLC, Babcock PL (http://finance.google.com) (from 13th Apr 2013 to 18th Nov

2013) with a total of 150 datasets. Similar to the work [11], to ensure that the sam-

ple is independent and it follows the same distribution, we use 50 days from the most

recent history to assign the portfolio. We have carried out out-of-sample tests with

a rolling window of 50 days: use the first 50 data to construct the ambiguity set P and

calculate the optimal portfolio strategy for the 51-th day and then move on a rolling

basis.

We then implement the stochastic PDHG for different sample size which varies from

200 to 20000. The optimal values are reported in Table 4. We increase the sample size

constantly until an obvious convergence trend regarding the optimal values is observ-

able. In particular, the objective values is actually monotonically increasing when the

sample size is growing. When the sample size excesses 8000, the changes concerning

the optimal values become relatively quite small. The discrete approximation scheme

is regarded as convergent.

Table 4: Convergence with increasing sample size.

Ambiguity type 200 500 1000 2000 4000 6000 8000 10000 20000

Moment 0.0132 0.0167 0.0187 0.0191 0.0190 0.0192 0.0192 0.0194 0.0199

Distance 0.0063 0.0085 0.0100 0.0101 0.0102 0.0103 0.0104 0.0104 0.0106

Mixture 0.0063 0.0085 0.0100 0.0101 0.0103 0.0103 0.0104 0.0104 0.0106

Note that when the constraint X of problem (5.20) is polyhedral convex with ex-

plicit expression, the portfolio problem can be formulated as a linear programming

problem, see, e.g., [15, Section 7]. Under this special circumstance, some linear pro-

gramming solvers in Python can be called as benchmark methods to justify the effi-

ciency of the stochastic PDHG algorithm. In particular, we shall compare the optimal

values returned by the stochastic PDHG method and the linear programming solver in

Python. Setting sample size as 10000, in Table 5, we report 5 groups of tests on moment

type ambiguity sets. As observed, the stochastic PDHG method returns “nearly” opti-

mal values, where relative error rate is smaller than 1%. The stochastic PDHG method

usually needs more time to find the solution than the linear programming solver for

the tests in Table 5. However, for problems with the distance type and mixture type

ambiguity sets, the linear programming solver in Python reports ’ memory error’ when

sample size is setting as 10000.

Table 6 summarizes daily returns generated by three types of portfolio problems

with moment type, distance type and mixture type ambiguity sets, where “L”, “H” and
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Table 5: Benchmark testing.

❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵

Method

Optimal Value
test1 test2 test3 test4 test5

SPDHG 0.0335 0.0315 0.0314 0.0321 0.0273

LP Solver 0.0338 0.0317 0.0315 0.0323 0.0274

error rate 0.9% 0.6% 0.3% 0.6% 0.3%

Table 6: Daily return.

Our DRO Model L H A Down Up

Moment 0.9855 1.0202 1.0006 44 56

Distance 0.9853 1.0198 1.0006 43 57

Mixture 0.9853 1.0198 1.0006 44 56

EW 0.9815 1.0240 0.9999 54 46

“A” denote respectively the lowest, the highest and average returns and ‘EW’ stands

for equally weighted strategy. We record the number of days when the overall port-

folio return falls below 1 and exceeds (or equals to) 1, and denote them respectively

by “Down” and “Up”. We can see that the distributionally robust optimization with

different type of ambiguity sets achieves comparable average daily return and displays

more stable performance with a narrower range between the best and the worst return

curves. The Fig. 1 indicates that the wealth curves generated by the DRO with three

different ambiguity sets have the same tangency in going up or going down. They

Trade times
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Figure 1: Sensitivity-Wealth evolution with the trading times.
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outperform the benchmark wealth curve (equally weighted strategy) lying well above

the black benchmark curve. As summarized in Table 6, the decisions returned by DRO

model make a profit (going up) but the equally weighted strategy may experience loss

(going down) in some trading days. At the end of the time horizon, the total wealth

from our PRO models are around 1.06 compared to 0.99 in equally weighted strategy

case. Another interesting observation on Fig. 1 is that the distance type ambiguity set

and the mixture type ambiguity set have almost the same wealth curves. The underly-

ing reason may be that the distance condition plays a key role in the definition of the

mixture type ambiguity set.
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[12] D. DENTCHEVA AND W. RÖMISCH, Stability and sensitivity of stochastic dominance con-

strained optimization models, SIAM J. Optim., 23 (2013) 1672–1688.



Discrete Approximation Scheme in Distributionally Robust Optimization 35
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