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ABSTRACT
In this paper, we aim to build confidence regions of the
true solution to the stochastic variational inequalities problem
(SVIP) when the sample average approximation (SAA) scheme
is implemented. A new approach based on error bound con-
ditions admitted by the SVIP is proposed. This so-called error
bound approach provides an upper bound of the distance
between SAA solutions and the true solution set through the
distancebetween theSAA functionand the true counterpart at
the SAA solutions. Certain statistical tools such as central limit
theorem and Owen’s empirical likelihood theorem are then
employed to construct the asymptotic confidence regions of
the solutions to SVIP. In particular, if the SVIP admits a global
error bound condition, the non-asymptotic (uniform) confi-
dence regions of the solutions are also approachable. Differ-
ent from the conventional normal map approach, our error
bound approach does not require any information regard-
ing the derivative of the solution mapping with respect to
perturbations of involved functions in SVIP. For constructing
component-wise confidence regions, the validity of the error
bound approach is guaranteed for those caseswhere the func-
tions own separable structures.

ARTICLE HISTORY
Received 3 February 2020
Accepted 13 November 2020

KEYWORDS
Stochastic programming;
stochastic variational
inequalities;
(non-)asymptotic confidence
regions; empirical likelihood
method

2010MATHEMATICS
SUBJECT
CLASSIFICATIONS
90C33; 90C15

1. Introduction

The variational inequalities problem (VIP): given a subset C of the Euclidean
spaceR

n and amapping F : C → R
n, the variational inequality is to find a vector

x ∈ C such that

(y − x)TF(x) ≥ 0, ∀ y ∈ C.
VIP has many applications in engineering, economics, game theory and net-
works and has been extensively studied in the past decades, see, e.g. [1]. In
order to describe decision making problems which involve future uncertainty,
the stochastic version of variational inequalities problem (SVIP) was proposed.
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2 Y. LIU AND J. ZHANG

Different approaches to incorporate the uncertainty into VIP induce different
SVIP models.

ERM-SVIPmodel: Chen and Fukushima [2] extend VIP to SVIP as: find x ∈ C
such that

(y − x)TF(x, ξ) ≥ 0, ∀ y ∈ C, ∀ ξ ∈ �, (1)

where C ∈ IRn and ξ : � → � is a vector of random variables defined on proba-
bility (�,F , P)with support set� ⊂ IRm. Obviously, such x satisfying (1) hardly
exists. To address this concern, the authors suggest finding solutions to the
following expected residual minimization (ERM) problem

min
x∈C

EP[θ(x, ξ)], (2)

whereEP[·] denotes the expected value with respect to the distribution P of ξ and
θ(·) is a residual function which satisfies θ(x, ξ) ≥ 0 for any (x, ξ) ∈ C × � and
θ(x, ξ) = 0 if and only if x solves (1). Models (1)–(2) are known as ERM-SVIP
in the literature.

EV-SVIP model: Another way to formulate SVIP is proposed by Gürkan et al.
[3] which is a natural extension of deterministic VIP: find x ∈ C such that

(y − x)Tf (x) ≥ 0, ∀ y ∈ C, (3)

where f (x) denotes the expected value (EV) of F(x, ξ) with respect to the
distribution P of ξ , i.e.

f (x) := EP[F(x, ξ)]. (4)

Lp-SVIP model: We may also consider the SVIP in the functional space [4]: for
almost every ξ ∈ �, find x ∈ C such that

(y − x)TF(x, ξ) ≥ 0, ∀ y ∈ C. (5)

Different with the ERM-SVIP and EV-SVIP, the solution to Lp-SVIP is a mea-
surable function as it depends on the random variable ξ . Moreover, the set C in
Lp-SVIP can be dependent on the random variable ξ , that is, C : � ⇒ IRn is a
measurable set-valued mapping. As the paper focuses on the statistical proper-
ties of the sample average approximation method based solutions to SVIP, we
only discuss the ERM-SVIP and EV-SVIP in next. Please see [5–9] for the new
theory, algorithm and application of Lp-SVIP model.

For both ERM-SVIPmodel (1)–(2) and EV-SVIPmodel (3), the essential diffi-
culty in designing numerical methods is associated with computing the expected
value EP[·]. In fact, if EP[θ(x, ξ)] admits a closed form representation, ERM-
SVIPmodel (1)–(2) turns out to be a deterministic optimization problem. Similar
is the case EV-SVIP model (3). However, in practice, obtaining a closed form of
EP[·] or computing the value of it numerically is usually difficult either due to
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the unavailability of the distribution of ξ or because it involves multiple integra-
tion. Instead, it is more realistic to obtain a sample of the random vector ξ either
from past data or from computer simulation. Consequently, one may consider
approximating the SVIP based on sampling ξ1, . . . , ξN . Specifically, approxima-
tions based on sampling ξ1, . . . , ξN for ERM-SVIP model (1)–(2) and EV-SVIP
model (3) read as

θN(x) := 1
N

N∑
j=1

θ(x, ξj) and fN(x) := 1
N

N∑
j=1

F(x, ξj), (6)

respectively. This kind of approximation technique is well-known in stochas-
tic programming under various names such as sample average approximation
(SAA), Monte Carlo method, sample path optimization etc.

The SAA technique suggests approximating ERM-SVIP (1)–(2) as:

min
x∈C

θN(x). (7)

It also leads to the approximation of EV-SVIP (3) as: find x ∈ C such that

(SAA − SVIP) (y − x)TfN(x) ≥ 0, ∀ y ∈ C. (8)

A natural question to be answered is how well SAA solutions approximate true
solutions. One popular way is to study the consistence of SAA solutions. For
ERM-SVIPmodel (1)–(2), Chen and Fukushima [2] prove that the solutions gen-
erated by the SAA approximation converge to the true solution as N tends to
infinity. For SVIP model (3), Gürkan et al. [3] propose simulation based sample-
path optimization approach for solving SVIP (1) and show the consistence of the
solutions. Indeed, the study on the consistence of SAA solutions of SVIP can be
traced back to the works by King and Rockafellar [10,11] where the authors study
asymptotic convergence and statistical properties of the stochastic generalized
equation (SGE).

Instead of studying the asymptotic convergence, very recently, [12–17] focus
on the inference, i.e. the construction of confidence regions of solutions to EV-
SVIP (3). They initiate methods to compute confidence regions for the true
solution from a single SAA solution, which they call normal map approach
given that the method is based on normal map FnorC (z), see Section 2.1 for the
definition. It is easy to see that x is a solution to SVIP (3) if and only if there
exists a vector z such that x = �C(z) and FnorC (z) = 0, where �C(·) denotes the
Euclidean projection onto C. The idea behind the normal map approach is to
build the confidence region of solution to FnorC (z) = 0, therefore the confidence
region of solution to SVIP (3) can be further induced by projection.Under certain
assumptions, e.g. the uniqueness and Lipschitz continuity of the solutions map-
ping z(f )1 of FnorC (z) = 0, thanks to Delta method, the difference between the
SAA solutions and the true solution converges to a normal distribution. More-
over, the rate of such convergence depends on the differential of the normal
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map at the true solution. As the true solution to SVIP (3) is usually unknown
in practice, efforts have been devoted to approximating the differential of nor-
mal map through SAA solutions. However, due to lack of continuity, using SAA
counterpart as an estimation of differential of normal map is to some extent too
ambitious. One of the main objectives of normal map approach is to overcome
such difficulty.

In this paper, we revisit issues concerning the confidence regions of solutions
to SVIP (3). Instead of the normal map approach studied in [12–17], we propose
the so-called error bound approach. In particular, we shall follow the following
roadmap to build the confidence region of the true solution in terms of certain
error bound conditions.

Step 1.Weshall provide an upper bound estimation of the distance between the
SAA solutions and the true solution set through distance between SAA residual
functions and original residual function at the SAA solution.

Step 2.We next study the statistical properties of the random vector2 through
the statistical tools such as central limit theorem (CLT) and Owen’s empirical
likelihood theorem (ELT) [18]. As the error bound approach does not rely on
Delta method, information of the differential of normal map is no long required.
In this way, we may avoid assuming uniqueness of the solution to SVIP (3).

Step 3. Furthermore, under certain error bound conditions, we may construct
the non-asymptotic confidence regions of the solutions to SVIP (3) by the large
deviation theorem (LDT). As far as we know, this is the first result on the non-
asymptotic confidence regions of the solutions to SVIP (3), whichmay shed some
light on collecting samples.

More specifically, we may summarize the main structure as follows:

dist(xN , S)
EB−→≤ d (fN(xN), f (xN))

⎧⎨
⎩
CLT−→ AsymptoticCF(N(μ, σ 2))
Owen’s ELT−→ AsymptoticCF(χ2(d))
LDT−→ Non−asymptoticCF

(9)
where dist(xN , S) denotes the distance between the solution xN to SAA-SVIP (8)
and the set of solutions S of true SVIP (3), ‘EB’ is short for error bound condi-
tions, CF is short for confidence regions, and d(fN(xN), f (xN)) means distance
determined by the SAA function fN(·) (6) and the true counterpart f (·) (4) at
point xN . The definition of dist(·, ·)will be more specified when the type of error
bound conditions is determined.

The organization of this paper is as follows. Section 2 reviews the normal map
approach [16] and error bound conditions of VIP. The theoretical illustration
for diagram (9) are presented in Section 3 with CLT based normal distribution
in Subsection 3.1, Owen’s ELT in Subsection 3.2 and non-asymptotic results in
Subsection 3.3 respectively. Section 4 presents some numerical results on the
confidence regions of SVIP (3).
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2. Preliminaries

In the first part of this section, we review the normal map approach discussed in
[12–17] and outline its main idea. In the second part, we introduce some prelim-
inary results on error bound conditions of VIP, which will be used to construct
the confidence regions of the solutions to SVIP (3) in Section 3.

2.1. Normalmap approach

The normal map induced by function f (·) and convex set C reads as:

FnorC (z) := f (�C(z)) + z − �C(z).

One of the key conditions of the normal map approach [12–17] is the Lips-
chitz continuity and differentiability of the solution mapping to FnorC (z) = 0. To
address this concern, the following two assumptions are required.

Assumption 2.1 ([16, Assumption 3.1]):

(a) E[‖F(x, ξ)‖2] < ∞ for all x ∈ C.
(b) The map x → F(x, ξ) is continuously differentiable on C for almost every

ξ ∈ �.
(c) There exists a square integrable random variable c(·) such that

‖F(x, ξ) − F(x′, ξ)‖ + ‖dxF(x, ξ) − dxF(x′, ξ)‖ ≤ c(ξ)‖x − x′‖
for almost every ξ ∈ �.

Assumption 2.1 is the standard condition which ensures the uniform con-
vergence of SAA function fN(x) toward f (x) and dxfN(x) toward dxf (x). If we
concentrate on the convergence of fN(·) toward f (·), actually the continuously
differentiable condition in (b) can be replaced by Lipschitz continuity. Therefore,
the corresponding norm ‖dxF(x, ξ) − dxF(x′, ξ)‖ in (c) can be removed.

Assumption 2.2 ([16, Assumption 3.2]): Suppose that x0 solves SVIP (3). Let
z0 = x0 − f (x0), L = df (x0)(·)3,K0 = TC(x0) ∩ {z0 − x0}⊥ and assume that the
normal map LnorK0

(·) is a homeomorphism from IRn → IRn, where TC(x0) is the
tangent cone of C at point x0 and LnorK0

(·) is the normal map induced by L andK0.

Assumptions 2.1–2.2 together ensure that SVIP (3) has a locally unique
solution under sufficiently small perturbation on f (·). Moreover, the solution
mapping is indeed Lipschitz continuous and differentiable with respect to per-
turbations of function f (·).

Lemma 2.1 ([16, Lemma 3.1]): Under Assumptions 2.1 and 2.2, the normal map
LnorK0

(·) has a positive injectivity modulus δ on IRn. Moreover, for each λ > δ−1
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there exist neighbourhoods N (x0) of x0 in C, N (z0) of z0 in IRn and N (f ) of f
in C1(C, IRn)4, and a function z : N (f ) → IRn, such that:

(i) z(f ) = z0.
(ii) For each g ∈ N (f ), z(g) is the unique point inN (z0) satisfyingGnorC (z(g)) =

0, where GnorC (z) is the normal map induced by function g(·) and con-
vex set C, and x(g) = �C(z(g)) is the unique point in N (x0) satisfying
0 ∈ f (x(g)) + NC(x(g)).

(iii) z(·) is Lipschitz onN (f ) with modulus λ.

Finally, the functions z(·) and x(·) are B-differentiable at f.
Upon combining Lemma 2.1 and the Delta method, the convergence in

distributions of SAA solutions to the solutions of SVIP (3) can be achieved.

Lemma 2.2 ([16, Theorem 5.1]): Suppose that Assumptions 2.1 and 2.2 hold. Let
zN → z0 and xN → x0. Then

√
N(zN − z0) ⇒ (LnorK0

)−1(Y0),

where Y0 is a normal random vector with zero mean and covariance matrix
�0 which depends on the true solution z0, and ‘⇒’ denotes the convergence in
distribution.

Lemma 2.2 can be used to build the confidence region of the solutions to
SVIP (3). However, the limit distribution depends on the true solution x0 through
covariance matrix �0 and LnorK0

which are typically unknown. Most efforts in
line of this analysis have been devoted to approximating unknown parameters
through their SAA counterparts [12–17].

2.2. Error bound conditions

Error bound conditions ofVIP estimate the unknowndistance from a given point
to the solution set in terms of an easily computable residual. Error bound theory
plays a key role in subdifferential calculus rules, optimality condition, stability
analysis, algorithmic convergence and etc. In this subsection, we recall some
widely known error bound conditions of VIP presented in [1, Chapter 6]. We
refer readers interested in this topic to a survey paper [19] and the reference
therein.

Definition 2.1: Consider the deterministic VIP:

(y − x)Tf (x) ≥ 0, ∀ y ∈ C, (10)

and denote the set of solutions to (10) as S(f , C). VIP (10) is said to admit a local
error bound at point x∗ ∈ S(f , C) if there exists a neighbourhood N (x∗) of x∗,
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two positive constants c1 and c2, and a residual function r : N (x∗) → IR+ such
that

dist(x, S(f , C))

{
≤ c1r(x)c2 , ∀ x ∈ N (x∗),
= 0, ∀x ∈ S(f , C) ∩ N (x∗),

(11)

where dist(ā,A) := infa∈A ‖ā − a‖ for given point ā and set A in IRn.

We say that a Lipschitzian error bound condition holds for VIP (10) if the
inequality in (11) holds with c2 = 1. For the case that (11) holds with c2 �= 1,
we say that VIP (10) admits a Hölderian error bound condition. If the neigh-
bourhood N (x∗) is replaced by IRn, we say that a global error bound condition
holds. In what follows, we recall some error bound conditions which have been
intensively studied in the literature.

The first example shows that Assumptions 2.1–2.2 suffice to ensure a certain
type error bound, namely, the normal map error bound condition.

Example 2.1 (Normal map error bound condition): VIP (10) admits the nor-
mal map error bound condition if

dist(x, S(f , C)) ≤ c‖FnorC (x)‖, (12)

where FnorC (·) is the normal map induced by f (·) and C. As presented in Lem-
mas 2.1–2.2, normal map lies at the heart of the normal map approach. Under
Assumptions 2.1–2.2, Lemma 2.1 states that the solution mapping is unique
and Lipschitz continuous with respect to the perturbations of function f (·).
Obviously, Lipschitz continuity of solution mapping implies the semi-stability
of SVIP (3), that is, for every open U containing S(f , C), there exist two positive
scalars γ1 and γ2 such that, for every function in the γ2 ball of function f 5, it holds
that

S(g, C) ∩ U ⊆ S(f , C) + γ1B,
where S(g, C) denotes the solution set of VIP and B denotes the unit ball of IRn:

(y − x)Tg(x) ≥ 0, ∀ y ∈ C.
(see Definition 5.5.1 of [1] for details). According to [1, Proposition 5.5.5], the
normal map error bound condition holds.

The second and third examples are two well-known error bound conditions
regarding complementarity problems.

Example 2.2 (Natural type error bound condition): Consider the following
complementarity problem

0 ≤ g(x) ⊥ h(x) ≥ 0, (13)

where g(·) and h(·) are continuous functions from IRn to IRm. We say that com-
plementarity problem (13) admits the natural error bound condition if there exist
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positive constants c and δ such that for any x ∈ B(S(g, h), δ)

dist(x, S(g, h)) ≤ c
∥∥min{g(x), h(x)}∥∥ , (14)

where S(g, h) denotes the set of solutions to (13) and B(S(g, h), δ) denotes the
δ-neighbourhood of set S(g, h). If g(x) := x and h(x) is a Lipschitz continuous,
uniform P-function with Lipschitz modulus L and constant γ , i.e. there exists
constant γ > 0,

max
1≤i≤m

[hi(x) − hi(y)](xi − yi) ≥ γ ‖x − y‖2 ∀ x, y ∈ IRn,

then the natural error bound condition (14) holds with c = 1+L
γ

. Moreover, the
natural error bound condition (14) is indeed in a global manner, i.e.

dist(x, S(g, h)) ≤ 1 + L
γ

∥∥min{g(x), h(x)}∥∥ , ∀ x ∈ IRn.

Example 2.3 (S-type error bound condition): The complementarity prob-
lem (13) is said to admit the S-type error bound condition if there exist positive
constants c and δ such that for x ∈ B(S(g, h), δ)

dist(x, S(g, h)) ≤ c
∥∥(−g(x),−h(x), g(x) ◦ h(x))+

∥∥ , (15)

where (a)+ := max{a, 0} for a vector ‘a’ and the maximum is taken component-
wise and ‘°’ denotes theHadamard product. S-type error bound condition is often
related to monotone complementary problems. In particular, for linear comple-
mentarity problems, e.g. g(x) := x and h(x) := Ax + q, if A is a semi-definite
matrix and

0 ≤ x ⊥ h(x) ≥ 0 (16)

has a non-degenerate solution6, then there exists a constant c>0 such that
the S-type error bound condition (15) holds. Furthermore, without the non-
degenerate condition, the complementarity problem (13) admits a weaker S-type
error bound condition as follows:

dist(x, S(g, h))

≤ c
( ∥∥(−g(x),−h(x), g(x) ◦ h(x))+

∥∥ +
√∥∥(−g(x),−h(x), g(x) ◦ h(x))+

∥∥)
.

(17)

3. Error bound approach

The normal map approach relies heavily on approximating directional derivative
of the solutionmapping through the SAA counterpart, see, e.g. [12–17]. This task
sometimes turns out to be not easy as the directional derivative may be lack of
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continuity. This observation motivates us to employ the error bound condition
to build the confidence region of the solution to SVIP (3). In fact, the norm of
the derivative of the solutionmapping can be regarded as the local Lipschitz con-
stant of the mapping, which characterizes the variety of the solution mapping
with respect to the variety functions. Error bound condition, on the other hand,
performs in a similar way. In comparison, the error bound condition character-
izes the variety of the solution mapping in a more general manner as it allows
different types of residual functions. Moreover, the error bound of the VIP has
been well studied in the past decades, see, e.g. Chapter 6 of [1] and survey paper
[19].

As depicted in diagram (9), we shall first provide an upper bound of the
distance between SAA solutions and the true one in terms of error bound
conditions.

Theorem 3.1: Let {xN} be a sequence of solutions to SAA-SVIP (8) and S be the
set of solutions to SVIP (3). Suppose that the error bound condition (11) holds
with residual function r(·). Suppose further that the corresponding residual func-
tion rN(·)7 for SAA-SVIP (8) converges to r(·) uniformly on C with probability one
(w.p.1). Then

(i) the limit point x∗ of sequence {xN} is a solution to SVIP (3) w.p.1;
(ii) there exists a sufficiently large N ′ such that, for any N ≥ N ′,

dist(xN , S) ≤ c1(r(xN) − rN(xN))c2 ,

w.p.1.

Proof: (i). Denote x∗ as the limit point of sequence {xN}. By the assumption that
rN(·) converges to r(·) on C uniformly, r(x∗) = 0 as rN(xN) = 0 and xN → x∗.
Then x∗ is a solution to SVIP (3) w.p.1.

(ii). Following part (i) and taking a subsequence if necessary, there exists
a sufficiently large N ′ such that xN ∈ B(S, δ), where B(S, δ) denotes the δ-
neighbourhood of S. According to the error bound condition (11), we have

dist(xN , S) ≤ c1r(xN)c2

= c1r(xN)c2 − c1rN(xN)c2

= c1(r(xN) − rN(xN))c2 ,

where the equalities follow from the fact that, rN(xN) = 0 as xN is the solution to
the SAA-SVIP (8). �

Theorem 3.1 proves the left part of Diagram (9), providing an upper bound
of the distance between SAA solutions and the true solutions through the diver-
gence of the SAA residual function rN(·) and the true one r(·). It paves the way
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to study the statistical properties of SAA solutions through analysing the infer-
ence of SAA residual functions. The validity of theorem 3.1 does not depend on
a common error bound constant shared by the sample approximation SVIP (8).
So far, it remains unclear how to take Theorem 3.1 as the workhorse for build-
ing confidence regions of the true solutions. Without specified expression of the
residual function whose structures may be mathematically sophisticated, we can
hardly expect desired statistical properties. Fortunately, it turns out to be clear
when we specify the residual function r(·). By doing so, the divergence of rN(·)
and r(·) can be characterized in terms of the divergence of SAA function fN(·)
and true one f (·), see e.g. the following Examples 3.1–3.3 for illustration.

Example 3.1 (Normal map error bound condition): Consider SVIP (3) and its
SAA counterpart (8). Suppose that the residual function r(x) is given in (12).
Then the corresponding SAA residual function corresponding to r(x) is

rN(x) := ‖fN(�C(x)) + x − �C(x)‖.
Obviously, the normal map error bound condition satisfies the uniform conver-
gence properties in Theorem3.1. Therefore, there exists a positive constant c such
that

dist(xN , S) ≤ c‖f (�C(xN)) + xN − �C(xN)‖
= c‖f (�C(xN)) + xN − �C(xN) − fN(�C(xN)) + xN − �C(xN)‖
= c‖f (xN) − fN(xN)‖, (18)

where S denotes the set of solutions to SVIP (3). (18) provides us with an upper
bound of the distance between the solutions through the divergence of the SAA
function fN(·) and the true counterpart f (·). We are then able to invoke the CLT
or ELT for studying the inference of the difference between solutions through the
statistical properties of fN(xN) − f (xN). �

Example 3.2 (Natural type error bound condition): Consider the stochastic
complementary problem (SCP)

0 ≤ E[G(x, ξ)] ⊥ E[H(x, ξ)] ≥ 0, (19)

and denote S as the set of solutions. The SAA counterpart of (19) is:

0 ≤ GN(x) ⊥ HN(x) ≥ 0, (20)

where

GN(x) := 1
N

N∑
j=1

G(x, ξj) HN(x) := 1
N

N∑
j=1

H(x, ξj)

and ξ1, . . . , ξN is iid sample of ξ . Assume that the natural type error bound
condition (14) holds for SCP (19) and xN is a solution to complementary prob-
lem (20). Since the nature type error bound condition satisfies the conditions of
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Theorem 3.1, there exists a positive constant c such that

dist(xN , S) ≤ c ‖min{EP[G(xN , ξ)],EP[H(xN , ξ)]}‖
= c ‖min{EP[G(xN , ξ)],EP[H(xN , ξ)]} − min{GN(xN),HN(xN)}‖
≤ c‖EP[G(xN , ξ)] − GN(xN)‖ + c‖EP[H(xN , ξ)] − HN(xN)‖,

where the second inequality follows from the fact that,

|min{a2, b2} − min{a1, b1}| ≤ |a2 − a1| + |b2 − b1|, ∀ a1, b1, a2, b2 ∈ IR.

Thereby we are able to provide an upper bound of the distance between the
solutions to SAA problem (20) and the true problem (19) through the divergent
EP[G(·, ξ)] − GN(·) and EP[H(·, ξ)] − HN(·). �

Example 3.3 (S-type error bound condition): Consider again the stochastic
complementary problem (19) and its SAA reformulation (20). Assume that the
S-type error bound condition (15) holds and xN is the solution to SAA prob-
lem (20). Similar to Example 3.2, the conditions of Theorem 3.1 hold and
therefore a positive constant c exists such that

dist(xN , S)

= c ‖(−EP[G(xN , ξ)],−EP[H(xN , ξ)],EP[G(xN , ξ)] ◦ EP[H(xN , ξ)])+‖
= c

∥∥(−EP[G(xN , ξ)],−EP[H(xN , ξ)],EP[G(xN , ξ)] ◦ EP[H(xN , ξ)])+
− (−GN(xN),−HN(xN),GN(xN) ◦ HN(xN))+

∥∥
≤ c

(∥∥EP[G(xN , ξ)] − GN(xN)
∥∥ + ∥∥EP[H(xN , ξ)] − HN(xN)

∥∥
+ ∥∥EP[G(xN , ξ)] ◦ EP[H(xN , ξ)] − GN(xN) ◦ HN(xN)

∥∥)
.

Again, we may estimate the distance from SAA solutions to the true solution
set through the divergence of functions. Naturally, it is easy to conduct similar
analysis with the other type of S-type error bound condition (17). �

3.1. Asymptotic confidence regions: central limit theorem

In this subsection, we shall show the second part of Diagram (9) based on the
CLT. As is well known, the CLT lies at the heart of probability theory as it implies
that probabilistic and statistical methods that work for normal distributions are
also applicable for certain problems involving other types of distributions. For
completeness, we recall the classical CLT first. Let Z ∈ IRm be a random vari-
able with distribution P0 and z1, z2, . . . be iid sample of Z. Suppose that Z has
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covariance �. Then

(CLT) lim
N→∞

√
N

⎛
⎝ 1
N

N∑
j=1

zj − E[Z]

⎞
⎠ ⇒ N(0,�),

where ⇒ means convergence in distribution. We are now ready to present the
error bound approach for building the confidence region of solutions to SVIP (3).

Theorem 3.2: Suppose that (a) {xN} is a sequence of solutions to SAA-SVIP (8)
and x∗ is a limit point of {xN}, (b) the normal map error bound condition holds
with modulus c, (c) the covariance � of F(x∗, ξ) is positive definite. Denote

Cα
� := {

y : y′�−1y ≤ χ2
1−α(n)

}
and

f ′N′(·) = 1
N ′

N′∑
j=1

F(·, ξ ′
j ), (21)

whereχ2
1−α(n) is 1 − α quantile ofχ2(n) and ξ ′

1, . . . , ξ
′
N′ is independent identically

distributed sample of ξ , which is also independent with ξ1, . . . , ξN. Then{
x : ‖x − xN‖ ≤ c

(
1√
N ′ sup

z∈Cα
�

‖z‖ + ∥∥fN(xN) − f ′N′(xN)
∥∥)}

(22)

defines an approximate (1 − α) confidence region for solutions to SVIP (3), that is,
it contains a true solution to SVIP (3) with probability 1 − α as N ′ → ∞.

Proof: Upon combining Theorem 3.1 and the classical CLT, the proof follows
directly. In particular, by conditions (a)-(b), Theorem 3.1 holds and hence that

dist(xN , S) ≤ c‖f (xN) − fN(xN)‖
= c

(∥∥fN(xN) − f ′N′(xN)
∥∥ + ∥∥f ′N′(xN) − f (xN)

∥∥)
,

where S denotes the set of solutions to SVIP (3), f (·), fN(·) and f ′N′(·) are defined
as in (4), (6) and (21) respectively. For any realization of sample ξ1, . . . , ξN
and ξ ′

1, . . . , ξ
′
N′ , ‖fN(xN) − f ′N′(xN)‖ is a fixed scalar. Moreover, both fN(xN) and

f ′N′(xN) converge to f (x∗)withN,N′ → ∞ as xN → x∗ and Lipschitz continuity
of F(·, ξ). Then ‖fN(xN) − f ′N′(xN)‖ tends to zero as N,N ′ → ∞. On the other
hand, the CLT implies

√
N ′(f ′N′(xN) − f (xN)) ⇒ N(0,�).

Consequently, we arrive at (22) as Cα
� is 1 − α confidence region to the mean of

N(0,�). �
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Theorem 3.2 establishes an approximate confidence region of the solutions to
SVIP (3). Theorem 3.2 relies only on the error bound condition and the classical
CLT. Different from the normal map approach, the error bound approach stays
valid regardless of the uniqueness or differentiability of the solution mapping
with respect to the perturbation of the involved functions. It is worth mention-
ing that themaximum supz∈Cα

�
‖z‖ in (22) is not a convex optimization problem.

Fortunately, it is somehow easy to calculate its optimal value asCα
� is an ellipsoid.

The results presented in Theorem 3.2 can be similarly extended to cases where
the normal map error bound condition is replaced by the nature type or S-type
error bound conditions. In fact, all the results throughout the rest of this paper
hold for the aforementioned three different types of error bound conditions. For
simplicity of presentation, our analysis focuses on the situation where normal
map error bound condition is under investigation. The extension to other cir-
cumstances are puly technical and hence omitted. Moreover, as the covariance
matrix� in condition (c) of Theorem 3.2 is usually unknown, a natural approxi-
mation is the sample covariance matrix of {F(xN , ξ ′

j )}N
′

j=1; see [12–17] for similar
discussions.

Recently, Lamm et al. [13] and Lam and Lu [12] study the component-wise
confidence region for the true solution to SVIP (3). As pointed out by [12,13],
individual confidence regions of the true solution induce a measure of the uncer-
tainty in each individual component of an SAA solution. Then we are able to
assess the uncertainty in an individual component, which thereby allows us
to focus on parameters of specific component of our interest. Unfortunately,
Theorem 3.2 is not an appropriate tool to construct the component-wise con-
fidence region of the true solutions. This drawback is due to the fact that the
error bound condition estimates the distance from a given point to the set of
solutions in terms of a unified radius for all components. In fact, if the distance
can be represented separately with respect to each single component of variable x,
Theorem 3.2 can be used to study component-wise confidence regions. For this
purpose, we concentrate on functions with special structures in SVIP (3).

Corollary 3.1: Suppose that (a) {xN} is a sequence of solutions to SAA-SVIP (8)
and x∗ is a limit point of {xN}. (b) The normal map error bound condition holds.
(c) Function F(x, ξ) has separable structures, that is,

F(x, ξ) := F1(x1, ξ) + · · · + Fn(xn, ξ),

where xi, 1 ≤ i ≤ n, denotes the ith component of x. (d) Fix i and for any given xi,
there exists x̄−i := (x̄1, . . . , x̄i−1, x̄i+1, . . . , x̄n) such that

(fj)N(x̄j) − fj(x̄j) = 0, 1 ≤ j �= i ≤ n,
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where

(fj)N(xj) := 1
N

N∑
k=1

Fj(xj, ξk) and fj(xj) := EP[Fj(xj, ξ)], j = 1, . . . , n.

(23)
(e) The covariance �i of Fi((x∗)i, ξ), 1 ≤ i ≤ n is positive definite, where (x∗)i is
the limit of sequence {(xN)i}. Define

Cα
�i

:= {
y : y′�−1

i y ≤ χ2
1−α(n)

}
and

(f ′i )N′(·) = 1
N ′

N′∑
j=1

Fi(·, ξ ′
j ), (24)

whereχ2
1−α(n) is 1 − α quantile ofχ2(n) and ξ ′

1, . . . , ξ
′
N′ is independent identically

distributed sample of ξ , which is also independent with ξ1, . . . , ξN. Then the set⎧⎨
⎩xi : |xi − (xN)i| ≤ c

⎛
⎝ 1√

N ′ sup
z∈Cα

�i

‖z‖ + ∥∥(fi)N((xN)i) − (f ′i )N′((xN)i)
∥∥
⎞
⎠

⎫⎬
⎭

defines an approximate (1 − α) confidence region for ith component of solutions to
SVIP (3).

Proof: Denote xi as the ith component of x and Si := {xi : x ∈ S}. By normal
error bound conditions, Example 3.1 implies that

dist(xi, Si)

≤ dist((xi, x̄−i), S)

= c‖(f1)N(x̄1) + · · · + (fi)N(xi) + · · · + (fn)N(x̄n) − f1(x̄1)

− · · · − fi(xi) · · · − fn(x̄n))‖
= c‖(fi)N(xi) − fi(xi)‖
≤ c(‖(fi)N(xi) − (f ′i )N′(xi)‖ + ‖(f ′i )N′(xi) − fi(xi)‖),

where the equalities follow from conditions (c) and (d). The rest of this proof
follows similarly from the discussion in Theorem 3.2. �

Corollary 3.1 studies the component confidence regions of the solutions to
SVIP (3). Conditions (c) and (d) in Corollary 3.1 ensure the component error
bound conditions hold and then the proof is tomimic the proof of Theorem3.2. A
prevailing examplewhichmeets the assumptions inCorollary 3.1 is the stochastic
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linear variational inequalities: find x such that

0 ≤ x ⊥ EP[A(ξ)x + q(ξ)] ≥ 0.

In particular, conditions (c) holds with

F(x, ξ) := A1(ξ)x1 + · · · + (Ai(ξ)xi + q(ξ)) + · · · + An(ξ)xn,

where Ai(ξ) denotes the ith column of matrix A(ξ). Condition (d) holds with
x̄j = 0, 1 ≤ j �= i ≤ n.

As shown in [16], Assumptions 2.1-2.2 serve as sufficient conditions for the
following functional central limit theorem.

Proposition 3.1 (Functional CLT): [16, Theorem 4.3] Consider the SVIP
(3) and its SAA counterpart (8). Let F(·) satisfy Assumption 2.1. Then there
exists a C1(X, IRn) valued random variable Y such that for each finite subset
{x1, x2, . . . , xm} ⊆ C, the random vector

(Y(x1), . . . ,Y(xm))

has a multivariate normal distribution with zero mean and the same covariance
matrix as that of

(F(x1, ξ), . . . , F(xm, ξ))

and as N → ∞,
√
N(fN(·) − f (·)) converges in distribution, in C1(C, IRn), to Y.

Upon combining the functional CLT in Proposition 3.1 and the discussion for
Example 2.1, we have the following results.

Theorem 3.3: Suppose that (a)Assumptions 2.1-2.2 hold, (b) {xN} is a sequence of
solutions to SAA-SVIP (8) and x∗ is a limit point, (c) the covariance� of f (x∗, ξ) is
positive definite. Denote the 1 − α confidence region of normal distributionN(0,�)

as Cα
� . Then, there exists a bounded constant c such that the set{

x : ‖x − xN‖ ≤ c√
N

sup
z∈Cα

�

‖z‖
}

defines an approximate (1 − α) confidence region for solutions to SVIP (3).

Proof: Example 2.1 shows that the normal map error bound condition holds
under the Assumptions 2.1– 2.2. Then the rest follows from Proposition 3.1 and
Theorem 3.2 directly. �

Theorem 3.3 shows that the error bound approach is applicable under
Assumptions 2.1– 2.2. It seems that the normal map approach can also be
regarded as local error bound approach with more exactness. The normal map
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approach requires the directional derivative of the solution map. The norm of
such directional derivative may act as the local error bound constant. Obviously,
the error bound constant, especially the global error bound constant mentioned
in Examples 3.1–3.3 may be greater than the norm of directional derivative as lit-
tle information of the limit point x∗ is required. It seems to us that the confidence
region built through error bound approach may be bigger than the one built
through normal map approach.Without the exactness of confidence regions, can
we still claim that the error bound approach is beneficial? The answer is affirma-
tive! In fact, the first benefit relies on the fact that error bound approach does not
require the uniqueness of the solution to SVIP (3).Moreover, it permits us to con-
struct the asymptotic confidence regions through empirical likelihood approach
or even to build the non-asymptotic confidence regions. We present the details
in the next two subsections.

3.2. Asymptotic confidence regions: empirical likelihoodmethod based

Both CLT and Delta method have been widely used for studying the proper-
ties of statistical estimates of the stochastic programming when sample average
approximation is considered. In comparison, the empirical likelihood method
received less attention in the stochastic optimization literature. Recently, empir-
ical likelihood approach has been used to study the inference of the stochastic
programming problem; for example, Lam and Zhou [20] construct the confi-
dence region for the optimal value; Lam [21] andDuchi et al. [22] study statistical
inference and distributionally robust solution methods for stochastic optimiza-
tion problems. Motivated by [20–22], in order to build the confidence region for
the true solution of SVIP (3), we penetrate the error bound condition into the
empirical likelihood method.

The basic theory of empirical likelihood method is Owen’s empirical likeli-
hood theorem (ELT) [18]. Different from CLT and Delta method, ELT builds
confidence regions through solving distributionally robust optimization prob-
lems with ambiguity set which is defined as a divergence-based ball. In the rest
of this section, we mainly focus on the Kullback-Leibler (KL) divergence, while
our results can be directly extended to other divergences.

The KL divergence originates from the field of information theory. Interest-
ingly, it gains popularity recently in distributionally robust optimization; see,
e.g. [21,23,24] for some recent developments. For the case where ξ is a discrete
random variable, the KL divergence is defined as

dKL(Q, P) =
∑
i
P(i) ln

P(i)
Q(i)

;

on the other hand, if ξ is a continuous random variable,

dKL(Q, P) =
∫ ∞

−∞
p(ξ) ln

p(ξ)

q(ξ)
dξ ,
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where P(i), Q(i) denote distributions and p(ξ), q(ξ) are associated density
functions.

Proposition 3.2 ([22, Proposition 1]): Let z1, . . . , zN be independent and iden-
tically distributed (iid) sample of random vector Z. Suppose that the distribution P0
of Z has finite covariance with rank d0 ≤ d. Then

lim
N→∞Prob

{
EP0[Z] ∈

(
EP[Z] : dKL(P, PN) ≤ ρ

N

)}
= Prob

{
χ2(d0) ≤ ρ

}
.

(25)

According to Proposition 3.2, the probability of the truemean contained in the
region which is constructed through KL divergence converges to χ2-distribution
with freedom d0. This nice property has been widely used in distributionally
robust optimization [22].

Upon combining Proposition 3.2 and Theorem 3.1, we may build the con-
fidence region of the solutions to SVIP (3) through the empirical likelihood
method.

Theorem 3.4: Assume that the normal map error bound condition holds. Denote

d′
xN := max

P
‖EP[F(xN , ξ)] − f ′N′(xN)‖

s.t. dKL(P, PN′) ≤ ρ

N ′ ,
(26)

where f ′N′(·) is defined in (21) and PN′ denotes empirical distributions

PN′ := 1
N ′

N′∑
k=1

Iξ ′
k
(ω), and Iξ ′

k
(ω) :=

{
1, if ξ = ξ ′

k,
0, if ξ �= ξ ′

k.

Suppose further that F(xN , ξ) has finite covariance with rank γN ≤ n and ρ is
chosen such that P(χ2(γN) ≤ ρ) = 1 − α. Then{

x : ‖x − xN‖ ≤ c
(
d′
xN + ∥∥fN(xN) − f ′N′(xN)

∥∥) }

defines an approximate (1 − α) confidence region for solutions to SVIP (3).

Proof: As the normal map error bound condition holds, Example 3.1 states that

dist(xN , S) ≤ c‖(f (xN) − fN(xN))‖
= c

∥∥fN(xN) − f ′N′(xN)
∥∥ + ∥∥f ′N′(xN) − f (xN)

∥∥ ,
where S denotes the set of solutions to SVIP (3). By Proposition 3.2,

lim
N′→∞

Prob
{ ∥∥f ′N′(xN) − f (xN)

∥∥ ≤ d′
xN

}
= Prob

{
χ2(γN) ≤ ρ

}
.

We may arrive at the results by combining the two formulations above directly.
�
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It is usually a difficult task to estimate the covariance matrix of F(x∗, ξ). On
the other hand, it should be easier to estimate the rank of that matrix. As the
tradeoff, we need to calculate the constant d′

xN through solving an optimization
problem (26). Note that in problem (26), the variable is distribution P, which
must have the same support set with empirical distribution PN′ . Note further that
PN′ is induced by the iid sample ξ ′

1, . . . , ξ
′
N , consequently (26) is an optimization

problem in a finite dimensional Euclidean space. Unfortunately, problem (26) is
not a convex optimization problem as the objective is tomaximize a convex func-
tion. Even thoughwe understand that themaximumvalue of a convex function is
taken at the boundary point, it is still difficult to calculate the exact value d′

xN . One
possible way to overcome the non-convexity is to consider a component-relaxed
confidence interval. In particular, we shall denote

(λ′
xN )i := max

P

∣∣∣∣
(

EP[F(xN , ξ)]
)
i
−

(
f ′N′(xN)

)
i

∣∣∣∣
s.t. dKL(P, PN′) ≤ ρ

N ′ ,
(27)

and define the approximate (1 − α) confidence region as:{
x : ‖xN − x‖ ≤ c

(‖λ′
xN‖ + ∥∥f ′N′(xN) − f (xN)

∥∥) }
,

where λ′
xN = ((λ′

xN )1, . . . , (λ′
xN )n)

T . Obviously, d′
xN ≤ ‖λ′

xN‖ as maximizing∣∣∣∣
(

EP[F(xN , ξ)]
)
i
−

(
f ′N′(xN)

)
i

∣∣∣∣ , i = 1, . . . , n

releases the dependence between the components of vector EP[F(xN , ξ)] −
f ′N′(xN). Furthermore, for i = 1, . . . , n, denote

(λ′
xN )i := max

P

(
EP[F(xN , ξ)]

)
i

s.t. dKL(P, PN′) ≤ ρ

N ′ ,
(28)

and

(λ′
xN )i := min

P

(
EP[F(xN , ξ)]

)
i

s.t. dKL(P, PN′) ≤ ρ

N ′ .
(29)

Then

(λ′
xN )i = max

{
(λ′

xN )i − (f ′N′(xN))i, (f ′N′(xN))i − (λ′
xN )i

}
, i = 1, . . . , n.

Fortunately, (28) and (29) are convex optimization problems which can be solved
efficiently by a wide range of commercial optimization solvers (such as CVX
developed by Grant and Boyd [25]).
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The empirical likelihoodmethod can be used to construct the componentwise
confidence intervals if function F(x, ξ) has separable structure.

Corollary 3.2: Suppose that (a) the normal map error bound condition holds. (b)

F(x, ξ) := F1(x1, ξ) + · · · + Fn(xn, ξ).

(c) Fix i and for any given xi, there exists x̄−i := (x̄1, . . . , x̄i−1, x̄i+1, . . . , x̄n) such
that

(fj)N(x̄j) − fj(x̄j) = 0, 1 ≤ j �= i ≤ n,

where (fj)N(·) and fj(·) are defined as in (23). (d) Fi((xN)i, ξ) has finite covariance
with rank γN ≤ n. Denote

d′
(xN)i

:= max
P

‖EP[Fi((xN)i, ξ)] − (f ′i )N′((xN)i)‖
s.t. dKL(P, PN′) ≤ ρ

N ′ ,

and

P(χ2(γN) ≤ ρ) = 1 − α,

where (f ′i )N′(·) is defined as in (24). Then interval{
xi : ‖xi − (xN)i‖ ≤ c

(
d′

(xN)i
+ ∥∥(fi)N((xN)i) − (f ′i )N′((xN)i)

∥∥) }

defines an approximate (1 − α) confidence region for ith component of solutions to
SVIP (3).

Through a self-normalization property, the empirical likelihood method
works without any knowledge or estimation of unknown quantities, such as
covariance matrix. It is worth mentioning that, the relaxation technique for
tackling non-convexity may cause unfavourable inexactness of the confidence
regions, especially when the dimension of variable x is large.

3.3. Non-asymptotic confidence regions

Sections 3.1 and 3.2 construct the asymptotic confidence region of the solutions
to SVIP (3) based on asymptotic distributions. When the sample size is large,
asymptotic distributions present a precise characterization of the confidence
region. However, asymptotic confidence regions may provide limited informa-
tion about the quality of the estimate when the sample size is small. One of our
contributions is to fill in this gap by studying the non-asymptotic (uniformly for
any sample size N) confidence regions of the solutions to SVIP (3), which suffice
to meet the needs of practical interest. Indeed, in order to get practically useful
confidence regions, it is not necessary that the sequence possesses an asymptotic
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distribution [26]. The boundedness in probability uniformly of random variables
is sufficient enough. Namely, a sequence of random variables is bounded in prob-
ability with normal tails if for any ε > 0, there exist constants β1 and β2 such
that

sup
N

Prob
{
|ZN | ≥ ε

}
≤ β1e−β2ε

2
.

The boundedness in probability uniformly helps to construct the non-asymptotic
confidence regions of optimal value of optimization problems, see e.g. [26]. We
consider to use this property for constructing the non-asymptotic confidence
regions of the solutions of SVIP (3) in this part.

The following lemma characterizes the bounds on probability of large devia-
tions of martingales, which plays a key role in our analysis.

Lemma 3.1 ([27, Lemma A.1]): Let d1, d2, . . . be a scalar martingale-difference
such that for some σ > 0 it holds

E[ed
2
t /σ

2 |ξ1, . . . , ξt−1] ≤ e a.s. t = 1, 2, . . . .

Then

Prob

{ N∑
t=1

dt > λσ
√
N

}
≤

⎧⎨
⎩e

−λ2
4τ∗ , 0 ≤ λ ≤ 2

√
τ ∗N,

e
−λ2
3 , λ > 2

√
τ ∗N,

where τ ∗ = 0.557409 · · · . is the smallest positive real such that

et ≤ t + eτ
∗t2 , ∀ t ∈ IR.

Thanks to Lemma3.1, the sumof amartingale-difference sequence is bounded
in probability uniformly with normal tails. Obviously, we observe that for iid
samples ξ1, ξ2, . . . and any given x ∈ C, the sequence

F(x, ξ1) − EP[F(x, ξ1)], F(x, ξ2) − EP[F(x, ξ2)], . . .

is a martingale-difference sequence. This observation thereby allows us to call
Lemma3.1 togetherwith global error bound conditions for constructing the non-
asymptotic confidence regions of the solutions to SVIP (3).

Theorem 3.5: Suppose that

(a) xN is a sequence of solutions to SAA-SVIP (8).
(b) The global normal map error bound condition holds with modulus c.
(c) Denote

(di)j :=
(
F(xN , ξ ′

j ) − EP[F(xN , ξ)]
)
i
, j = 1, . . . ,N ′,

where ξ ′
1, . . . , ξ

′
N′ is independent identically distributed sample of ξ , which

is also independent with ξ1, . . . , ξN. For i = 1, . . . , n, there exists a positive
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constant σi such that

E[e(di)j/σ
2
i ] ≤ e, j = 1, 2, . . . ,N′.

Then, the set⎧⎨
⎩x : ‖x − xN‖ ≤ c

⎛
⎝λ

√
σ 2
1 + · · · + σ 2

n√
N ′ + ∥∥fN(xN) − f ′N′(xN)

∥∥
⎞
⎠

⎫⎬
⎭ (30)

defines an (1 − 2e
−λ2
4τ∗ )n confidence region for solutions to SVIP (3), where n is the

dimension of x.

Proof: Thanks to condition (a), Theorem 3.1 is valid, which results in that

dist(xN , S) ≤ c‖(f (xN) − fN(xN))‖
= c

∥∥fN(xN) − f ′N′(xN)
∥∥ + ∥∥f ′N′(xN) − f (xN)

∥∥ ,
where S denotes the set of solutions to SVIP (3). Now we are in the posi-
tion to invoke Lemma 3.1 in order to provide an upper bound for ‖f (xN) −
f ′N′(xN)‖ in probability. Since ξ ′

1, ξ
′
2, . . . , ξ

′
N′ is iid sample, for each i = 1, . . . , n,

(di)1, (di)2, . . . , (di)N′ is a scalar martingale-difference sequence. Thanks to con-
dition (c), Lemma 3.1 is applicable. As a consequence,

Prob

{∣∣∣∣∣
N∑
t=1

(di)j

∣∣∣∣∣ > λσ
√
N ′

}
≤ 2e

−λ2
4τ∗ .

By easy calculation, we may then arrive at the conclusion. �

Theorem 3.5 actually provides a universal confidence regions of the solutions
to the SVIP (3). In particular, with desired probability level and constantλ chosen
personally, (30) provides a confidence region for each given sample size N and
N ′. As one may observe, the confidence region relie parameters λ and sample
size N and N′. For a given sample size, we may increase λ in order to provide an
(1 − ε)-confidence region, where ε is small positive number. On the other hand,
for a confidence region with fixed radius, the decision maker may decide to stop
or to increase the sample size by continuing sampling and data collection. We
should also note that the confidence regions of Theorem3.5 involve somepositive
constants σ1, . . . , σn, defined in (4). The valid upper bounds on these constants
are crucial to obtain the confidence regions. To the best of our knowledge,
there is no generic procedure which allows us to construct such estimates. If for
i = 1, . . . , n, the values of (F(xN , ξ))i fall into a bounded interval [−σ , σ ], condi-
tion (c) of Theorem 3.5 holds. This assumption can be satisfied when (F(xN , ξ))i
is continuous in ξ and the support set of ξ is bounded. For unbounded cases, we
refer to [26] for more discussions.
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Similarly, if function F(x, ξ) has separable structure, we may construct
component-wise non-asymptotic confidence regions of the solutions to SVIP (3).

Corollary 3.3: Suppose that (a) {xN} is a sequence of solutions to SAA-SVIP (8).
(b) F(x, ξ) := F1(x1, ξ) + · · · + Fn(xn, ξ). (c) Fix i and for any given xi, there
exists x̄−i := (x̄1, . . . , x̄i−1, x̄i+1, . . . , x̄n) such that

(fj)N(x̄j) − fj(x̄j) = 0, 1 ≤ j �= i ≤ n,

where (fj)N(·) and fj(·) are defined as in (23). (d) The normal map error bound
condition holds. (e) For j = 1, . . . , n, there exists a positive constant σj such that

E[e(Fi((xN)i,ξ ′
κ ))j−(E[Fi((xN)i,ξ)])j/σ 2

j ] ≤ e, κ = 1, 2, . . . ,N ′.

Then, the interval⎧⎨
⎩xi : ‖xi − (xN)i‖ ≤ c

⎛
⎝λ

√
σ 2
1 + · · · + σ 2

n√
N ′ + ∥∥(fi)N((xN)i) − (f ′i )N′((xN)i)

∥∥
⎞
⎠
⎫⎬
⎭

(31)

defines an (1 − 2e
−λ2
4τ∗ )n confidence region for ith component of solutions to SVIP

(3), where (f ′i )N′(·) is defined as in (24).

4. Numerical results

In this section, we report some preliminary numerical results on a stochastic
linear complementarity problem which has been studied in [15,16].

Example 4.1 ([16, Example in Section 6.2]): Consider a stochastic linear com-
plementarity problem:

0 ≤ E[F(x, ξ)] ⊥ x ≥ 0, (32)

where

F(x, ξ) =
[
ξ1 ξ2
ξ3 ξ4

] [
x1
x2

]
+

[
ξ5
ξ6

]

and ξ follows uniform distribution over the box:{
ξ ∈ IR6|(0, 0, 0, 0,−1,−1) ≤ ξ ≤ (2, 1, 2, 4, 1, 1)

}
.

Then,

f (x) = M0x + b0 withM0 :=
[
1 1/2
1 2

]
, b0 =

[
0
0

]
.

Obviously, M0 is a positive definite matrix (without the symmetry), and then
it is a P-matrix (see Example 2.2 for the definition). Note that the minimum
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singular value of M0 is 0.6193, and the maximum is 2.4221. The constant γ in
the definition of P-function is 0.6193/2 and the Lipschitz constant of f (x) is
2.4221. Following the analysis of Example 2.2, the global natural type error bound
condition holds with constant c = 1+L

γ
= 11.0515, that is,

dist(xN , S) ≤ 11.0515‖f (xN) − fN(xN)‖,
where S denotes the set of solutions to (32),

fN(x) := MNx + bN ,

MN and bN are the SAA counterparts ofM0 and b0 respectively. Then, CLT based
Theorem 3.2 and ELT based Theorem 3.4 can be used to build the confidence
region of the true solutions to (32).

Moreover, it is easy to verify that for i = 1, 2

dist((xN)i, Si) ≤ 11.0515‖fi((xN)i) − (fi)N((xN)i)‖,
where Si := {xi : x ∈ S},

fi(xi) := (M)ixi + b0 and (fi)N(xi) := (MN)ixi + bN ,

and (A)i denotes the ith column of matrixA. Then Corollaries 3.1 and 3.2 can be
used to construct the component-wise confidence region of solutions to (32).

Note also that the support set of � is a compact set, for any given x and i = 1,
2, there exist bounded constants

σ1 := sup
ξ∈�

(F(x, ξ))1 = 2|x1| + |x2| + 1 and

σ2 := sup
ξ∈�

(F(x, ξ))2 = 2|x1| + 4|x2| + 1

satisfy the condition (c) of Theorem 3.5. Since the P function implies the global
error bound condition holds (Example 2.2), we may use the results in section 3.3
to construct the non-asymptotic confidence regions of the solutions to (32).

Based on the analysis above, we do the numerical test with samples size 10,
100, 500 and 1000. The corresponding sample average matrixMN and bN are

M10 =
[
1.1361 0.6417
1.1165 2.2844

]
b10 =

[−0.1808
−0.4552

]
x10 =

[
0.0644
0.1678

]

M100 =
[
0.9870 0.5333
0.9812 2.0358

]
b100 =

[−0.0983
−0.1317

]
x100 =

[
0.0873
0.0226

]

M500 =
[
0.9704 0.5195
1.0037 2.0721

]
b500 =

[−0.0129
−0.0474

]
x500 =

[
0.0014
0.0222

]

M1000 =
[
0.9829 0.5029
0.9704 1.9983

]
b1000 =

[−0.0049
−0.0062

]
x1000 =

[
0.0045
0.0009

]

For each given sample, we solve the LCP by the LCP solver developed by Tassa
[28], which returns the solutions x10, x100, x500 and x1000 as shown above. For
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Table 1. Asymptotic confidence regions: CLT.

N

Prob 10 100 500 1000

90% 0.7965 0.3457 0.0865 0.0538
95% 0.8531 0.3655 0.0945 0.0594
97.5% 0.9035 0.3830 0.1016 0.0643

Table 2. Asymptotic confidence regions: Owen’s ELT.

N

Prob 10 100 500 1000

90% 1.0764 0.4562 0.1393 0.0917
95% 1.1613 0.4913 0.1547 0.1026
97.5% 1.2310 0.5225 0.1685 0.1123

Table 3. Non-asymptotic confidence regions.

N

Prob 10 100 500 1000

90% 1.7180 0.6586 0.2180 0.1428
95% 1.8401 0.7004 0.2353 0.1546
97.5% 1.9515 0.7385 0.2512 0.1654

the convex problem induced by empirical likelihood theorem in Section 3.2, we
employ the solver CVX (version 1.22) developed by Grant and Boyd [25] to solve
it. Moreover, we set N = N ′.

Tables 1–3 report the radius γ of the confidence regions:

Prob {B(xN , cγ ) contains a solution of (32)} ≥ 1 − α

with α = 10%, 5% and 2.5% and c = 11.0515. We can observe from Tables 1–3
that for the given sample size N, the radius is increasing with the decreasing of
probability parameter α, and for the fixed probability parameter α, the radius
is decreasing with the increasing of the sample size N. Moreover, for the given
sample size N and probability parameter α, the confidence region returned by
CLT (Subsection 3.1) is more exact than Owen’s ELT (Subsection 3.2) and non-
asymptotic confidence regions (Subsection 3.3). The underlying reason may be
that (1) the CLT based confidence regions have used more information of the
random variable f (xN , ξ), such as the covariance matrix, but Owen’s ELT based
confidence regions only use the rank information of the covariancematrix, (2) the
componentwise relaxation has been used to handle the non-convexity of the opti-
mization problem involving Owen’s ELTmethod. Naturally, the non-asymptotic
confidence regions should be bigger than the asymptotic confidence regions as it
holds for any given sample rather than for large sample size.

We also test the component-wise confidence regions of the solutions to
SVIP (32). However, as the results reported in Table 4, radius of the compo-
nentwise confidence regions is almost same as the confidence region of whole
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Table 4. Component’s asymptotic confidence regions: CLT.

N

Prob 10 100 500 1000

90% (0.7544, 0.8193) (0.3517, 0.3385) (0.0864, 0.0866) (0.0538, 0.0537)
95% (0.8044, 0.8772) (0.3713, 0.3581) (0.0944, 0.0946) (0.0593, 0.0593)
97.5% (0.8489, 0.9287) (0.3888, 0.3756) (0.1015, 0.1017) (0.0643, 0.0643)

Table 5. (Component) Asymptotic confidence regions: CLT.

N

Prob 10 100 500 1000

90% 1.8831 0.4604 0.1867 0.1819
(1.0441, 1.7877) (0.3023, 0.4566) (0.1241, 0.1695) (0.1208, 0.1384)

95% 2.0514 0.5053 0.2059 0.1958
(1.1338, 1.9038) (0.3268, 0.4976) (0.1350, 0.1875) (0.1286, 0.1509)

97.5% 2.2012 0.5453 0.2229 0.2082
(1.2138, 2.0717) (0.3485, 0.5340) (0.1448, 0.2036) (0.1355, 0.1621)

solutions. The underlying reasonmay be that the solutions of the sample approx-
imation of (32) is x10, x100, x500 and x1000 which are too close to (0, 0) and then
the covariance of the row and column of[

ξ1 ξ2
ξ3 ξ4

] [
x1
x2

]
+

[
ξ5
ξ6

]

is almost determined by random variable ξ5 and ξ6.
In the next, we make a little change of the problem (32) by adding a constant

vector on F(x, ξ), that is, consider

0 ≤ E[F(x, ξ)] ⊥ x ≥ 0, (33)

where

F(x, ξ) =
[
ξ1 ξ2
ξ3 ξ4

] [
x1
x2

]
−

[
1.5
3.0

]
+

[
ξ5
ξ6

]

and ξ follows uniform distribution over the same box. Obviously, (0, 0) is not a
solution to (33) and (1, 1) is.We construct the componentwise confidence regions
with same four group sample. Tables 4–7 record the corresponding radius where
in each line the number above (a, b) denotes the radius of the confidence regions
of the whole solutions to SVIP and a, b denotes the radius of the confidence
regions to first component x1 and second component x2 respectively. It is easy to
obverse that the radius of the component confidence regions have the tendency
with the radius of whole confidence regions.

5. Summary

This paper aims to construct the confidence regions of SVIP through an
error bound approach. Compared to the established normal map approach
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Table 6. (Component) Asymptotic confidence regions: Owen’s ELT.

N

Prob 10 100 500 1000

90% 2.5944 0.6666 0.2767 0.2460
(1.4788, 2.4437) (0.4707, 0.6211) (0.1963, 0.2451) (0.1753, 0.1908)

95% 2.8300 0.7423 0.3087 0.2690
(1.6139, 2.6619) (0.5204, 0.6859) (0.2177, 0.2739) (0.1909,0.2108)

97.5% 3.0204 0.8102 0.3373 0.2895
(1.7249, 2.8400) (0.5514, 0.7386) (0.2367 0.2995) (0.2047, 0.2286)

Table 7. (Component) Non-asymptotic confidence regions.

N

Prob 10 100 500 1000

90% 3.9856 1.1366 0.5814 0.4842
(2.6660, 3.2800) (0.8310, 0.9225) (0.3580, 0.3850) (0.2915, 0.2841)

95% 4.2897 1.2283 0.6303 0.5212
(2.8722, 3.5136) (0.8950, 0.9916) (0.3865, 0.4163) (0.3121, 0.3056)

97.5% 4.5675 1.3122 0.6751 0.5550
(3.0624, 3.7291) (0.9542, 1.0553) (0.4128, 0.4452) (0.3312, 0.3253)

[12–17,29] which analyses the asymptotic distributions of solutions, the error
bound approach constructs the confidence regions through empirical likelihood
theory or large deviation theory.

As the error bound approach does not rely on Delta method, information
of the differential of normal map is not required. This advantage allows us to
avoid assuming uniqueness of the solution to SVIP. Moreover, the error bound
approach may construct the non-asymptotic confidence regions of the solutions
to SVIP in terms of the large deviation theorem. As far as we know, this is the first
result on the non-asymptotic confidence regions of the solutions to SVIP, which
may shed some light on balancing solutions’ accuracy and samples’ amount.

Notes

1. The uniqueness and Lipschitz of z(·) is with respect to the perturbation of the function
f (·) in SVIP (3).

2. For a given point, the difference of the SAA function and the true one can be taken as a
random vector.

3. df (x0)(·) denotes the B-derivative, see [16, Page 547] for details.
4. C1(C, IRn)denotes the Banach space of continuously differentiablemappings g : C → IRn.
5. The ball is defined in the Banach space of continuously differentiable mappings f : C →

R
n, equipped with the norm defined as in [16, (9) page 4].

6. A solution x∗ ∈ IRn to complementarity problem (16) is said to be non-degenerate if x∗
i �=

(h(x∗))i, i = 1, . . . , n.
7. The corresponding residual function rN(·) means that rN(·) and r(·) are induced by the

same type error bound conditions, such as, normal map error bound condition. But
rN(·) is corresponding to SAA-SVIP (8) and r(·) is corresponding to SVIP (3). Please
see Examples 3.1–3.3 for details.
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