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Abstract. The paper proposes and justifies a new algorithm of the proximal Newton type to solve a broad

class of nonsmooth composite convex optimization problems without strong convexity assumptions. Based

on advanced notions and techniques of variational analysis, we establish implementable results on the global

convergence of the proposed algorithm as well as its local convergence with superlinear and quadratic rates.

For certain structural problems, the obtained local convergence conditions do not require the local Lipschitz

continuity of the corresponding Hessian mappings that is a crucial assumption used in the literature to

ensure a superlinear convergence of other algorithms of the proximal Newton type. The conducted numerical

experiments of solving the l1 regularized logistic regression model illustrate the possibility of applying the

proposed algorithm to deal with practically important problems.
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1 Introduction

In this paper we consider a class of optimization problems of the following type:

min
x∈Rn

F (x) := f(x) + g(x), (1)

where both functions f, g : Rn → R := (−∞,∞] are proper, convex, and lower semicontinuous (l.s.c.), while

being structurally different from each other. Namely, f is assumed to be twice continuously differentiable

with the Lipschitz continuous gradient ∇f on its domain. On the other hand, g is merely continuous on its

domain; see Assumption 1.1 for the precise formulations. It has been well recognized that model (1), known

as a composite convex optimization problem, frequently appears in a variety of applications including, e.g.,
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machine learning, signal processing, and statistics, where f is a loss function and g is a regularizer; we keep

this terminology here. Note that problem (1) contains in fact implicit constraints written as x ∈ Ω := dom g.

It is typical in applications that problems of type (1) have a large size, which makes attractive to compute

their solutions by employing first-order algorithms such as the proximal gradient method (PGM). Given each

iteration xk, the PGM constructs a new iteration xk+1 by solving the following optimization subproblem,

which approximates the smooth function f in (1) by the linear model:

min
x∈Rn

lk(x) := f(xk) +∇f(xk)T (x− xk) + g(x), (2)

where T indicates the matrix transposition. As well known, the PGM applied to (1) generates a sequence of

iterates that converges at least sublinearly of rate O(1/k) (see, e.g., [3, 28]) and linearly with respect to the

sequence of cost function values—provided that f is strongly convex; see e.g., [34]. Refined results on linear

convergence of the PGM are derived under various error bound conditions as in [22, 23, 27, 36, 37].

When f is a twice continuously differentiable function, it is natural to expect algorithms having faster

convergence rates by exploiting the Hessian ∇2f(xk) of f at each iteration xk and constructing the next

iteration xk+1 as a solution to the following quadratic subproblem:

min
x∈Rn

qk(x) := f(xk) +∇f(xk)T (x− xk) +
1

2
(x− xk)THk(x− xk) + g(x), (3)

where Hk is an appropriate approximation of the Hessian ∇2f(xk). Methods of this type to solve composite

optimization problems (1) are unified under the name of proximal Newton-type methods; see, e.g., [20]. To

the best of our knowledge, the origin of such methods to solve nonsmooth composite optimization problems

given in form (1) can be traced back to the generalized proximal point method developed by Fukushima and

Mine [12] who in turn considered it as an extension of Rockafellar’s proximal point method [31] to find zeros

of maximal monotone operators and subgradient inclusions associated with convex functions. On the other

hand, the general scheme of successive quadratic approximations to solve optimization-related problems is a

common idea of Newton-type and quasi-Newton methods; see the books [10, 16] with their bibliographies.

For particular subclasses of composite problems (1), the quadratic approximation scheme (3) contains special

versions of the proximal Newton-type methods known as GLMNET [13], newGLMNET [38], QUIC [15], the

Newton-LASSO method [29], the projected Newton-type algorithms [34, 35], etc.

Observe further that, due to the convexity of both functions f and g with f being smooth, problem (1)

can be equivalently written as the generalized equation

0 ∈ ∇f(x) + ∂g(x) (4)

in the sense of Robinson [30], where ∂g(x) is the subdifferential of g at x. Then subproblem (3) for con-

structing the new iteration xk+1 in the proximal Newton method for (4) reduces to solving the following

partially linearized generalized equation at the given iteration xk:

0 ∈ ∇f(xk) +Hk(x− xk) + ∂g(x). (5)

Various results on the local superlinear and quadratic convergence of iterative sequences {xk} for (5) are

obtained in the literature in the framework of quasi-Newton methods for generalized equations under different

kinds of regularity conditions imposed on ∂F from (1); see, e.g., the books [7, 10, 16] with the references

and discussions therein. In particular, Fischer [11] proposes an iterative procedure to solve generalized
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equations and proves local superlinear and quadratic convergence of iterates under certain Lipschitz stability

property of the corresponding perturbed solution map. More specifically, paper [11] develops a quasi-Newton

algorithm to solve (1) in the framework of (5) that exhibits a local superlinear/quadratic convergence in the

setting where g is the indicator function of a box constraint, and where Hk in (3) is taken as the regularized

Hessian Hk := ∇2f(xk) + αkI with {αk} being a positive vanishing sequence satisfying certain conditions.

The main assumptions of [11] include the local Lipschitz continuity of the Hessian ∇2f(x) and the upper

Lipschitz continuity/calmness of the perturbed solution map (1) at the points in question.

However, how to build a reasonable globalization of the local scheme given by (3) has not been completely

resolved yet. Various globalizations of the proximal Newton method can be found in the literature, see, e.g.,

[4, 20, 19, 33]. Unfortunately, all these works require f to be strongly convex. In particular, paper by Byrd et

al. [4], which addresses the special case of problem (1) with g := λ‖x‖1 and λ > 0, proposes implementable

inexactness conditions and backtracking line search procedures to design a globally convergent proximal

Newton method, but the local superlinear and quadratic convergence results therein are established under

the strong convexity assumption on f . Quite recently [39], the inexactness conditions and backtracking

line search procedures of [4] is applied to develop a proximal Newton method for (1) with proving its local

convergence of superlinear and quadratic rates by using the Luo-Tseng error bound condition [23] instead

of the strong convexity assumption in [4]. However, the convergence results in [39] have a crucial flaw. To

achieve a local quadratic convergence rate, the authors of [39] require that parameters of their method satisfy

a certain condition involving the constant in the error bound, which is extremely challenging to estimate.

In this paper we design a new globally convergent proximal Newton-type algorithm to solve composite

convex optimization problems of class (1) under the following standing assumptions on the given data without

requiring the strong convexity of the loss function f :

Assumption 1.1. Impose the following properties of the loss function and the regularizer in (1):

(i) Both functions f, g : Rn → (−∞,∞] are proper, l.s.c., and convex.

(ii) The domain of the loss function dom f := {x | f(x) < ∞} is open, and f(x) is twice continuously

differentiable on a closed set Ω ⊃ (dom f) ∩ (dom g).

(iii) The regularizer g(x) is continuous on its domain.

(iv) The gradient ∇f(x) is Lipschitz continuous on a closed set Ω from (i) with Lipschitz constant L1 > 0.

(v) Problem (1) has a nonempty solution set denoted by X := arg minx∈Rn F (x) with the optimal value F ∗.

Our main contributions can be summarized as follows:

(1) We develop a globally convergent proximal Newton-type algorithm to solve (1) with an implementable

inexact condition for subproblem (3) and a new reasonable backtracking line search strategy. Our line

search procedure does not require any restrictive assumptions. It is shown in this way that if the

subgradient mapping ∂F is metrically subregular at any limiting point of the iterative sequence, the

backtracking line search procedure accepts a unit step size when the iterates are closed to the solution.

Furthermore, we prove that the proposed proximal Newton-type algorithm exhibits a local convergence

with the quadratic convergence rate. Numerical experiments are performed to solve the l1 regularized

logistic regression problem that illustrate the efficiency of the proposed algorithm.
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(2) We establish novel local convergence results for the proposed algorithm under the metric q-subregularity

assumption imposed on the subgradient mapping ∂F for any positive number q. If q ∈ (0, 1), the

obtained results require less restrictive assumptions in comparison with the case of metric subregularity

(q = 1) to ensure a superlinear convergence of iterates, while for q > 1 we achieve a convergence rate

that is higher than quadratic.

(3) When the loss function f in (1) satisfies additional structural assumptions, we obtain a local superlinear

convergence rate of our proposed algorithm without imposing the Lipschitz continuity of the Hessian

matrix ∇2f(x). The latter assumption is crucial for establishing a fast convergence of the previously

known algorithms of the proximal Newton type.

The rest of the paper is organized as follows. Section 2 briefly overviews the notions and results of

variational analysis needed for the subsequent material. In Section 3 we present our proximal Newton-

type algorithm and establish its global convergence. Section 4 contains results on the local superlinear and

quadratic convergence of the proposed algorithm under the metric subregularity assumption on the subgra-

dient mapping. In Section 5 we derive advanced local convergence results under the metric q-subregularity

conditions imposed on ∂F considering separately the cases where q ∈ (0, 1) and where q > 1. The next

Section 6 is devoted to problem (1) with a certain structure of the loss function f and establishes in this case

a superlinear convergence of the proposed algorithm without the Lipschitz continuity of the loss function

Hessian. Finally, Section 7 conducts and analyzes numerical experiments to solve the practically important

l1 regularized logistic regression problem by implementing the designed proximal Newton-type method.

2 Preliminaries from Variational Analysis

Here we recall and discuss some material from variational analysis that is broadly used in what follows. The

reader can find more details and references in the books [7, 24, 32].

Throughout the paper we use the standard notation. Recall that Rn signifies an n-dimensional Euclidean

space with the inner product 〈·, ·〉 and the norm denoted by ‖ · ‖, while the 1-norm is signified by ‖ · ‖1.

For any matrix A ∈ Rm×n we have ‖A‖ := maxx 6=0
‖Ax‖
‖x‖ with σ̃min(A) standing for the smallest nonzero

singular value of A. The symbols Br(x) and Br(x) denote the open and the closed Euclidean norm ball

centered at x with radius r > 0, respectively, while we use B and B for the corresponding unit balls

around the origin. Given a nonempty subset Ω ⊂ Rn, denote by bd Ω its boundary and consider the

associated distance function dist(x; Ω) := inf{‖x − y‖
∣∣ y ∈ Ω} and the indicator function δΩ(x) equal 0

if x ∈ Ω and ∞ otherwise. The graph of a set-valued mapping/multifunction Ψ: Rn ⇒ Rm is given by

gph Ψ := {(x, υ) ∈ Rn × Rm | υ ∈ Ψ(x)}, and the inverse to Ψ is Ψ−1(υ) := {x ∈ Rn | υ ∈ Ψ(x)}.
The following fundamental properties of set-valued mappings are employed in the paper to establish fast

local convergence results for the proposed proximal Newton-type algorithm.

Definition 2.1. Let Ψ: Rn →→ Rm be a set-valued mapping, let (x̄, ῡ) ∈ gph Ψ, and let q > 0.

(i) We say that Ψ is metrically q-subregular at (x̄, ῡ) with modulus κ > 0 if there is ε > 0 such that

dist
(
x; Ψ−1(ῡ)

)
≤ κdist

(
ῡ; Ψ(x)

)q
for all x ∈ Bε(x̄). (6)

(ii) Ψ is said to be metrically subregular at (x̄, ῡ) if q = 1 in (6).
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The metric subregularity property has been well recognized and applied in variational analysis and op-

timization numerical aspects. The reader can find more information and references in [7, 24] with the

commentaries and the bibliographies therein. In this paper we employ metric subregularity of subgradient

mappings, which form a remarkable class of multifunctions with special properties. Various sufficient condi-

tions and characterizations of this property of subgradient mappings are given in [1, 2, 9] in terms of certain

second-order growth conditions imposed on the function in question.

The metric q-subregularity of order q ∈ (0, 1), known also as Hölder metric subregularity, is much less

investigated, while some verifiable conditions for the fulfillment of this property can be found in, e.g.,

[14, 21, 40]. Note that the Hölder metric subregularity is clearly a weaker assumption in comparison with

the standard metric subregularity property.

The case of higher-order metric subregularity with q > 1 in (6) is largely open in the literature. One of

the reasons for this is that the corresponding metric q-regularity property with q > 1 does not make sense,

since it holds only for constant mappings. Nevertheless, it is shown in [25] that the higher-order metric

subregularity is a useful property in variational analysis and optimization. This property is characterized for

subgradient mappings in [25] via a higher-order growth condition, and its strong version is applied therein

to the convergence analysis of quasi-Newton methods for generalized equations.

Next we consider the proximal mapping

Proxg(u) := argmin
{
g(x) +

1

2
‖x− u‖2

∣∣∣ x ∈ Rn
}
, u ∈ Rn, (7)

associated with a proper function g : Rn → R. A crucial role of proximal mappings has been well recognized

not only in proximal Newton-type algorithms (see, e.g., [4, 20]), but also in other second-order methods

of numerical optimization. In particular, we refer the reader to the very recent papers [17, 26], where the

proximal mappings are used for designing superlinearly convergent Newton-type algorithms to find tilt-stable

local minimizers of nonconvex extended-real-valued functions and to solve subgradient inclusions in a large

generality. If g is l.s.c. and convex, then the proximal mapping (7) is single-valued and nonexpansive on Rn,

i.e., Lipschitz continuous with constant one; see, e.g., [32, Theorem 12.12].

It is important to emphasize that in many practical models of type (1) arising, in particular, in machine

learning and statistics, the proximal mapping associated with the regularizer term g (e.g., when g is the

l1-norm, the group Lasso regularizer, etc.) can be easily computed. This is the case of the l1 regularized

logistic regression problem in our applications developed in Section 7.

Having (7), define further the prox-gradient mapping associated with (1) by

r(x) := x− Proxg
(
x−∇f(x)

)
, x ∈ Rn, (8)

and present some properties of (8) used in what follows. The first proposition is a combination of Theorem 3.4

and Theorem 3.5 established in [8].

Proposition 2.1. Let ∇f be Lipschitz continuous with modulus L1 around x̄, and let the mapping ∇f(x) +

∂g(x) be metrically subregular at (x̄, 0), i.e., there exist numbers ε, κ > 0 such that

dist(x;X ) ≤ κdist
(
0;∇f(x) + ∂g(x)

)
for all x ∈ Bε(x̄).

Then whenever x ∈ Bε(x̄) we have the estimate

dist(x;X ) ≤ (1 + κ)(1 + L1)‖r(x)‖.
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The next proposition give a reverse statement to Proposition 2.1 while providing an estimate of the norm

of (8) via the distance to the solution set of the convex composite problem (1).

Proposition 2.2. Let ∇f be Lipschitz continuous with modulus L1 on Rn. Then we have the estimate

‖r(x)‖ ≤ (2 + L1)dist(x;X ) for all x ∈ Rn.

Proof. Observe first that the mapping r(x) is well-defined and single-valued for all x ∈ Rn due to the

aforementioned result of [32]. It easily follows from Assumption 1.1 that the nonempty solution set X
is closed and convex; hence each point x ∈ Rn has the unique projection πx ∈ X onto X . Note that

πx − Proxg(πx −∇f(πx)) = 0 for πx ∈ X . Thus we verify the claim of the proposition by

‖r(x)‖ =
∥∥x− Proxg

(
x−∇f(x)

)∥∥
=
∥∥x− Proxg

(
x−∇f(x)

)
−
(
πx − Proxg(πx −∇f(πx))

)∥∥
≤ ‖x− πx‖+

∥∥Proxg
(
x−∇f(x)

)
− Proxg

(
πx −∇f(πx)

)∥∥
≤ ‖x− πx‖+

∥∥(x−∇f(x)
)
− (πx −∇f(πx)

)∥∥
≤ (2 + L1)‖x− πx‖, x ∈ Rn,

where the second inequality holds since the proximal mapping Proxg is nonexpansive.

Finally, we obtain an extension of Proposition 2.1 to case where the subgradient mapping ∇f +∂g in (1)

satisfies the Hölder subregularity property in the point in question.

Proposition 2.3. Let ∇f be Lipschitz continuous with modulus L1 around x̄, and let the mapping ∇f(x) +

∂g(x) be metrically q-subregular at (x̄, 0) with q ∈ (0, 1], i.e., there exist ε1, κ1 > 0 such that

dist(x;X ) ≤ κ1dist
(
0;∇f(x) + ∂g(x)

)q
for all x ∈ Bε1(x̄).

Then we find constants ε2, κ2 > 0 that ensure the estimate

dist(x;X ) ≤ κ2‖r(x)‖q whenever x ∈ Bε2(x̄). (9)

Proof. By (8) we have the inclusions

r(x) ∈ ∇f(x) + ∂g
(
x− r(x)

)
and

r(x) +∇f
(
x− r(x)

)
−∇f(x) ∈ ∇f

(
x− r(x)

)
+ ∂g

(
x− r(x)

)
for all x ∈ Rn. When x ∈ Bε(x̄), it follows from the imposed assumption that

dist
(
x− r(x);X

)
≤ κdist

(
0; r(x) +∇f

(
x− r(x)

)
−∇f(x)

)q
≤ κ(1 + L1)q‖r(x)‖q,

which lead us to the resulting estimates for such x:

dist(x;X ) ≤ dist
(
x− r(x);X

)
+ ‖r(x)‖

≤ 1 + κ(1 + L1)q) max
{
‖r(x)‖, ‖r(x)‖q

}
.
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Applying now Proposition 2.2 tells us that, whenever dist(x;X ) ≤ 1/(2 + L1) and x ∈ Rn, we get

‖r(x)‖ ≤ (2 + L1)dist(x;X ) ≤ 1.

Letting ε2 := min{1/(2 + L1), ε1} and remembering that q ≤ 1 bring us to the inequality

dist(x;X ) ≤ (1 + κ(1 + L1)q)‖r(x)‖q for all x ∈ Bε2(x̄),

which verifies (9) with κ2 := (1 + κ(1 + L1)q) and thus completes the proof of the proposition.

3 The New Algorithm and Its Global Convergence

In this section we describe the proposed proximal Newton-type algorithm to solve the class of composite

convex optimization problems (1) with justifying its global convergence under the standing assumptions.

Given a current iteration xk for each k = 0, 1, . . ., we select a positive semidefinite matrix Bk as an

arbitrary approximation of the Hessian ∇2f(xk) satisfying the standing boundedness assumption:

there exists M ≥ 0 such that ‖Bk‖ ≤M whenever k = 0, 1, . . . . (10)

If the gradient mapping ∇f is uniformly Lipschitz continuous along the sequence of iterations with constant

L1, then (10) holds for Bk = ∇2f(xk) with M = L1. In the general case of Bk, pick any constants c > 0

and ρ ∈ (0, 1] and, using the prox-regular mapping (8), consider the positive number αk := c‖r(xk)‖ρ and

define the quasi-Newton approximation of the Hessian of f at xk by

Hk := Bk + αkI for all k = 0, 1, . . . , (11)

which is a positive definite matrix. Then similarly to [4], but with the different approximation (11), denote

rk(x) := x− Proxg
(
x−∇f(xk)−Hk(x− xk)

)
(12)

and select x̂k as an approximate minimizer of the quadratic subproblem for (1) given by

min
x∈Rn

qk(x) := f(xk) +∇f(xk)T (x− xk) +
1

2
(x− xk)Hk(x− xk) + g(x) (13)

with the residual number ‖rk(x̂k)‖ measuring the approximate optimality of x̂k in (13). Observing that

‖rk(x̂k)‖ = 0 if and only if x̂k is an exact solution to subproblem (13), we use the nonnegative number

r̂k := min
{
‖rk(x̂k)‖,dist

(
0; ∂qk(x̂k))

}
with rk(x) taken from (12) as the optimality measure of x̂k in subproblem (13). Adapting the scheme of

[4] in our new setting, let us impose the following two estimates as inexact conditions for choosing x̂k as an

approximate solution to subproblem (13):

min
{
‖rk(x̂k)‖,dist

(
0; ∂qk(x̂k)

)}
≤ ηk‖r(xk)‖ and qk(x̂k) ≤ qk(xk) (14)

with the parameter ηk := νmin{1, ‖r(xk)‖%} defined via (12) and some numbers ν ∈ [0, 1/2) and % > 0.

Using the above constructions and the line search procedure inspired by [5, 6], we are ready to propose

the proximal Newton-type algorithm designed as follows:
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Algorithm 1 Proximal Newton-type method

1: Choose x0 ∈ Rn, 0 < θ, σ, γ < 1, C > F (x0), c > 0, and ρ ∈ (0, 1].

2: for k = 0, 1, . . . do

1. Update the approximation of the Hessian matrix Bk.

2. Form the quadratic model (3) with Hk := Bk + αkI and αk := c‖r(xk)‖ρ.

3. Obtain an inexact solution x̂k of (3) satisfying the conditions in (14).

4. If k = 0, let ϑ1 := r(x0) and go to Step 5. For k ≥ 1, if ‖r(x̂k)‖ ≤ σϑk and f(x̂k) ≤ C, let tk := 1,

ϑk+1 := ‖r(x̂k)‖, and go to Step 6. Otherwise, let ϑk+1 := ϑk and go to Step 5.

5. Perform a backtracking line search along the direction dk := x̂k − xk by setting tk := γmk , where

mk is the smallest nonnegative integer m such that

F (xk + γmdk) ≤ F (xk)− θαkγm‖dk‖2. (15)

6. Set xk+1 := xk + tkd
k.

3: end for

In the rest of this section we show that the proposed algorithm globally converges under the mild standing

assumptions, which are imposed above and will not be repeated. Let us start with the following lemma

providing a subgradient estimate for subproblem (13) at the approximate solution.

Lemma 3.1. Given an approximate solution x̂k to (13), there exists a vector ek ∈ Rn such that

ek ∈ ∇f(xk) +Hk(x̂k − xk) + ∂g(x̂k − ek) and ‖ek‖ ≤ νmin
{
‖r(xk)‖, ‖r(xk)‖1+%

}
. (16)

Proof. Let ek := rk(x̂k) = x̂k−Proxg(x̂
k−∇f(xk)−Hk(x̂k−xk)) and pick any ζk ∈ ∂qk(x̂k). Then we have

ek ∈ ∇f(xk) +Hk(x̂k − xk) + ∂g(x̂k − ek) and ζk ∈ ∇f(xk) +Hk(x̂k − xk) + ∂g(x̂k),

which follow from (7) and the subdifferential sum rule of convex analysis. Since the subgradient mapping

∂g is monotone, this readily tells us that

〈ek − ζk,−ek〉 ≥ 0,

which in turn yields the estimates

‖ek‖2 ≤ 〈ζk, ek〉 ≤ ‖ek‖ · ‖ζk‖.

Using finally the inexact conditions (14) for x̂k, we arrive at the claim of the lemma.

The next lemma provides elaborations on Step 5 of the proposed algorithm with the decreasing of the

cost function in (1) by the backtracking line search.

Lemma 3.2. Let tk be chosen by the backtracking line search in Step 5 of Algorithm 1 at iteration k. Then

we have the size estimate

tk ≥
γ(1− θ)αk

L1
(17)

with the cost function decrease satisfying

F (xk+1)− F (xk) ≤ −γθ(1− θ)
2L1

(
(1− 2ν)αk

(1 + ν)(1 +M + αk)

)2

‖r(xk)‖2. (18)
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Proof. Since x̂k is an inexact solution to (3) obeying the conditions in (14), it follows that

0 ≥ qk(x̂k)− qk(xk) = lk(x̂k)− lk(xk) +
1

2
(x̂k − xk)THk(x̂k − xk),

where lk is the linear part of qk defined in (2). This yields

lk(xk)− lk(x̂k) ≥ 1

2
(x̂k − xk)THk(x̂k − xk) ≥ 1

2
αk‖x̂k − xk‖2. (19)

By r(xk) = xk − Proxg(x
k −∇f(xk)) we deduce from the stationary and subdifferential sum rules that

r(xk) ∈ ∇f(xk) + ∂g
(
xk − r(xk)

)
.

Furthermore, Lemma 3.1 gives us the condition ek ∈ ∇f(xk) + Hk(x̂k − xk) + ∂g(x̂k − ek) for x̂k with ek

satisfying the estimate ‖ek‖ ≤ ν‖r(xk)‖. The monotonicity of the subgradient mapping ∂g ensures that〈
r(xk) +Hk(x̂k − xk)− ek, xk − r(xk)− x̂k + ek

〉
≥ 0,

which therefore leads us to the inequality

‖r(xk)‖2+‖ek‖2+(x̂k−xk)THk(x̂k−xk) ≤
〈
r(xk), xk−x̂k+Hk(xk−x̂k)

〉
+
〈
ek, 2r(x

k)+(x̂k−xk)+Hk(x̂k−xk)
〉
.

Using again the condition ‖ek‖ ≤ ν‖r(xk)‖ together with ‖Bk‖ ≤M from (10) results in

‖r(xk)‖2 ≤ (1 + ν)(1 +M + αk)‖r(xk)‖ · ‖x̂k − xk‖+ 2ν‖r(xk)‖2.

Remembering the choice of ν ∈ [0, 1
2 ), we estimate the prox-gradient mapping (8) at the iteration xk by

‖r(xk)‖ ≤ (1 + ν)(1 +M + αk)

1− 2ν
‖x̂k − xk‖. (20)

Next let us show that the backtracking line search along the direction dk = x̂k − xk in Step 5 is well-

defined and the proposed step size ensures a sufficient decrease in the cost function F . It follows from the

Lipschitz continuity of ∇f that

f(xk + τdk) ≤ f(xk) + τ∇f(xk)T dk +
L1

2
τ2‖dk‖2 for any τ ≥ 0,

and thus we deduce from the definition of lk in (2) that

F (xk)− F (xk + τdk) ≥ lk(xk)− lk(xk + τdk)− L1

2
τ2‖dk‖2.

This implies by the convexity of g that

lk(xk)− lk(xk + τdk) ≥ τ
(
lk(xk)− lk(xk + dk)

)
.

Combining the latter with (19) and using the choice of θ ∈ (0, 1) yield the relationships

F (xk)− F (xk + τdk)− θαkτ

2
‖dk‖2

≥ lk(xk)− lk(xk + τdk)− L1

2
τ2‖dk‖2 − θαkτ

2
‖dk‖2

≥ τ
(
lk(xk)− lk(xk + dk)

)
− L1

2
τ2‖dk‖2 − θαkτ

2
‖dk‖2

≥ (1− θ)τ αk
2
‖dk‖2 − L1

2
τ2‖dk‖2

=
τ

2
‖dk‖2

(
(1− θ)αk − L1τ

)
.

(21)
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This tells us that the backtracking line search criterion (15) fulfills when 0 < τ ≤ (1−θ)αk
L1

, and thus the step

size tk satisfies the claimed condition (17). Substituting now τ := tk ≥ γ(1−θ)αk
L1

into (21) and employing the

estimate of ‖r(xk)‖2 from (20), we arrive at the inequalities

F (xk)− F (xk + tkd
k) ≥ θαktk

2
‖dk‖2

≥ γθ(1− θ)α2
k

2L1

(
(1− 2ν)

(1 + ν)(1 +M + αk)

)2

‖r(xk)‖2,

which verify the decreasing condition (18) and thus completes the proof of the lemma.

Now we are ready to prove the global convergence of Algorithm 1. Define the sets

K :=
{

0, 1, . . .
}

and K0 := {0} ∪
{
k + 1 ∈ K

∣∣ Step 5 is not applied at iteration k
}
. (22)

Theorem 3.1. Let {xk} be the sequence of iterates generated by Algorithm 1 with an arbitrarily chosen

stating point x0 ∈ Rn under the standing assumptions made, and let the set K0 is defined in (22). Then K0

is infinite and we have the residual condition

lim inf
k→∞

‖r(xk)‖ = 0 (23)

along the prox-gradient mapping (8). Furthermore, the boundedness of {xk} yields the convergence to the

optimal value lim
k→∞

F (xk) = F ∗ and ensures that any limiting point of {xk} is a global minimizer in (1).

Proof. First we verify that the set K0 is infinite. Arguing by contraposition, suppose that K0 is finite and

denote k̄ := maxk∈K0 k. It follows from Lemma 3.2 that for any k > k̄ we get

F (xk+1)− F (xk) ≤ −γθ(1− θ)
2L1

(
(1− 2ν)αk

(1 + ν)(1 +M + αk)

)2

‖r(xk)‖2,

which tells us therefore that

∞∑
k=k̄

γθ(1− θ)
2L1

(
(1− 2ν)αk

(1 + ν)(1 +M + αk)

)2

‖r(xk)‖2 ≤ F (xk̄)− F ∗ ≤ 0.

The latter implies in turn that

lim
k→∞

γθ(1− θ)
2L1

(
(1− 2ν)αk

(1 + ν)(1 +M + αk)

)2

‖r(xk)‖2 = 0.

Remembering the choice of αk = c‖r(xk)‖ρ with c, ρ > 0 ensures that

lim
k→∞

‖r(xk)‖ = 0,

and hence there exists k > k̄ such that k ∈ K0; a contradiction showing that the set K0 is infinite.

Thus we can reorganize K0 in such a way that 0 = k0 < k1 < k2 < . . .. It follows from Step 4 of

Algorithm 1 that the estimate

‖r(xk`+1)‖ ≤ σ‖r(xk`)‖ whenever ` = 0, 1, . . .
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holds with the chosen number σ ∈ (0, 1) in the algorithm, and therefore we get

0 ≤ lim sup
`→∞

‖r(xk`)‖ ≤ lim
`→∞

σ`‖r(xk0)‖ = 0,

which clearly yields (23). The continuity of r(·) ensures that ‖r(x̄)‖ = 0 for a limiting point x̄ of the sequence

{xk}k∈K0
, and thus x̄ ∈ X . Consider now any limiting point x̄ of the entire sequence of iterates {xk}k∈K . If

there exists k̄ such that k ∈ K0 for all k ≥ k̄, it is easy to see that x̄ is a global minimizer of (1). Otherwise,

for any k /∈ K0 denote by k` ∈ K0 the largest number satisfying k` < k and hence get

F ∗ ≤ F (xk) ≤ F (xk−1) ≤ . . . ≤ F (xk`).

Since the sequence {xk}k∈K0 is bounded, and since any limiting point of {xk}k∈K0 is a global minimizer in

(1) as already shown, it follows that lim
`→∞

F (xk`) = F ∗. This readily verifies by the constructions above that

lim
k→∞

F (xk) = F ∗, and thus any limiting point of {xk}k∈K provides a global minimum to (1).

We conclude this section with a consequence of Theorem 3.1 giving an easily verifiable condition for the

boundedness of the sequence of iterates in Algorithm 1. Recall that a function ϕ : Rn → R is coercive if

ϕ(x)→∞ provided that ‖x‖ → ∞.

Corollary 3.2. In addition to the standing assumptions imposed above, suppose that the cost function F in

(1) is coercive. Then we have lim
k→∞

F (xk) = F ∗ for the sequence of iterates {xk} generated by Algorithm 1,

and any limiting point of {xk} is a global minimizer in (1).

Proof. According to Steps 4 and 5 of Algorithm 1, the sequence {xk} generated by the algorithm satisfies

the condition F (xk) ≤ C for all k. Then the coercivity of F implies that the sequence {xk} is bounded.

Thus we deduce the conclusions of the corollary from Theorem 3.1.

4 Quadratic Local Convergence under Metric Subregularity

This section provides a detailed study of the local convergence of Algorithm 1 under the metric regularity

assumption on the subgradient mapping in (1); see Section 2 for the discussion of this property. The main

result here establishes superlinear local convergence rates depending on the selected exponent ρ ∈ (0, 1] in

the algorithm, which gives us the quadratic convergence in the case where ρ = 1. Our analysis partly follows

the scheme of [11] for a Newtonian algorithm to solve generalized equations with nonisolated solutions under

certain Lipschitzian properties of perturbed solution sets. Note that the imposed metric subregularity allows

us to avoid limitations of the line search procedure (needed for establishing the global convergence of our

algorithm in Section 2 that is not addressed in [11]) to achieve now the fast local convergence.

Let us start with the following lemma giving us a norm estimate of directions dk in Algorithm 1.

Lemma 4.1. Let {xk} be the sequence generated by Algorithm 1 under the standing assumptions, and let

x̄ ∈ X be any limiting point of {xk}. If the Hessian ∇2f is locally Lipschitzian around x̄, then there exist

numbers ε, L2 > 0 such that we have the estimate

‖dk‖ ≤ 1

αk

(L2

2
dist(xk;X )2 + ‖Bk −∇2f(xk)‖dist(xk;X ) + 2αkdist(xk;X ) + (1 +M + αk)ν‖r(xk)‖1+%

)
for the directions dk := x̂k − xk, provided that xk ∈ Bε(x̄).
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Proof. Remembering that x̂k is an inexact solution to (3) satisfying conditions (14), we apply Lemma 3.1

and find a vector ek such that the relationships in (16) hold. Denoting by πkx the (unique) projection of xk

onto the solution map X , we get by basic convex analysis that 0 ∈ ∇f(πkx) + ∂g(πkx) and thus

∇f(xk)−∇f(πkx) +Hk(πkx − xk) ∈ ∇f(xk) +Hk(πkx − xk) + ∂g(πkx).

Since the mapping ∇f(xk) +Hk(· − xk) + ∂g(·) is strongly monotone on Rn with constant αk, we have

〈∇f(xk)−∇f(πkx) +Hk(πkx − xk)− ek +Hkek, π
k
x − x̂k + ek〉 ≥ αk‖πkx − x̂k + ek‖2. (24)

Combining the above with the algorithm constructions gives us the estimates

‖πkx − x̂k + ek‖ ≤
1

αk
‖∇f(xk)−∇f(πkx) +Hk(πkx − xk)− ek +Hkek‖

≤ 1

αk

(
‖∇f(xk) +∇2f(xk)(πkx − xk)−∇f(πkx)‖+ ‖(Hk −∇2f(xk))(πkx − xk)‖+ ‖ek −Hkek‖

)
≤ 1

αk

(
‖∇f(xk) +∇2f(xk)(πkx − xk)−∇f(πkx)‖+ ‖Bk −∇2f(xk)‖ · ‖xk − πkx‖

+ αk‖xk − πkx‖+ (1 +M)‖ek‖
)

≤ 1

αk

(
‖∇f(xk) +∇2f(xk)(πkx − xk)−∇f(πkx)‖+ ‖Bk −∇2f(xk)‖dist(xk;X )

+ αkdist(xk;X ) + (1 +M)ν‖r(xk)‖1+%
)
,

where the third inequality follows from the choice of Hk = Bk+αkI while the fourth inequality is implied by

‖ek‖ ≤ ν‖r(xk)‖1+%. Since the Hessian mapping ∇2f is locally Lipschitzian around x̄, there exist positive

numbers ε and L2 such that for any x, y ∈ Bε(x̄) we get

‖∇f(x) +∇2f(x)(y − x)−∇f(y)‖ ≤ L2

2
‖x− y‖2.

Furthermore, it follows from xk ∈ Bε(x̄) and πkx ∈ Bε(x̄) that

‖πkx − x̂k + ek‖ ≤
1

αk

(L2

2
dist(xk;X )2 + ‖Bk −∇2f(xk)‖ dist(xk;X ) + αkdist(xk;X ) + (1 +M)ν‖r(xk)‖1+%

)
.

Finally, we employ the relationships

‖dk‖ = ‖x̂k − xk‖ ≤ ‖πkx − x̂k + ek‖+ ‖πkx − xk‖+ ‖ek‖ and ‖ek‖ ≤ ν‖r(xk)‖1+% (25)

to justify the claimed estimate of the lemma.

Now we are ready to derive the main result of this section about fast local convergence of Algorithm 1

under the metric subregularity of the subdifferential.

Theorem 4.1. Let {xk} be the sequence of iterates generated by Algorithm 1 with αk = c‖r(xk)‖ρ, ρ ∈ (0, 1],

and % ≥ ρ, and let x̄ ∈ X be any limiting point of the sequence {xk}k∈K0
, where K0 is defined in (22). In

addition to the standing assumptions, suppose that the subgradient mapping ∇f(x) + ∂g(x) is metrically

subregular at (x̄, 0), that ∇2f is locally Lipschitzian around x̄, and that ‖Bk − ∇2f(xk)‖ = O(‖r(xk)‖).

Then there exists a natural number k0 such that we have

tk = 1 for all k ≥ k0,
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and that the sequence {xk} converges to the point x̄. Furthermore, this convergence is superlinear with the

rate 1 + ρ, i.e., there exist a positive number C0 and a natural number k0 for which

dist(xk+1;X ) ≤ C0 dist(xk;X )1+ρ whenever k ≥ k0. (26)

In particular, for ρ = 1 we have the quadratic convergence of xk → x̄ with the exponent 1 + ρ = 2 in (26).

Proof. Observe first that the assumed metric subregularity of the mapping ∇f(x) + ∂g(x) at (x̄, 0) gives us

a positive number ε1 and a natural number κ1 such that for all p near 0 ∈ Rn we have the inclusion

Σ(p) ∩ Bε1(x̄) ⊂ X + κ1‖p‖B with Σ(p) :=
{
x ∈ Rn

∣∣ p ∈ ∇f(x) + ∂g(x)
}
. (27)

Employing Proposition 2.1 allows us to find κ2 > 1 ensuring the estimate

dist(x;X ) ≤ κ2‖r(x)‖ whenever x ∈ Bε1(x̄). (28)

Since ‖Bk −∇2f(xk)‖ = O(‖r(xk)‖), we deduce from Proposition 2.2 that there exists C1 > 0 such that

‖Bk −∇2f(xk)‖ ≤ C1 dist(xk;X ).

Since ∇2f is locally Lipschitzian around x̄, there exist numbers L2, ε2 > 0 such that

‖∇f(x) +∇2f(x)(y − x)−∇f(y)‖ ≤ L2

2
‖x− y‖2 for any x, y ∈ Bε2(x̄). (29)

Applying Lemma 4.1, we can select ε1 ∈ (0, 1) to be so small that when xk ∈ Bε1(x̄), ‖r(xk)‖ ≤ 1 and

‖dk‖ ≤ 1

αk

(L2

2
dist(xk;X )2 + ‖Bk −∇2f(xk)‖dist(xk;X ) + 2αkdist(xk;X ) + (1 +M + αk)ν‖r(xk)‖1+%

)

≤ 1

c

(
κρ2L2

2
dist(xk;X )2−ρ + κρ2C1dist(xk;X )2−ρ + 2dist(xk;X ) + (2 +M)νκρ2(2 + L1)1+%dist(xk;X )1+%−ρ

)
,

where the second inequality follows from Proposition 2.2 and the estimates

‖Bk −∇2f(xk)‖ ≤ C1 dist(xk;X ) and αk = c‖r(xk)‖ρ ≥ cdist(x;X )ρ/κρ2.

Remembering that ρ ∈ (0, 1] and % ≥ ρ, we find c1 > 0 such that

‖dk‖ ≤ c1dist(xk;X ) for all xk ∈ Bε1(x̄). (30)

Since x̂k is an inexact solution of (3) satisfying (14), Lemma 3.1 gives us a vector ek for which the conditions

in (16) hold. By setting x̃k := x̂k − ek, we have the inclusion

ek −Hkek ∈ ∇f(xk) +Hk(x̃k − xk) + ∂g(x̃k),

which implies therefore the following one

Rk(x̃k xk) := ∇f(x̃k)−∇f(xk)−Hk(x̃k − xk) + ek −Hkek ∈ ∇f(x̃k) + ∂g(x̃k). (31)
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The latter reads, by the above definition of the perturbed solution map Σ(p), that x̃k ∈ Σ(Rk(x̃k xk)).

Without loss of generality, let ε1 be so small that ε1 < ε2/(3 + c1 +L1) and then get ‖x̃k − x̄‖ ≤ ‖xk − x̄‖+

‖dk‖+ ‖ek‖ ≤ (1 + c1 + 2 + L1)‖xk − x̄‖ < ε2. This leads us to the relationships

‖Rk(x̃k xk)‖ = ‖∇f(x̃k)−∇f(xk)−Hk(x̃k − xk) + ek −Hkek‖

= ‖∇f(x̃k)−∇f(xk)− (Bk + αkI)(x̃k − xk) + ek −Hkek‖

≤ ‖∇f(x̃k)−∇f(xk)−∇2f(xk)(x̃k − xk)‖+ ‖Bk −∇2f(xk)‖ · ‖x̃k − xk‖+ αk‖x̃k − xk‖

+ (1 +M)‖ek‖

≤ L2

2
‖x̃k − xk‖2 + C1 dist(xk;X )‖x̃k − xk‖+ c‖r(xk)‖ρ‖x̃k − xk‖+ (1 +M)ν‖r(xk)‖1+%,

where the second inequality follows from (29), ‖Bk − ∇2f(xk)‖ ≤ C1 dist(xk;X ), αk = c‖r(xk)‖ρ, and

‖ek‖ ≤ ν‖r(xk)‖1+%. Using now ‖ek‖ ≤ ν‖r(xk)‖ ≤ ν(2 + L1) dist(xk;X ) and (30), we obtain

‖x̃k − xk‖ ≤ ‖x̂k − xk‖+ ‖ek‖ = ‖dk‖+ ‖ek‖ ≤ (c1 + ν(2 + L1)) dist(xk;X ) for all xk ∈ Bε1(x̄).

Then Proposition 2.2 and the assumption of % ≥ ρ give us a constant c2 > 0 such that

‖Rk(x̃k, xk)‖ ≤ c2 dist(xk;X )1+ρ for all xk ∈ Bε1(x̄). (32)

Taking further 0 < ε3 < ε1/(3 + c1 + L1) with xk ∈ Bε3(x̄), we have

‖x̃k − x̄‖ ≤ ‖xk − x̄‖+ ‖dk‖+ ‖ek‖ ≤ (1 + c1 + 2 + L1)‖xk − x̄‖ < ε1,

and thus x̃k ∈ Bε1(x̄). It follows from the metric subregularity assumption (27) that x̃k ∈ Σ(Rk(x̃k, xk)),

which yields for xk ∈ Bε3(x̄) the estimates

dist(x̃k;X ) ≤ κ1‖Rk(x̃k, xk)‖ ≤ κ1c2 dist(xk;X )1+ρ and

dist(x̂k;X ) ≤ dist(x̃k;X ) + ‖ek‖ ≤ κ1c2 dist(xk;X )1+ρ + ν‖r(xk)‖1+%

≤ (κ1c2 + ν(2 + L1)1+%)dist(xk;X )1+ρ.
(33)

Since ρ > 0, this allows us to find 0 < ε0 < ε3 such that

dist(x̂k;X ) ≤ σ

(2 + L1)κ2
dist(xk;X ) for xk ∈ Bε0(x̄). (34)

Remembering that C > F (x0) ≥ F∗ and that F is continuous on domF , we select ε0 to be so small that

sup
x∈Bε0 (x̄)∩domF

F (x) ≤ C. (35)

Next we introduce the positive constants

σ̃ :=
σ

(2 + L1)κ2
< 1 and ε̃ :=

1− σ̃
1 + c1

ε0

and show that if xk0 ∈ Bε̃(x̄) with some k0 ∈ K0, then for any k ≥ k0 we have

k ∈ K0, tk = 1, xk+1 = x̂k, and xk+1 ∈ Bε0(x̄). (36)
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To verify (36), set first k := k0 and deduce from xk ∈ Bε̃(x̄) that

‖x̂k − x̄‖ ≤ ‖xk − x̄‖+ ‖dk‖ ≤ ‖xk − x̄‖+ c1 dist(xk;X ) ≤ (1 + c1)‖xk − x̄‖ ≤ ε0.

It follows from (28), (34), Proposition 2.2, and k0 ∈ K0 that

‖r(x̂k)‖ ≤ (2 + L1)dist(x̂k;X ) ≤ (2 + L1)
σ

(2 + L1)κ2
dist(xk;X )

≤ σ‖r(xk)‖ = σϑk.

Observe also that (35) obviously yields F (x̂k) ≤ C. Then by Step 4 of Algorithm 1 we get k + 1 ∈ K0,

tk = 1, xk+1 = x̂k, ϑk+1 = r(xk+1), and xk+1 ∈ Bε0(x̄). To justify further (36) for any k > k0, proceed by

induction and suppose that for all k − 1 ≥ ` ≥ k0 we have

`+ 1 ∈ K0, t` = 1, x`+1 = x̂`, ϑ`+1 = r(x`+1), x`+1 ∈ Bε0(x̄), and hence dist(x`+1;X ) ≤ σ̃ dist(x`;X ).

Then we readily arrive at the estimates

‖x̂k−xk0‖ ≤
k∑

`=k0

‖d`‖ ≤
k∑

`=k0

c1 dist(x`;X ) ≤
k∑

`=k0

c1σ̃
`−k0 dist(xk0 ;X ) ≤ c1

1− σ̃
dist(xk0 ;X ) ≤ c1

1− σ̃
‖xk0−x̄‖,

(37)

where the second inequality follows from (30). This tells us that

‖x̂k − x̄‖ ≤ ‖x̂k − xk0‖+ ‖xk0 − x̄‖ ≤ 1 + c1
1− σ̃

ε̃ ≤ ε0.

Arguing as above, we get that ‖r(x̂k)‖ ≤ σϑk and F (x̂k) ≤ C, which ensures that (36) holds for k + 1 and

thus verifies these conditions in the general case.

Now we prove the claimed convergence xk → x̄ as k →∞ with the convergence rate (26), where x̄ is the

designated limiting point x̄ of the sequence {xk}k∈K0
. Using conditions in (36) and arguments similarly to

(37), we are able to show that, for any k̃ ∈ K0 with k̃ ≥ k0,

‖xk − x̄‖ ≤ c1
1− σ̃

‖xk̃ − x̄‖+ ‖xk̃ − x̄‖ whenever k ≥ k̃. (38)

This shows that the sequence {xk} is bounded. Picking any limiting point x̃ of {xk} and passing to the limit

as k →∞ in (38) lead us to estimate

‖x̃− x̄‖ ≤ c1
1− σ̃

‖xk̃ − x̄‖+ ‖xk̃ − x̄‖.

Recalling that x̄ is a limiting point of {xk}k∈K0 , we pass to the limit as k̃ → ∞ in the estimate above and

get ‖x̃− x̄‖ = 0, which implies that {xk} converges to x̄. Finally, employing (33) gives us numbers C0, k0 > 0

such that the claimed condition (26) holds. This completes the proof of the theorem.

5 Fast Local Convergence under Metric q-Subregularity

In this section we study the local convergence of Algorithm 1 under the metric q-subregularity of the sub-

gradient mapping in (1) in both cases where q ∈ (0, 1] and q > 1. In the first case, referred to as the

Hölder metric subregularity, we do not consider any q ∈ (0, 1], but precisely specify the lower bound of q
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and respectively modify some parameters of our algorithm. The imposed metric q-subregularity assumptions

is weaker for q < 1 than the metric subregularity one required in Theorem 4.1, but nevertheless allows us

to achieve a local superlinear (while not quadratic) convergence of the algorithm. In the other case where

q > 1, we achieve a higher than quadratic rate of local convergence of the proposed algorithm.

Starting with the Hölder metric subregularity, we first provide the following direction estimate.

Lemma 5.1. Let {xk} be the sequence generated by Algorithm 1 with αk = c‖r(xk)‖ρ where ρ ∈ (0, 1] and

% ≥ 1, and let x̄ ∈ X be any limiting point of {xk}. In addition to the standing assumptions, suppose that the

subgradient mapping ∇f(x) + ∂g(x) is metrically q-subregular at (x̄, 0) for some q ∈ (0, 1], that the Hessian

∇2f is locally Lipschitzian around x̄, and that the estimate ‖Bk − ∇2f(xk)‖ ≤ C1 dist(xk;X ) holds with

some constant C1 > 0. Then there exist positive numbers ε and c1 such that for dk := x̂k − xk we have

αk‖dk‖ ≤ c1 dist(xk;X )1+ρ and ‖dk‖ ≤ c1 max
{

dist(xk;X )2− ρq ,dist(xk;X )
}

as xk ∈ Bε(x̄). (39)

Proof. Similarly to the proof of Lemma 4.1, observe that there exist ε0, L2 > 0 such that

‖dk‖ ≤ 1

αk

(L2

2
dist(xk;X )2 + ‖Bk −∇2f(xk)‖dist(xk;X ) + 2αkdist(xk;X ) + (1 +M + αk)ν‖r(xk)‖1+%

)
provided that xk ∈ Bε0(x̄). Since ‖r(xk)‖ ≤ (2 + L1) dist(xk;X ) by Proposition 2.2, and since ‖Bk −
∇2f(xk)‖ ≤ C1 dist(xk;X ) by the imposed assumption, we have for such xk that

αk‖dk‖ ≤
(
L2

2
+ C1

)
dist(xk;X )2 + 2αk dist(xk;X ) + (1 +M + αk)ν(2 + L1)1+%dist(xk;X )1+%.

The assumed metric q-subregularity of ∇f(x) + ∂g gives us by Proposition 2.3 numbers ε1, κ1 > 0 with

dist(x;X ) ≤ κ1‖r(x)‖q for all x ∈ Bε1(x̄).

Remembering that αk = c‖r(xk)‖ρ with ρ ∈ (0, 1] implies that

αk = c‖r(xk)‖ρ ≥ cκ−
ρ
q

1 dist(x;X )
ρ
q as xk ∈ Bε1(x̄). (40)

Since ρ ∈ 0, 1] and % ≥ 1, we deduce from the latter the existence of a positive number c1 ensuring the

fulfillment of both estimates claimed in the lemma.

Having Lemma 5.1 and some previous estimates in hand, next we derive the following superlinear con-

vergence result for Algorithm 1 with a particular choice of parameters under the assumed Hölder metric

subregularity with an appropriate factor q. Observe that neither the assumptions nor the conclusions of

Theorem 5.1 reduce to those in Theorem 4.1 even the case where q = 1 in the theorem below. Its proof

follows the lines in the proof of Theorem 4.1 with more involved estimates.

Theorem 5.1. Let {xk} be the sequence generated by Algorithm 1 with αk = c‖r(xk)‖ρ, ρ =
√

5−1
2 , and

% ≥ 1, and let x̄ ∈ X be any limiting point of the sequence {xk}k∈K0
, where K0 is defined in (22). In

addition to the standing assumptions, suppose that the subgradient mapping ∇f(x) + ∂g(x) is metrically

q-subregular at (x̄, 0) with q ∈ (
√

5−1
2 , 1], that the Hessian mapping ∇2f is locally Lipschitzian around x̄, and

that ‖Bk −∇2f(xk)‖ = O(‖r(xk)‖). Then there exist a natural number k0 such that tk = 1 for all k ≥ k0,

and that the sequence {xk} superlinearly converges to x̄ on the sense that

dist(xk+1;X ) = o
(
dist(xk;X )

)
whenever k ≥ k0. (41)
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Proof. It follows from the metric q-subregularity (6) of ∇f(x) + ∂g(x) at (x̄, 0) that there exist ε1, κ1 > 0

such that for any p near the origin of Rn we have

Σ(p) ∩ Bε1(x̄) ⊂ X + κ1‖p‖qB (42)

for the solution map Σ(p) of the perturbed generalized equation defined in the proof of Theorem 4.1. Propo-

sition 2.3 gives us a constant κ2 > 1 for which

dist(x;X ) ≤ κ2‖r(x)‖q whenever x ∈ Bε1(x̄). (43)

Since ‖Bk −∇2f(xk)‖ = O(‖r(xk)‖), we deduce from Proposition 2.2 the existence of C1 > 0 with

‖Bk −∇2f(xk)‖ ≤ C1 dist(xk;X ). (44)

Recalling that x̂k is an inexact solution of (3) satisfying (14) and using Lemma 3.1 give us

ek ∈ ∇f(xk) +Hk(x̂k − xk) + ∂g(x̂k − ek) with ‖ek‖ ≤ ν‖r(xk)‖1+%.

Arguing as in the proof of Theorem 4.1, we get x̃k ∈ Σ(Rk(x̃k, xk)), where x̃k := x̂k − ek and Rk(x̃k, xk) is

defined in (31), and obtain (29) with some L2, ε2 > 0. Then choose by Lemma 5.1 a small ε1 > 0 such that

‖dk‖ ≤ c1 max
{

dist(xk;X )2− ρq ,dist(xk;X )
}

for all xk ∈ Bε1(x̄) (45)

with some c1 > 0. Letting ε1 < min{1, ε2} and following the proof of Theorem 4.1, we arrive at the estimate

‖Rk(x̃k xk)‖ ≤ L2

2
‖x̃k − xk‖2 + C1 dist(xk;X )‖x̃k − xk‖+ αk‖x̃k − xk‖+ (1 +M)ν‖r(xk)‖1+% (46)

if xk ∈ Bε1(x̄). Since ‖ek‖ ≤ ν‖r(xk)‖ ≤ ν(2 + L1)dist(xk;X ) for this choice of xk, it follows that

‖x̃k − xk‖ ≤ ‖x̂k − xk‖+ ‖ek‖ = ‖dk‖+ ‖ek‖ ≤ ‖dk‖+ ν(2 + L1)dist(xk;X ),

which being combined with (46), Proposition 2.2 and by taking into account that % ≥ 1 gives us c2 > 0 with

‖Rk(x̃k xk)‖ ≤ c2‖dk‖2 + c2 dist(xk;X )2 + αk
(
‖dk‖+ ν(2 + L1)dist(xk;X )

)
for all xk ∈ Bε1(x̄).

Then the direction estimate (45) together with the one of αk = c‖r(xk)‖ρ ≤ c(2 + L1)ρ dist(xk;X )ρ, which

comes from Proposition 2.2, ensures the existence of a constant c3 > 0 providing the condition

‖Rk(x̃k xk)‖ ≤ c3 max
{

dist(xk;X )4−2 ρq ,dist(xk;X )1+ρ
}

for all xk ∈ Bε1(x̄).

Since ‖x̃k − x̄‖ ≤ ‖xk − x̄‖ + ‖dk‖ + ‖ek‖ with ‖dk‖ → 0 and ‖ek‖ → 0 when xk → x̄ as k → ∞, we find

0 < ε3 ≤ ε1 such that x̃k ∈ Bε1(x̄) whenever xk ∈ Bε3(x̄). Recalling that x̃k ∈ Σ(Rk(x̃k xk)) and then

employing the metric q-subregularity condition (42) tell us that

dist(x̃k;X ) ≤ κ1‖Rk(x̃k, xk)‖q ≤ κ1c3 max
{

dist(xk;X )4q−2ρ,dist(xk;X )(1+ρ)q
}

if xk ∈ Bε3(x̄).

Combining the latter with dist(x̂k;X ) ≤ dist(x̃k;X ) + ‖ek‖ and ‖ek‖ ≤ ν‖r(xk)‖1+% as % ≥ 1, we have

dist(x̂k;X ) ≤ (κ1c3 + ν(2 + L1)1+%)dist(xk;X )min{4q−2ρ,(1+ρ)q,2} when xk ∈ Bε3(x̄).
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The choice of the Hölder metric subregularity parameter q > ρ = −1+
√

5
2 yields 4q−2ρ > 1 and (1 +ρ)q > 1,

and therefore it gives us the estimate

dist(x̂k;X ) = o
(
dist(xk;X )

)
when xk ∈ Bε3(x̄). (47)

This ensures that for any σ̃ ∈ (0, 1) there exists 0 < ε0 < ε3 such that

dist(x̂k;X ) ≤ σ̃ dist(xk;X ) if xk ∈ Bε0(x̄).

It follows from (29) that whenever xk ∈ Bε0(x̄) we have∣∣∣f(x̂k)− f(xk)−∇f(xk)T dk − 1

2
(dk)T∇2f(xk)(dk)

∣∣∣ ≤ L2

2
‖dk‖3.

Using the definition of lk in (2) and the above estimates brings us to the relationships

F (xk)− F (x̂k)− θαk
2
‖dk‖2 ≥ lk(xk)− lk(x̂k)− 1

2
(dk)T∇2f(xk)(dk)− L2

2
‖dk‖3 − θαk

2
‖dk‖2

≥ 1

2
(dk)THk(dk)− 1

2
(dk)T∇2f(xk)(dk)− L2

2
‖dk‖3 − θαk

2
‖dk‖2

≥ αk(1− θ)
2

‖dk‖2 +
1

2
(dk)T

(
Bk −∇2f(xk)

)
(dk)− L2

2
‖dk‖3

≥ αk(1− θ)
2

‖dk‖2 − C

2
dist(xk;X )‖dk‖2 − L2

2
‖dk‖3

≥ 1

2
‖dk‖2

(
(1− θ)αk − C dist(xk;X )− L2‖dk‖

)
,

where the second inequality follows from (19) while the fourth inequality is a consequence of (44). By the

estimates on dk in (39) and αk in (40) established in Lemma 5.1 and by the imposed condition q > ρ, we

can choose ε0 > 0 to be sufficiently small that

F (xk)− F (x̂k)− θαk
2
‖dk‖2 ≥ 0 when xk ∈ Bε0(x̄).

Consider further the positive number

ε̃ := min

{
ε0

2
,
ε0

2c1
,
(1− σ̃2−ρ/q

4mc1
ε0

) 1
2−ρ/q

,
1− σ̃
4c1

ε0

}
and show that for any k ≥ k0 we have tk = 1, xk+1 = x̂k, and xk+1 ∈ Bε0(x̄) whenever xk0 ∈ Bε̃(x̄). Indeed,

letting k := k0 and remembering that xk ∈ Bε̃(x̄) tell us that

‖x̂k − x̄‖ ≤ ‖xk − x̄‖+ ‖dk‖

≤ ‖xk − x̄‖+ c1 max
{

dist(xk;X )2− ρq ,dist(xk;X )
}

≤ ‖xk − x̄‖+ c1 max
{
‖xk − x̄‖2−

ρ
q , ‖xk − x̄‖

}
≤ ε0,

where the second inequality follows from (45). In this case we have tk = 1 from the Step 4 of Algorithm 1

provided that ‖r(x̂k)‖ ≤ σϑk and f(x̂k) ≤ C. Otherwise, it follows from xk ∈ Bε0(x̄) that

F (x̂k) ≤ F (xk)− θαk
2
‖dk‖2,

and so tk = 1 by Step 5 of the algorithm. Thus in both settings with k = k0 we have xk+1 = x̂k ∈ Bε0(x̄).
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In the remaining case where k > k0, we proceed by induction similarly to the proof of Theorem 4.1 and

assume that t` = 1, x`+1 = x̂`, and x`+1 ∈ Bε0(x̄) for all k − 1 ≥ ` ≥ k0. This implies that dist(x`+1;X ) ≤
σ̃ dist(x`;X ), and therefore we get the estimates

‖x̂k − xk0‖ ≤
k∑

`=k0

‖d`‖ ≤
k∑

`=k0

c1 max
{

dist(x`;X )2− ρq ,dist(x`;X )}

≤
k∑

`=k0

c1
(
dist(x`;X )2− ρq + dist(x`;X )

)
≤

k∑
`=k0

c1
(
σ̃(2−ρ/q)(`−k0)dist(xk0 ;X )2−ρ/q + σ̃`−k0dist(xk0 ;X )

)
≤ c1

1− σ̃2−ρ/q dist(xk0 ;X )2−ρ/q +
c1

1− σ̃
dist(xk0 ;X )

≤ c1
1− σ̃2−ρ/q ‖x

k0 − x̄‖2−ρ/q +
c1

1− σ̃
‖xk0 − x̄‖ ≤ ε0

2
,

(48)

where the second inequality follows from (45) while the fifth one is due to 2− ρ/q > 1. Then

‖x̂k − x̄‖ ≤ ‖x̂k − xk0‖+ ‖xk0 − x̄‖ ≤ ε0,

which allows us to justify that tk = 1, xk+1 = x̂k, and xk+1 ∈ Bε0(x̄) by using the arguments that are similar

to the case of k = k0 furnished above.

To verify now the superlinear convergence statement (41) of the theorem, take the chosen limiting point

x̄ of the sequence {xk} and find k0 > 0 such that xk0 ∈ Bε̃(x̄). Then, as shown above, for any k ≥ k0 we have

tk = 1, xk+1 = x̂k, and xk+1 ∈ Bε0(x̄). Proceeding similarly to the proof of (48) leads us to the inequality

‖xk − x̄‖ ≤ c1
1− σ̃2−ρ/q ‖x

k̃ − x̄‖2−ρ/q +
c1

1− σ̃
‖xk̃ − x̄‖+ ‖xk̃ − x̄‖ for any k > k̃ ≥ k0. (49)

Denote by x̃ an arbitrary limiting point of {xk} and fix any k̃ ≥ k0 in (49). The passage to the limit in (49)

as k →∞ gives us the estimate

‖x̃− x̄‖ ≤ c1
1− σ̃2−ρ/q ‖x

k̃ − x̄‖2−ρ/q +
c1

1− σ̃
‖xk̃ − x̄‖+ ‖xk̃ − x̄‖.

Then passing to the limit therein as k̃ → ∞, we arrive at ‖x̃ − x̄‖ = 0, which readily justifies that {xk}
converges to x̄. Using finally (47) brings us to (41) and thus completes the proof of the theorem.

The final result of this section concerns the other kind of metric q-subregularity of the subgradient map-

ping in (1) in the case where q > 1. As discussed in Section 2, this type of higher-order metric subregularity

is rather new in the literature, and it has never been used in applications to numerical optimization. The fol-

lowing theorem shows that the higher-order subregularity assumption imposed on the subgradient mapping

∂F at the point in question allows us to derive an extension of Theorem 4.1 with establishing the convergence

rate, which may be higher than quadratic.

Theorem 5.2. Let {xk} be the sequence generated by Algorithm 1 with αk = c‖r(xk)‖ρ as ρ ∈ (0, 1], and let

x̄ ∈ X be any limiting point of {xk}k∈K0
, where the set K0 is taken from (22). In addition to the standing

assumptions, suppose that the mapping ∇f(x)+∂g(x) is metrically q-subregular at (x̄, 0) with q > 1, that the

Hessian ∇2f is locally Lipschitzian around x̄, that ‖Bk −∇2f(xk)‖ = O(‖r(xk)‖), and that % ≥ q(1 + ρ)− 1
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in (14). Then there exists an index k0 such that tk = 1 for all k ≥ k0 and that the sequence {xk} converges

to the point x̄ with the convergence rate q(1 + ρ). The latter means that for some k0, C0 > 0 we have

dist(xk+1;X ) ≤ C0 dist(xk;X )q(1+ρ) whenever k ≥ k0. (50)

Proof. It follows from the imposed metric q-subregularity condition with a fixed degree q > 1 that

Σ(p) ∩ Bε1(x̄) ⊂ X + κ1‖p‖qB for some ε1, κ1 > 0 (51)

whenever p ∈ Rn is sufficiently close to the origin. Following the proof of Theorem 4.1, we arrive at the

estimate of ‖Rk(x̃k, xk)‖ in (32) with some constant c2 > 0, where x̃k := x̂k − ek while Rk(x̃k, xk), x̂k,

and ek are defined and analyzed similarly to the case of Theorem 4.1. Then there exists ε3 > 0 such that

x̃k ∈ Bε1(x̄) when xk ∈ Bε3(x̄). Since x̃k ∈ Σ(Rk(x̃k xk)), we combine this with (51) and get the estimates

dist(x̃k;X ) ≤ κ1‖Rk(x̃k, xk)‖q ≤ κ1c
q
2dist(xk;X )q(1+ρ) and

dist(x̂k;X ) ≤ dist(x̃k;X ) + ‖ek‖ ≤ κ1c
q
2dist(xk;X )q(1+ρ) + ν‖r(xk)‖1+%

≤ (κ1c2 + ν(2 + L1)1+%)dist(xk;X )q(1+ρ) whenever xk ∈ Bε3(x̄).
(52)

Employing the induction arguments as in the proof of Theorem 4.1 yields the existence of a natural number

k0 such that we have tk = 1, xk+1 = x̂k, xk+1 ∈ Bε3(x̄) when k ≥ k0, and that the sequence {xk} converges to

x̄ as k →∞. Hence the second estimate in (52) gives a positive number C0 and a natural number k0, which

ensure the fulfillment the claimed convergence rate (50) and thus complete the proof of the theorem.

6 Superlinear Local Convergence with Non-Lipschitzian Hessians

As seen in Sections 4 and 5, the imposed local Lipschitz continuity of the Hessian maping ∇2f plays a crucial

role in the justifications of the local convergence results obtained therein. In this section we show that the

latter assumption can be dropped with preserving a local superlinear convergence of Algorithm 1 for a rather

broad class of loss functions f that naturally appear in many practical models arising in machine learning

and statistics, which includes, e.g., linear regression, logistic regression, and Poisson regression.

The class of loss functions f of our consideration in this section satisfies the following structural properties.

Assumption 6.1. The loss function f : Rn → R of (1) is represented in the form

f(x) := h(Ax) + 〈b, x〉, (53)

where A is an m× n matrix, b ∈ Rn, and h : Rm → R is a proper, convex, and l.s.c. function such that:

(i) h is strongly convex on any compact and convex subset of the domain domh.

(ii) h is continuously differentiable on the set domh, which is assumed to be open, and the gradient mapping

∇h is Lipschitz continuous on any compact subset Ω ⊂ domh.

Due to the strong convexity of h, the linear mapping x→ Ax in (53) is invariant over the solution set X
to (1). This is the contents of the following result taken from [23, Lemma 2.1].

Lemma 6.1. Under the fulfillment of Assumption 6.1 there exists ȳ ∈ Rm such that Ax = ȳ for all x ∈ X .
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The next lemma is a counterpart of Lemma 4.1 without imposition the local Lipschitz continuity of the

Hessian ∇2f . By furnishing a similar while somewhat different scheme in comparison with Lemma 4.1, we

establish new direction estimates of Algorithm 1 used in what follows. Note that we do not exploit in the

lemma the structural conditions on f listed in Assumption 6.1.

Lemma 6.2. Let {xk} be the sequence generated by Algorithm 1 with αk = c‖r(xk)‖ρ and ρ ∈ (0, 1), and

let x̄ ∈ X be any limiting point of {xk}. In addition to Assumption 1.1 and (10), suppose that the Hessian

mapping ∇2f is continuous at x̄ ∈ X , that ‖Bk − ∇2f(xk)‖ → 0 as k → ∞, and that the subgradient

mapping ∇f(x)+∂g(x) is metrically subregular at (x̄, 0). Then given an arbitrary quantity δ > 0, there exist

a positive number ε and a natural number k0 such that for dk := x̂k − xk we have the estimates

αk‖dk‖ ≤ δ dist(xk;X ) and ‖dk‖ ≤ δ dist(xk;X )1−ρ when xk ∈ Bε(x̄) and k > k0. (54)

Proof. Since x̂k is an inexact solution to subproblem (3) satisfying (14), we get by Lemma 3.1 that there

exists ek for which both conditions in (16) hold. Taking the projection πkx of xk onto the solution set X and

arguing as in the proof of Lemma 3.1 bring us to the inequality in (24), which together with (54) and the

direction estimate in (25) ensures that

αk‖dk‖ ≤
(
‖∇f(xk) +∇2f(xk)(πkx − xk)−∇f(πkx)‖+ ‖Bk −∇2f(xk)‖dist(xk;X )

+ 2αk dist(xk;X ) + (1 +M + αk)ν‖r(xk)‖1+%
)
.

(55)

It follows from the mean value theorem and the choice of πkx as the projection of xk onto X that

‖∇f(xk) +∇2f(xk)(πkx − xk)−∇f(πkx)‖ = ‖(∇2f(xk)−∇2f(ξk))(πkx − xk)‖

≤ ‖∇2f(xk)−∇2f(ξk)‖dist(xk;X ),

where ξk := λkxk+(1−λk)πkx for some λk ∈ (0, 1), and hence ξk → x̄ when xk → x̄ as k →∞. Then passing

to the limit as k →∞ and using the assumed continuity of ∇2f at x̄ show that ‖∇2f(xk)−∇2f(ξk)‖ → 0.

Since αk = c‖r(xk)‖ρ → 0 and ‖r(xk)‖ ≤ (2+L1)dist(xk;X ) by Proposition 2.2, and since ‖Bk−∇2f(xk)‖ →
0 as k →∞, for any δ > 0 we find a positive number ε and a natural number k0 such that

αk‖dk‖ ≤ δ dist(xk;X ) when xk ∈ Bε(x̄) and k > k0,

which justifies the first estimate in (54). To verify finally the second one in (54), employ Proposition 2.1 and

the above expression of αk to find positive numbers ε1 and c1 ensuring the inequality

αk ≥ c1 dist(xk;X )ρ for all x ∈ Bε1(x̄).

Combining the latter with the first estimate in (54) tells us that for the fixed number δ > 0 there exist ε > 0

and k > k0 such that the second estimate in (54) is also satisfied, and thus the proof is complete.

Now we are ready to derive the promised result showing that the sequence of iterates, which are generated

by Algorithm 1 for the structural problem (1) considered in this section, converges superlinearly to a given

optimal solution x̄ ∈ X without the local Lipschitz continuity assumption on the Hessian mapping ∇2f .

Theorem 6.1. Let {xk} be the sequence of iterates generated by Algorithm 1 with αk = ‖r(xk)‖ρ and

ρ ∈ (0, 1), and let x̄ ∈ X be any limiting point of the sequence {xk}k∈K0 with the set K0 defined in (22).
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Suppose in addition to the assumptions of Lemma 6.2 that the loss function f is given in the structural form

(53) under the fulfillment of Assumption 6.1, and that at each iteration step k the matrix Bk is represented

in the form Bk = ATDkA, where A is taken from (53) while Dk ∈ Rm×m is some positive semidefinite

matrix. Then there exists a natural number k0 such that tk = 1 for all k ≥ k0, and that the sequence {xk}
converges to x̄ with the superlinear convergence rate, i.e., there is k1 for which we have

dist(xk+1;X ) = o
(
dist(xk;X )

)
whenever k ≥ k1. (56)

Proof. Proceeding similarly to the proof of Theorem 4.1, at each iteration step k we have the vector

Rk(x̃k, xk) defined in (31) with x̃k := x̂k − ek, where x̂k is an inexact solution of (3) satisfying (14),

and where ek is taken from (16). These relationships and the mean value theorem applied to the gradient

mapping ∇f on [xk, x̃k] give us a vector ξ̃k := λ̃kxk + (1− λ̃k)x̃k with some λ̃k ∈ (0, 1) such that

‖Rk(x̃k xk)‖ = ‖∇f(x̃k)−∇f(xk)−Hk(x̃k − xk) + ek −Hkek‖

= ‖∇f(x̃k)−∇f(xk)− (Bk + αkI)(x̃k − xk) + ek −Hkek‖

≤ ‖∇f(x̃k)−∇f(xk)−∇2f(xk)(x̃k − xk)‖+ ‖Bk −∇2f(xk)‖ · ‖x̃k − xk‖

+ αk‖x̃k − xk‖+ (1 +M)‖ek‖

≤ ‖(∇2f(ξ̃k)−∇2f(xk))(x̃k − xk)‖+ ‖(Bk −∇2f(xk))(x̃k − xk)‖

+ αk‖dk‖+ (1 +M)ν‖r(xk)‖1+%.

Let π̃kx and πkx be the projections of x̃k and xk onto X , respectively. Then it follows from Lemma 6.1 that

Aπ̃kx = Aπkx. By Assumption 6.1 we have ∇2f(x) = AT∇2h(x)A, and thus(
∇2f(ξ̃k)−∇2f(xk)

)
(x̃k − xk) =

(
∇2f(ξ̃k)−∇2f(xk)

)
(x̃k − π̃kx + πkx − xk).

Using the assumed representation Bk = ATDkA of the matrix Bk, we similarly get that(
Bk −∇2f(xk)

)
(x̃k − xk) =

(
Bk −∇2f(xk)

)
(x̃k − π̃kx + πkx − xk).

Plugging the obtained expressions into the above estimate of ‖Rk‖ gives us

‖Rk(x̃k xk)‖ ≤ ‖(∇2f(ξ̃k)−∇2f(xk))(x̃k − π̃kx + πkx − xk)‖+ ‖(Bk −∇2f(xk))(x̃k − π̃kx + pikx − xk)‖

+ αk‖dk‖+ (1 +M)ν‖r(xk)‖1+%

≤ ‖∇2f(ξ̃k)−∇2f(xk)‖
(
dist(x̃k;X ) + dist(xk;X )

+ ‖Bk −∇2f(xk)‖
(
dist(x̃k;X ) + dist(xk;X )

)
+ αk‖dk‖+ (1 +M)ν(2 + L1)%dist(xk;X )1+%.

It follows from the second estimate of Lemma 6.2 that ‖dk‖ → 0 as k → ∞ and xk → x̄. Since xk → x̄

implies that x̃k → x̄ as k →∞. Then the assumed continuity of ∇2f at x̄ and the above construction of ξ̃k

tell us that ‖∇2f(ξ̃k)−∇2f(xk)‖ → 0 as k →∞ and xk → x̄. Now the first estimate of Lemma 6.2 ensures

that αk‖dk‖ = o(dist(xk;X )) as k →∞ and xk → x̄. Combining this with ‖Bk −∇2f(xk)‖ → 0 as k →∞
allows us to conclude that for any δ > 0 there exist a positive number ε and a natural number k0 such that

‖Rk(x̃k, xk)‖ ≤ δ
(
dist(x̃k;X ) + dist(xk;X )

)
whenever xk ∈ Bε(x̄) and k > k0. (57)

It follows from the metric subregularity assumption of the theorem that we have inclusion (27) with the

perturbed solution map Σ(p) therein. Since x̃k ∈ Σ(Rk(x̃k, xk)) as shown above, there exists κ1 > 0 with

dist(x̃k;X ) ≤ κ1‖Rk(x̃k, xk)‖ ≤ κ1δ
(
dist(x̃k;X ) + dist(xk;X )

)
for all xk ∈ Bε(x̄) and k > k0,
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which implies that dist(x̃k;X ) = o(dist(xk;X )) as k →∞. Recalling the estimates

dist(x̂k;X ) ≤ dist(x̃k;X ) + ‖ek‖ and ‖ek‖ ≤ ν‖r(xk)‖1+% ≤ ν(2 + L1)1+%dist(xk;X )1+% = o
(
dist(xk;X )

)
,

we readily get, for all the numbers δ, ε, k0, k taken from (57), the conditions

dist(x̂k;X ) = o
(
dist(xk;X )

)
and dist(x̂k;X ) ≤ δ dist(xk;X ), (58)

which ensure therefore the existence of positive numbers ε0 and κ2 such that

dist(x̂k;X ) ≤ σ

(2 + L1)κ2
dist(xk;X ) whenever xk ∈ Bε0(x̄) and k > k0. (59)

Employing Lemma 6.2, suppose without loss of generality that there exists c1 > 0 with

‖dk‖ ≤ c1 dist(xk;X )1−ρ for all xk ∈ Bε0(x̄) and k > k0. (60)

Since C > F (x0) ≥ F∗ in our algorithm, and since F is continuous on domF , let pick ε0 > 0 to be so small

that condition (35) holds. Defining the positive numbers

σ̃ :=
σ

(2 + L1)κ2
< 1 and ε̃ := min

{
ε0

2
,
(1− σ̃1−ρ

2c1
ε0

) 1
1−ρ
}

(61)

and invoking the set K0 from (22), we intend to show that if xk1 ∈ Bε̃(x̄) with k1 > k0 and k1 ∈ K0, then

k + 1 ∈ K0, tk = 1, xk+1 = x̂k, and xk+1 ∈ Bε0(x̄) whenever k ≥ k1. (62)

To prove it by induction, observe first that for k := k1 all the conditions in (62) can be verified similarly

to the proof of (49) in Theorem 4.1 with the replacement of k0 by k1 therein. Considering now the general

case where k > k1 in (62), suppose that the latter holds for any k − 1 ≥ ` ≥ k1, which clearly yields

dist(x`+1;X ) ≤ σ̃ dist(x`;X ). Then the above estimates and the choice of the parameters in (61) ensure that

‖x̂k − xk1‖ ≤
k∑

`=k1

‖d`‖ ≤
k∑

`=k1

c1 dist(x`;X )1−ρ

≤
k∑

`=k1

c1σ̃
(1−ρ)(`−k1)dist(xk1 ;X )1−ρ ≤ c1

1− σ̃1−ρ dist(xk1 ;X )1−ρ

≤ c1
1− σ̃1−ρ ‖x

k1 − x̄‖1−ρ,

(63)

where the second inequality follows from (60). Thus by (61) and (63) we have

‖x̂k − x̄‖ ≤ ‖x̂k − xk1‖+ ‖xk1 − x̄‖ ≤ c1
1− σ̃1−ρ ‖x

k1 − x̄‖1−ρ + ‖xk1 − x̄‖ ≤ ε0,

which readily implies, similarly to the case where k = k1, the fulfillment of (62) for any k ≥ k1. Furthermore,

remembering that x̄ is a limiting point of {xk}k∈K0
and using (62) together with (63) allow us to check that

for any k̃ ∈ K0 with k̃ ≥ k1 we have

‖xk − x̄‖ ≤ c1
1− σ̃1−ρ ‖x

k̃ − x̄‖1−ρ + ‖xk̃ − x̄‖ whenever k > k̃.
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Further, let x̃ be any limiting point of the original iterative sequence {xk}. Then the passage to the limit in

the above inequality as k →∞ gives us

‖x̃− x̄‖ ≤ c1
1− σ̃1−ρ ‖x

k̃ − x̄‖1−ρ + ‖xk̃ − x̄‖ for all k̃ ≥ k1.

Passing finally the limit as k̃ →∞ in the latter inequality and recalling that x̄ is a limiting point of {xk}k∈K0

tell us that ‖x̃− x̄‖ = 0, which verifies therefore that {xk} converges to x̄ as k →∞. The claimed estimate

(56) of the convergence rate follows now from (58), and this completes the proof of the theorem.

To conclude this section, observe that the standard choice of Bk = ∇2f(xk) in Algorithm 1 clearly

implies that the assumed representation Bk = ATDkA and the condition ‖Bk − ∇2f(xk)‖ → 0 as k →
∞ hold automatically due to ∇2f(xk) = AT∇2h(Axk)A and the positive semidefiniteness of the Hessian

∇2h(Axk) under Assumption 6.1 on the loss function f imposed here. Furthermore, observe from the proof

of Theorem 6.1 in comparison with those of Theorems 5.1 and 5.2 that the corresponding counterparts of

the latter results can be derived for structural problems of the type considered in this section under the

metric q-subregularity property of the subgradient mapping ∇f(x)+∂g(x) at (x̄, 0) combined with the other

assumptions of Theorem 6.1 while without the local Lipschitz continuity of the Hessian mapping ∇2f .

7 Numerical Experiments for Regularized Logistic Regression

In the last section of the paper we conduct numerical experiments on solving the l1 regularized logistic

regression problem to support our theoretical results and compare them with the numerical algorithm from

[39] applicable to this problem. All the numerical experiments are implemented on a laptop with Intel(R)

Core(TM) i7-9750H CPU@ 2.60GHz and 32.00 GB memory. All the codes are written in MATLAB 2019b.

Supposing we are given some training data pairs (ai, bi) ∈ Rn×{−1, 1} as i = 1, . . . , N , the optimization

problem for l1 regularized logistic regression is defined by

min
x

1

N

N∑
i=1

log(1 + exp(−bixTai)) + λ‖x‖1, (64)

where the regularization term ‖x‖1 promotes sparse structures on solutions, and where λ > 0 is the reg-

ularization parameter balancing sparsity and fitting error. Problem (64) is a special case of (1) with

f(x) := 1
N

∑N
i=1 log(1+exp(−bixTai)) and g(x) := λ‖x‖1. In all the experiments, the matrix Bk in our prox-

imal Newton-type Algorithm 1 is chosen as the Hessian matrix of f at the iteration xk, i.e., Bk := ∇2f(xk).

We set ν := 0.45 and % := 2 in the inexact conditions (14) for determining an inexact solution x̂k to sub-

problem (3). We also set θ := 0.25, σ := 0.95, γ := 0.25, C := 2F (x0), ρ := 2 in Algorithm 1. As shown in

[37, Theorem 8], the subgradient mapping ∇f(x) + ∂g(x) is metrically subregular at (x̄, 0) for any x̄ ∈ X .

Then it can be easily verified that all the assumptions required by Theorem 4.1 are satisfied, and hence the

sequence generated by the proposed algorithm for the tested problem (64) locally converges to the prescribed

optimal solution with a quadratic convergence rate.

We test here two real datasets “colon-cancer” and “rcv1 train” downloaded from the SVMLib repository1.

For the colon-cancer dataset, the dimension of the data matrix is 2, 000 × 62 and is sparse with 124, 000

nonzero elements. For the rcv1 train dataset, the dimension of the data matrix is 47, 236 × 20, 242 and is

sparse with 1, 498, 952 nonzero elements. Both of these two real datasets have more columns than rows, the

1http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/.
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the loss function f in the corresponding problem (64) is not strongly convex. Since the IRPN proposed in [39]

does not require f in (64) to be strongly convex and problem (64) satisfies all the assumptions required by

the IRPN, we are going to compare our proposed proximal Newton-type Algorithm 1 with the IRPN. Note

that the IRPN code is collected from https://github.com/ZiruiZhou/IRPN. We set θ = ρ := 0.25, ζ := 0.4

and η := 0.5 in the IRPN as suggested in [39]. Since our interest here is in the local quadratic convergence,

we set % := 1 in the IRPN. It should be noticed that in such a setting both our Algorithm 1 and the IRPN

require solving subproblem (3) with Hk := ∇2f(xk) + c‖r(xk)‖2 at each iteration. This subproblem will

be solved by the coordinate gradient descent method, which is implemented in MATLAB as a C source

MEX-file.2 We will test the numerical experiments with different values of the parameter c to investigate its

impact on the performances of both algorithms.

The initial points in all the experiments are set to be the zero vector. Our Algorithm 1 is terminated

at the iteration xk if the accuracy TOL is reached by ‖r(xk)‖ ≤ TOL with the residual ‖r(xk)‖ defined

via the prox-gradient mapping (8). The maximum number of outer iterations in both algorithms is 50, and

the maximum number of iterations for the coordinate gradient descent method to solve the corresponding

subproblems is 10000.

The achieved numerical results are presented in Tables 1 and 2. We employ the three values {10−4, 5×
10−4, 10−5} of the penalty parameter λ and the six values {10−2, 10−3, 10−4, 10−5, 10−6, 10−7} of the pa-

rameter c in the algorithms with reporting the number of outer iterations and the CPU time. Observe from

Tables 1 and 2 that our proposed proximal Newton-type Algorithm 1 always achieves the desired accuracy

within the preset maximum outer iteration number. The number of iterations and the time taken are al-

most the same for all the different test values of c. As seen however, the IRPN cannot achieve the required

accuracy within the preset maximum outer iteration number for some cases. We plot the corresponding

values of the residual ‖r(xk)‖ and the step size versus the outer iteration number in Figures 1 and 2 for the

some cases where the IRPN fails to achieve the required accuracy. As seen from Figures 1 and 2, when the

iteration xk approaches the optimal solution, the step size of our proposed Algorithm 1 is always 1 and the

sequence {xk} exhibit a quadratic convergence rate, while the step size of the IRPN becomes close to 0 and

the convergence speed of the sequence {xk} becomes very slow. In fact, when the sequence {xk} generated

by the IRPN is close to the optimal solution, the line search strategy in the IRPN rejects the unit step size,

and only a small step size is accepted. The poor performance of the IRPN caused by such a small step size

can be observed in Figures 1 and 2. In [39, Theorem 1], the authors present a sufficient condition on the

value of c to meet a unit step size and hence to guarantee a local quadratic convergence. The validity of this

condition relies heavily on the Luo-Tseng error bound radius and the Lipschitz continuity constant of the

Hessian ∇2f . Unfortunately, the calculation of these parameters of the IRPN are challenging. Theoretically,

it is too ambitious to find appropriate values of c. This theoretical limitation agrees with the failures of the

IRPN listed in Tables 1 and 2. We can see from both Tables 1 and 2 as well as from Figures 1 and 2 that

the proposed Algorithm 1 is stable with respect to the values of c. Furthermore, the line search strategy in

Algorithm 1 always accepts a unit step size, and thus the sequence of iterates {xk} generated by Algorithm 1

achieves a fast local convergence rate.

2The code is downloaded from https://github.com/ZiruiZhou/IRPN.
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Figure 1: Residual ‖r(xk)‖ w.r.t. outer iteration number and step size w.r.t. outer iteration number on

colon-cancer dataset
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Figure 2: Residual ‖r(xk)‖ w.r.t. outer iteration number and step size w.r.t. outer iteration number on

rcv1 train dataset

27



Table 1: Numerical comparison on colon-cancer dataset with TOL = 10−16

c = 10−2 c = 10−3 c = 10−4 c = 10−5 c = 10−6 c = 10−7

Solver ours IRPN ours IRPN ours IRPN ours IRPN ours IRPN ours IRPN

λ =

10−4

Outer Iterations 14 –* 13 – 13 13 13 – 13 – 13 13

Time(s) 0.8 – 0.7 – 0.8 0.8 0.8 – 0.8 – 0.8 0.8

λ =

5 ∗ 10−5

Outer Iterations 16 15 15 – 14 15 15 15 15 17 15 –

Time(s) 1.1 1.0 1.0 – 1.0 1.0 1.1 1.1 1.0 6.0 1.0 –

λ =

10−5

Outer Iterations 16 – 16 16 16 16 16 – 16 – 16 –

Time(s) 1.9 – 1.5 1.5 1.6 1.6 1.4 – 1.5 – 1.5 –

* − indicates the method can not achieve required accuracy TOL with 50 outer iterations.

Table 2: Numerical comparison on rcv1 train dataset with TOL = 10−12

c = 10−2 c = 10−3 c = 10−4 c = 10−5 c = 10−6 c = 10−7

Solver ours IRPN ours IRPN ours IRPN ours IRPN ours IRPN ours IRPN

λ =

10−4

Outer Iterations 10 10 8 –* 8 – 8 – 8 8 8 –

Time(s) 8.9 9.0 7.5 – 7.1 – 6.8 – 7.0 7.0 6.8 –

λ =

5 ∗ 10−5

Outer Iterations 11 11 9 9 9 9 9 9 9 9 9 9

Time(s) 14.7 14.6 13.4 13.6 13.2 14.8 13.1 14.4 12.6 16.6 12.9 12.9

λ =

10−5

Outer Iterations 15 – 11 – 11 – 11 – 11 – 11 –

Time(s) 116.7 – 116.4 – 190.3 – 40.3 – 40.0 – 39.6 –

* − indicates the method can not achieve required accuracy TOL with 50 outer iterations.
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