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Bi-Level Programs (BLPs)

We consider the following BLLP formulation:
® A hierarchical optimization problem, where an optimization problem
contains another optimization problem as the constraint

® In general, solving BLPs 1s extremely challenging

min  F(x,y), s.t. y € §S(x), where §(x) := argmin f(x,y)
xeX ,yeR™ Yy

o F:R"™ xR™ — R is called Upper-Level (UL) objective

o For every x € X, f(x,-): R™ — R is called Lower-Level (LL) objective



From single level to bi-level

« Hyper-parameter optimization
Most machine learning problems crucially depend on some variables

that must be decided before learning, e.g., parameters for
regularization, hypothesis space, optimization, preprocessing, etc.

Bi-level Formulation :

The Lower-Level objective: f(x,y; Dtr)]

[ The Upper-Level objective: F'(X,y; Dya1 ) ]

Dyp—> Learning | __ Ix.y(+), ¥: Model parameters
* algorithm

Hyper- I

(Dir, Dyay) — | Parameter |, x. Hyper-parameters
optimization



From single level to bi-level

« Meta learning (e.g., few-shot classification)

intends to design models that can learn
new skills or adapt to new environments
rapidly with a few training examples

« A classifier is a “learner” model,
trained for operating a given task
 We train it over a variety of learning

tasks to obtain the best performance

on a distribution of tasks, including
potentially unseen tasks
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Bi-level Formulation :

E Upper-Level objective: F(x, {y’}; {D’,}) \

The Lower-L€vel objective: f(x, {y’}; {Dﬂr})
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Existing first-order bi-level schemes

Lower-Level Singleton (LLS) assumption

® Rather than considering the original BLPs, they actually solve a simplification:

[min F(x,y), s.t.y “=" argmin f(x, y)}
xEX Yy

e LL subproblem: A sequence y; parameterized by x is generated, e.g.,

Yi+1(X) = yr(x) — siVy (X, ¥y%(x)), k=0,--- , K — 1,
where s; > 0 is an appropriately chosen step size.

e UL subproblem: Incoporate yx (x) into /' and update x by minxex F (X, ¥x (X)).

Domke, 2012; Machaurin et al. 2015; Franceschi et al. 2017, 2018; Lorraine et al. 2018; MacKay et al. 2019; Shaban et al. 2019.



An interesting counter-example

e [-|; denotes the i-th element of the vector.

min l(X — [¥]2)? + 3 ([y]1 — 1)?

2 2 ?
x€[~100,100] 1o e x € [-100,100] and y € R?.
25 1 Gtz slyli —x[yli.

e The optimal solution is x* = 1,y* = (1, 1).

e Initialize yo = (0,0) and vary step size sf' € (0,1) o Ag lim s e HkK:_Ol(l — sk e [0,1]

o [yxh =1 —[liZo (1 —sf))x and [yl =0

K-—1 k
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e We have X al‘gxe[_l’lll(l){)l,mo] (x, ¥k (%))

__O-Theg (=)
L+ (1 - [Tisy (1 s7)?

[ X7, cannot converge to x* =1 ] g
Schemes with LLS assumption

e Thus limg_,. X} € [0, %]




Bi-level Descent Aggregation (BDA)

¢ Optimistic Bi-level Algorithmic Framework

i ith = inf F
o )r(rgggo(x), with ¢(x) yelg(x) (x,¥)

e : the value function of simple bi-level problem

min F(x,y), s.t.y € S(x), (with fixed x).
y

Inspired by this observation, we may update y as

YR-!-l(X) = E(Xa Yk(x)), k = 07 7K - 13

where T (x, -) stands for a certain simple bi-level solution strategy with a fixed
UL variable x.



Bi-level Descent Aggregation (BDA)

® Flexible Iteration Modules

e For a given x, the descent directions of the UL and LL objectives are

dg(x) = suVy F(X,yk), dic;(X) = 51Vy f(X,¥k),
where s, s; > 0 are their step size parameters.

e With aggregation parameter oy € (0, 1], we formulate 7y as
Vi1 (%) = Ti(x, ¥ (%)) = ¥i — (ardf (%) + (1 — an)d] (x)).

e Replacing ¢(x) by F(x,yx(x)), we have Hél}I% vK(x) = F(x,yK(x)) where

y i (x) is the output after K iterations.

BDA is flexible enough to incorporate a variety of numerical schemes!



Theoretical investigations

® A General Proof Recipe
(1) LL solution set property: For any ¢ > 0, there exists k(e) > 0 such
that whenever K > k(e),

sup dist(yx(x),S(x)) <e.
XeX

(2) UL objective convergence property: ¢(x) is LSC on X,

lim ¢x(x) = p(x), Vx € X.

K—oo

LSC: Lower/Upper Semi-Continuous.



Theoretical investigations

® A General Proof Recipe

/

Theorem 1: Suppose both the above LL solution set and UL objective

convergence properties hold, then for xx € arg minyke x @i (x), we have

(1) Any limit point X of the sequence {xx } satisfies that X € arg mingcx ¢(x);

(2) infxex v (x) — infxex p(x) as K — oo.

J

Remark: If xg is local minimum of ¢x(x) with uniform neighbourhood

modulus, then any limit point X of the sequence {xx} is a local minimum of ¢.



Theoretical investigations

® Convergence Properties of BDA

/ Theorem 2. Suppose F(X,-) is Lg-Lipschitz continuous, L p-smooth, and
o-strongly convex, f(x,-) is Ls-smooth and convex for any x € X. Let s; €
(0,1/L¢], sy € (0,2/(Lrp+0)], o = min {2v/k(1 — B),1}, k > 1 with v € (0, 1]
and 3 = /1 —2s,0Lp/(c + Lr). Assume further that S(x) is continuous on
X. Then we have the same convergence results as that in Theorem 1.

. /

Remark: When the LL objective takes a composite form, e.g., h = f + ¢
with smooth f and nonsmooth g, we can adopt the proximal operator based

iteration module to construct 7 and Theorem 2 still holds.



Theoretical investigations

® Improving Existing Theories in the LLS Scenario

( Theorem 3. Suppose S(x) is singleton for any x € X. f(x,y) is level-
bounded w.r.t. y and locally uniform w.r.t. x; {yx(x)} is uniformly bounded
on X, and {f(x,yx(x))} converges uniformly to f*(x) on X as K — oo. Then

concerning {Xx }ren and {@g (x)}, we have the same convergence results as that
in Theorem 1.

N J

e We take the gradient-based bi-level scheme to illustrate our improvement,
i'e'a Yk+1 — Yk — Slvyf(xv Yk)v k= 0} T 7K — 1

e We can immediately verify our required assumption on {f(x,yx(x))} in
the absence of strong convexity for f.



Existing bi-level FOMs vs BDA

Alg. LLS w/o LLS
Existing || UL F(x,y)is JC, F(x,-)is LC
FOMs || LL f(x,y)is JC, yx(x) 5 y*(x) Not Available

Main Results: i (xr) — infxex (%), Xx Z5

F(x,y)is JC, F(x,-)is LC,

UL F(x,y)is JC, F(x,-) is LC 1oy SHiooth anid SC
BDA LL f(x,y)is JC, f(x,-) is LB, f(x,y) is JC, f(x, ) is Ly Smooth,
f(x,yr(x) = f*(x) S(x) is Continuous.

Main Results: @ (xx) — infyex @(%X), Xx > x*

e Denote - and — as subsequentially convergent and uniformly convergent re-
spectively. JC: Jointly Continuous. LC: Lipschitz Continuous. SC: Strongly
Convex. LB: Level-Bounded.

e Existing FOMs: Domke 2012; Maclaurin et al. 2015; Franceschi et al. 2017,2018;
Shaban et al. 2019, etc.



Numerical verifications

¢® Compare with gradient-based methods

Fig 1. RHG vs BDA
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Machine learning applications

¢® Hyper-parameter optimization (Data hyper-cleaning)

e The UL objective F’ measures the cross-entropy errors with regularization
on validation set:

F(%,5) = 3w, vi)eDw (Y X)i0i, vi) + vy (%)%

e The LL objective f is defined as the weighted cross-entropy loss:
FXY) = 2w, vi)ep,, [0l (y5 i, vi).

e Dataset: MNIST (LeCun et al., 1998) Table 1. Accuracy of data hyper-cleaning.

e SOTA methods: Method No. of LL Iterations (K)

. 50 100 200 800
RHG (Franceschi et al. 2017, 2018)
RHG 88.96 89.73 90.13 90.15

T-RHG (Shaban et al. 2019) TRHG 87.90 8828 88.50 89.99
e For T-RHG, we set the number of truncated BPs as 25 Bha.  Sde 90.k8 D0o7 2056




Machine learning applications

® Meta Learning (Few-shot classification)

The UL objective: F(x,{y’}) = > U(x,y7; D)), H\':
The LL objective: f(x,{y’}) = 2 ((x,y?; D). HH:f:f
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e Dataset: Ominglot (Lake et al. 2015)

e Setup: ,
Table 2. Accuracy of few-shot learning.

4 layers CNN (64 filters, with the size 3*3) followed by

fully connected layer (Franceschi et al. 2018) Method 5 way 20 way
1 shot 5shot 1shot 5 shot
e SOTA methods: MAML  98.70 9991 95.80 98.90
Meta-SGD  97.97 08.96 03.98 98.40
RHG (Franceschi et al. 2017, 2018), T-RHG (Shaban et Reptile 97.68 9948 89.43 97.12
al. 2019), MAML (Finn et al. 2017), Meta-SGD (Li et al. RHG 98.60 99.50 95.50 98.40

) . T-RHG 98.74 99.52 95.82 98.95
2018), Reptlle (NlChOl et al. 2018) BDA 99 04 99 .62 96.50 99.10




Take home message

A counter-example explicitly indicates the importance of the Lower-Level Singleton
(LLS) condition for existing bi-level FOMs.

By formulating BLPs from the view point of optimistic bi-level, BDA provides a
generic bi-level algorithmic framework

We strictly prove the convergence of BDA for general BLPs without the LLS condition.
As a nontrivial byproduct, we revisit and improve the convergence justification of

existing gradient-based schemes for BLLPs in the LLS scenario.
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