

A Generic First-Order Algorithmic Framework for Bi-Level Programming Beyond Lower-Level Singleton (Paper ID: 1129)

Risheng Liu¹, Pan Mu¹, Xiaoming Yuan², **Shangzhi Zeng²**, Jin Zhang³

¹ Dalian University of Technology
 ² The University of Hong Kong
 ³ Southern University of Science and Technology

Thirty-seventh International Conference on Machine Learning

Bi-Level Programs (BLPs)

We consider the following **BLP** formulation:

- A **hierarchical optimization** problem, where an optimization problem contains another optimization problem **as the constraint**
- In general, solving BLPs is extremely challenging

$$\min_{\mathbf{x}\in\mathcal{X},\mathbf{y}\in\mathbb{R}^m} F(\mathbf{x},\mathbf{y}), \ s.t. \ \mathbf{y}\in\mathcal{S}(\mathbf{x}), \ \text{where} \ \mathcal{S}(\mathbf{x}) := \arg\min_{\mathbf{y}} f(\mathbf{x},\mathbf{y})$$

- $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is called Upper-Level (UL) objective
- For every $\mathbf{x} \in \mathcal{X}, f(\mathbf{x}, \cdot) : \mathbb{R}^m \to \mathbb{R}$ is called Lower-Level (LL) objective

From single level to bi-level

Hyper-parameter optimization

Most machine learning problems crucially depend on **some variables that must be decided before learning,** e.g., parameters for regularization, hypothesis space, optimization, preprocessing, etc.

From single level to bi-level

Meta learning (e.g., few-shot classification) intends to design models that can learn new skills or adapt to new environments rapidly with a few training examples \mathbf{X} A classifier is a "learner" model, ٠ Loss across tasks trained for operating a given task • We train it over a variety of learning tasks to obtain the best performance on a distribution of tasks, including potentially unseen tasks

We denote
$$\mathcal{D} = \{\mathcal{D}^j\}_{j=1}^N$$
, and $\mathcal{D}^j = (\mathcal{D}^j_{\mathtt{tr}}, \mathcal{D}^j_{\mathtt{val}})$.

Bi-level Formulation :

Existing first-order bi-level schemes

Lower-Level Singleton (LLS) assumption

• Rather than considering the original BLPs, they actually solve a simplification:

$$\min_{\mathbf{x}\in\mathcal{X}} F(\mathbf{x},\mathbf{y}), \ s.t. \ \mathbf{y} \ "=" \arg\min_{\mathbf{y}} f(\mathbf{x},\mathbf{y})$$

• LL subproblem: A sequence \mathbf{y}_k parameterized by \mathbf{x} is generated, e.g.,

$$\mathbf{y}_{k+1}(\mathbf{x}) = \mathbf{y}_k(\mathbf{x}) - s_l \nabla_{\mathbf{y}} f(\mathbf{x}, \mathbf{y}_k(\mathbf{x})), \ k = 0, \cdots, K-1,$$

where $s_l > 0$ is an appropriately chosen step size.

• UL subproblem: Incoporate $\mathbf{y}_K(\mathbf{x})$ into F and update \mathbf{x} by $\min_{\mathbf{x} \in \mathcal{X}} F(\mathbf{x}, \mathbf{y}_K(\mathbf{x}))$.

Domke, 2012; Machaurin et al. 2015; Franceschi et al. 2017, 2018; Lorraine et al. 2018; MacKay et al. 2019; Shaban et al. 2019.

An interesting counter-example

$$\min_{\mathbf{x} \in [-100, 100]} \frac{1}{2} (\mathbf{x} - [\mathbf{y}]_2)^2 + \frac{1}{2} ([\mathbf{y}]_1 - 1)^2, \\ s.t. \ \mathbf{y} \in \arg\min_{\mathbf{y} \in \mathbb{R}^2} \frac{1}{2} [\mathbf{y}]_1^2 - \mathbf{x} [\mathbf{y}]_1.$$

- $[\cdot]_i$ denotes the *i*-th element of the vector.
- $\mathbf{x} \in [-100, 100]$ and $\mathbf{y} \in \mathbb{R}^2$.
- The optimal solution is $\mathbf{x}^* = 1, \mathbf{y}^* = (1, 1)$.
- Initialize $\mathbf{y}_0 = (0,0)$ and vary step size $s_l^k \in (0,1)$
- $[\mathbf{y}_K]_1 = (1 \prod_{k=0}^{K-1} (1 s_l^k))\mathbf{x}$ and $[\mathbf{y}_K]_2 = 0$
- We have $\mathbf{x}_{K}^{*} = \arg \min_{\mathbf{x} \in [-100, 100]} F(\mathbf{x}, \mathbf{y}_{K}(\mathbf{x}))$

$$= \frac{(1 - \prod_{k=0}^{K-1} (1 - s_l^k))}{1 + (1 - \prod_{k=0}^{K-1} (1 - s_l^k))^2}.$$

Schemes with LLS assumption

- As $\lim_{K \to \infty} \prod_{k=0}^{K-1} (1 s_l^k) \in [0, 1]$
- Then $\lim_{K \to \infty} \frac{(1 \prod_{k=0}^{K-1} (1 s_l^k))}{1 + (1 \prod_{k=0}^{K-1} (1 s_l^k))^2} \in [0, \frac{1}{2}].$
- Thus $\lim_{K\to\infty} \mathbf{x}_K^* \in [0, \frac{1}{2}].$

 \mathbf{x}_{K}^{*} cannot converge to $\mathbf{x}^{*} = 1$

Bi-level Descent Aggregation (BDA)

- Optimistic Bi-level Algorithmic Framework
 - $\min_{\mathbf{x}\in\mathcal{X}}\varphi(\mathbf{x})$, with $\varphi(\mathbf{x}) := \inf_{\mathbf{y}\in\mathcal{S}(\mathbf{x})}F(\mathbf{x},\mathbf{y})$
 - φ : the value function of simple bi-level problem

 $\min_{\mathbf{y}} F(\mathbf{x}, \mathbf{y}), \ s.t. \ \mathbf{y} \in \mathcal{S}(\mathbf{x}), \ (\text{with fixed } \mathbf{x}).$

Inspired by this observation, we may update \mathbf{y} as

$$\mathbf{y}_{k+1}(\mathbf{x}) = \mathcal{T}_k(\mathbf{x}, \mathbf{y}_k(\mathbf{x})), \ k = 0, \cdots, K-1,$$

where $\mathcal{T}_k(\mathbf{x}, \cdot)$ stands for a certain simple bi-level solution strategy with a fixed UL variable \mathbf{x} .

Bi-level Descent Aggregation (BDA)

• Flexible Iteration Modules

• For a given **x**, the descent directions of the UL and LL objectives are

$$\mathbf{d}_k^F(\mathbf{x}) := s_u \nabla_{\mathbf{y}} F(\mathbf{x}, \mathbf{y}_k), \ \mathbf{d}_k^f(\mathbf{x}) := s_l \nabla_{\mathbf{y}} f(\mathbf{x}, \mathbf{y}_k),$$

where $s_u, s_l > 0$ are their step size parameters.

• With aggregation parameter $\alpha_k \in (0, 1]$, we formulate \mathcal{T}_k as

$$\mathbf{y}_{k+1}(\mathbf{x}) = \mathcal{T}_k(\mathbf{x}, \mathbf{y}_k(\mathbf{x})) = \mathbf{y}_k - (\alpha_k \mathbf{d}_k^F(\mathbf{x}) + (1 - \alpha_k) \mathbf{d}_k^f(\mathbf{x})).$$

• Replacing $\varphi(\mathbf{x})$ by $F(\mathbf{x}, \mathbf{y}_K(\mathbf{x}))$, we have $\min_{\mathbf{x}\in\mathbf{X}}\varphi_K(\mathbf{x}) := F(\mathbf{x}, \mathbf{y}_K(\mathbf{x}))$ where $\mathbf{y}_K(\mathbf{x})$ is the output after K iterations.

BDA is flexible enough to incorporate a variety of numerical schemes!

- A General Proof Recipe
 - (1) **LL solution set property:** For any $\epsilon > 0$, there exists $k(\epsilon) > 0$ such that whenever $K > k(\epsilon)$,

 $\sup_{\mathbf{x}\in\mathcal{X}} \mathtt{dist}(\mathbf{y}_K(\mathbf{x}),\mathcal{S}(\mathbf{x})) \leq \epsilon.$

(2) UL objective convergence property: $\varphi(\mathbf{x})$ is LSC on \mathcal{X} ,

$$\lim_{K\to\infty}\varphi_K(\mathbf{x})\to\varphi(\mathbf{x}), \ \forall \mathbf{x}\in\mathcal{X}.$$

LSC: Lower/Upper Semi-Continuous.

• A General Proof Recipe

Theorem 1: Suppose both the above LL solution set and UL objective convergence properties hold, then for $\mathbf{x}_K \in \arg\min_{\mathbf{x} \in \mathcal{X}} \varphi_K(\mathbf{x})$, we have

(1) Any limit point $\bar{\mathbf{x}}$ of the sequence $\{\mathbf{x}_K\}$ satisfies that $\bar{\mathbf{x}} \in \arg\min_{\mathbf{x} \in \mathcal{X}} \varphi(\mathbf{x})$;

(2) $\inf_{\mathbf{x}\in\mathcal{X}}\varphi_K(\mathbf{x})\to\inf_{\mathbf{x}\in\mathcal{X}}\varphi(\mathbf{x})$ as $K\to\infty$.

Remark: If \mathbf{x}_K is local minimum of $\varphi_K(\mathbf{x})$ with uniform neighbourhood modulus, then any limit point $\bar{\mathbf{x}}$ of the sequence $\{\mathbf{x}_K\}$ is a local minimum of φ .

Convergence Properties of BDA

Theorem 2. Suppose $F(\mathbf{x}, \cdot)$ is L_0 -Lipschitz continuous, L_F -smooth, and σ -strongly convex, $f(\mathbf{x}, \cdot)$ is L_f -smooth and convex for any $\mathbf{x} \in \mathcal{X}$. Let $s_l \in (0, 1/L_f], s_u \in (0, 2/(L_F + \sigma)], \alpha_k = \min \{2\gamma/k(1 - \beta), 1\}, k \ge 1 \text{ with } \gamma \in (0, 1]$ and $\beta = \sqrt{1 - 2s_u \sigma L_F/(\sigma + L_F)}$. Assume further that $\mathcal{S}(\mathbf{x})$ is continuous on \mathcal{X} . Then we have the same convergence results as that in **Theorem 1.**

Remark: When the LL objective takes a composite form, e.g., h = f + g with smooth f and nonsmooth g, we can adopt the proximal operator based iteration module to construct \mathcal{T}_k and **Theorem 2** still holds.

• Improving Existing Theories in the LLS Scenario

Theorem 3. Suppose $S(\mathbf{x})$ is singleton for any $\mathbf{x} \in \mathcal{X}$. $f(\mathbf{x}, \mathbf{y})$ is levelbounded w.r.t. \mathbf{y} and locally uniform w.r.t. \mathbf{x} ; $\{\mathbf{y}_K(\mathbf{x})\}$ is uniformly bounded on \mathcal{X} , and $\{f(\mathbf{x}, \mathbf{y}_K(\mathbf{x}))\}$ converges uniformly to $f^*(\mathbf{x})$ on \mathcal{X} as $K \to \infty$. Then concerning $\{\mathbf{x}_K\}_{t\in\mathbb{N}}$ and $\{\varphi_K(\mathbf{x})\}$, we have the same convergence results as that in **Theorem 1.**

- We take the gradient-based bi-level scheme to illustrate our improvement, i.e., $\mathbf{y}_{k+1} = \mathbf{y}_k s_l \nabla_{\mathbf{y}} f(\mathbf{x}, \mathbf{y}_k), \ k = 0, \cdots, K-1.$
- We can immediately verify our required assumption on $\{f(\mathbf{x}, \mathbf{y}_K(\mathbf{x}))\}$ in the absence of strong convexity for f.

Existing bi-level FOMs vs BDA

Alg.		LLS	w/o LLS			
Existing	UL	$F(\mathbf{x}, \mathbf{y})$ is JC , $F(\mathbf{x}, \cdot)$ is LC				
FOMs	\parallel LL	$f(\mathbf{x}, \mathbf{y})$ is JC , $\mathbf{y}_K(\mathbf{x}) \xrightarrow{u} \mathbf{y}^*(\mathbf{x})$	Not Available			
	Main	Results: $\varphi_K(\mathbf{x}_K) \to \inf_{\mathbf{x} \in \mathbf{X}} \varphi(\mathbf{x}), \mathbf{x}_K \xrightarrow{s} \mathbf{x}^*$				
BDA	UL	$F(\mathbf{x}, \mathbf{y})$ is JC , $F(\mathbf{x}, \cdot)$ is LC	$\begin{vmatrix} F(\mathbf{x}, \mathbf{y}) \text{ is } \mathbf{JC}, F(\mathbf{x}, \cdot) \text{ is } \mathbf{LC}, \\ \mathbf{L}_F \text{ Smooth and } \mathbf{SC} \end{vmatrix}$			
		$ \begin{array}{c} f(\mathbf{x},\mathbf{y}) \text{ is } \mathbf{JC}, f(\mathbf{x},\cdot) \text{ is } \mathbf{LB}, \\ f(\mathbf{x},\mathbf{y}_K(\mathbf{x})) \xrightarrow{u} f^*(\mathbf{x}) \end{array} $	$\begin{vmatrix} f(\mathbf{x}, \mathbf{y}) \text{ is } \mathbf{JC}, f(\mathbf{x}, \cdot) \text{ is } \mathcal{L}_f \text{ Smooth,} \\ \mathcal{S}(\mathbf{x}) \text{ is Continuous.} \end{vmatrix}$			
	$ \qquad \qquad$					

- Denote \xrightarrow{s} and \xrightarrow{u} as subsequentially convergent and uniformly convergent respectively. **JC**: Jointly Continuous. **LC**: Lipschitz Continuous. **SC**: Strongly Convex. **LB**: Level-Bounded.
- Existing FOMs: Domke 2012; Maclaurin et al. 2015; Franceschi et al. 2017,2018; Shaban et al. 2019, etc.

Numerical verifications

- Compare with gradient-based methods
- Exact solution:

 $\mathbf{x}^* = 1, \, \mathbf{y}^* = (1, 1).$

• RHG solution:

 $\lim_{K \to \infty} \mathbf{x}_{K}^{*} \in (0, \frac{1}{2}),$ $[\mathbf{y}_{K}]_{1} = (1 - \prod_{k=0}^{K-1} (1 - s_{l}^{k}))\mathbf{x},$ $[\mathbf{y}_{K}]_{2} = 0.$ • Our BDA solution:

 $\mathbf{x}_{K}^{*} \rightarrow 1, \, \mathbf{y}_{K}^{*} \rightarrow (1, 1).$

• Initialization

$$\mathbf{x}_0 = 0,$$

 $\mathbf{y}_0 = (0, 0),$

• No. of LL Iter. K = 16.

• Initialization $\mathbf{x}_0 = 0,$ $\mathbf{y}_0 = (2, 2).$

Machine learning applications

- Hyper-parameter optimization (Data hyper-cleaning)
 - The UL objective F measures the cross-entropy errors with regularization on validation set:

 $F(\mathbf{x}, \mathbf{y}) = \sum_{(\mathbf{u}_i, \mathbf{v}_i) \in \mathcal{D}_{val}} \ell(\mathbf{y}(\mathbf{x}); \mathbf{u}_i, \mathbf{v}_i) + \nu \|\mathbf{y}(\mathbf{x})\|^2.$

- The LL objective f is defined as the weighted cross-entropy loss: $f(\mathbf{x}, \mathbf{y}) = \sum_{(\mathbf{u}_i, \mathbf{v}_i) \in \mathcal{D}_{tr}} [\sigma(\mathbf{x})]_i \ell(\mathbf{y}; \mathbf{u}_i, \mathbf{v}_i).$
- Dataset: MNIST (LeCun et al., 1998)
- SOTA methods:

RHG (Franceschi et al. 2017, 2018) T-RHG (Shaban et al. 2019)

• For T-RHG, we set the number of truncated BPs as 25

Table 1. Accuracy of data hyper-cleaning.

Method	No. of LL Iterations (K)					
	50	100	200	800		
RHG	88.96	89.73	90.13	90.15		
T-RHG	87.90	88.28	88.50	89.99		
BDA	89.12	90.12	90.57	90.86		

Machine learning applications

• Meta Learning (Few-shot classification)

The UL objective: $F(\mathbf{x}, \{\mathbf{y}^j\}) = \sum_j \ell(\mathbf{x}, \mathbf{y}^j; \mathcal{D}_{val}^j),$ The LL objective: $f(\mathbf{x}, \{\mathbf{y}^j\}) = \sum_j \ell(\mathbf{x}, \mathbf{y}^j; \mathcal{D}_{tr}^j).$

- **Dataset:** Ominglot (Lake et al. 2015)
- Setup:

4 layers CNN (64 filters, with the size 3*3) followed by fully connected layer (Franceschi et al. 2018)

• SOTA methods:

RHG (Franceschi et al. 2017, 2018), T-RHG (Shaban et al. 2019), MAML (Finn et al. 2017), Meta-SGD (Li et al. 2018), Reptile (Nichol et al. 2018)

 Table 2.
 Accuracy of few-shot learning.

Method	5 v	vay	20 way	
	1 shot	5 shot	1 shot	5 shot
MAML	98.70	99.91	95.80	98.90
Meta-SGD	97.97	98.96	93.98	98.40
Reptile	97.68	99.48	89.43	97.12
RHG	98.60	99.50	95.50	98.40
T-RHG	98.74	99.52	95.82	98.95
BDA	99.04	99.62	96.50	99.10

Take home message

- A counter-example explicitly indicates the importance of the Lower-Level Singleton (LLS) condition for existing bi-level FOMs.
- By formulating BLPs from **the view point of optimistic bi-level**, BDA provides a generic bi-level algorithmic framework
- We strictly prove the convergence of BDA for general BLPs without the LLS condition.
- As a nontrivial byproduct, we revisit and **improve the convergence justification** of existing gradient-based schemes for BLPs in the LLS scenario.

Thanks for your attention

A Generic First-Order Algorithmic Framework for Bi-Level Programming Beyond Lower-Level Singleton (Paper ID: 1129)