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Abstract In this paper we study necessary optimality conditions for nonsmooth
optimization problems with equality, inequality and abstract set constraints. We derive
the enhanced Fritz John condition which contains some new information even in the
smooth case than the classical enhanced Fritz John condition. From this enhanced Fritz
John condition we derive the enhanced Karush–Kuhn–Tucker condition and introduce
the associated pseudonormality and quasinormality condition. We prove that either
pseudonormality or quasinormality with regularity on the constraint functions and the
set constraint implies the existence of a local error bound. Finally we give a tighter
upper estimate for the Fréchet subdifferential and the limiting subdifferential of the
value function in terms of quasinormal multipliers which is usually a smaller set than
the set of classical normal multipliers. In particular we show that the value function
of a perturbed problem is Lipschitz continuous under the perturbed quasinormality
condition which is much weaker than the classical normality condition.
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354 J. J. Ye, J. Zhang

1 Introduction

In this paper we consider optimization problems in the form

(P) min f (x) s.t. x ∈ C,

where the feasible region C is

C = {x ∈ X : h1(x) = 0, . . . , h p(x) = 0, g1(x) ≤ 0, . . . , gq(x) ≤ 0}. (1.1)

Unless otherwise indicated we assume throughout this paper that f, hi (i =
1, . . . , p), g j ( j = 1, . . . , q) : R

m → R are Lipschitz continuous around the point of
interest and X is a nonempty closed subset of R

m .
In 1948, John [14] proposed the now well-known Fritz John necessary optimal-

ity condition for smooth optimization problems with inequality constraints only. In
1967, Mangasarian and Fromovitz [20] extended the Fritz John condition to smooth
optimization problems with equality and inequality constraints (i.e. X = R

m). For
the smooth case, Fritz John condition asserts that if x∗ is a local optimal solution of
problem (P) with X = R

m , then there exist scalars λ∗
1, . . . , λ

∗
p and μ∗

0, . . . , μ
∗
q not all

zero, satisfying μ∗
j ≥ 0 for all j = 0, 1, . . . , q and

0 = μ∗
0∇ f (x∗) +

p∑

i=1

λ∗
i ∇hi (x∗) +

q∑

j=1

μ∗
j∇g j (x∗), (1.2)

0 = μ∗
j g j (x∗), (1.3)

where ∇ϕ(x) denotes the gradient of the function ϕ at x . Condition (1.3) is referred
to as the complementary slackness condition (CS for short). We call a multiplier
(λ∗

1, . . . , λ
∗
p, μ

∗
1, . . . , μ

∗
q) satisfying the Fritz John condition (1.2)–(1.3) with μ∗

0 = 1
and μ∗

0 = 0 a normal multiplier and an abnormal multiplier respectively. It follows
from the Fritz John condition that if there is no nonzero abnormal multiplier then
there must exist a normal multiplier. This simple corollary from the Fritz John condi-
tion leads to the so-called No Nonzero Abnormal Multiplier Constraint Qualification
(NNAMCQ for short) or the so-called Basic Constraint Qualification for the Karush–
Kuhn–Tucker (KKT for short) condition to hold at a local minimum. It was Mangasar-
ian and Fromovitz who first pointed out that the Fritz John condition can be used to
derive the KKT condition under the condition that the gradient vectors

∇hi (x∗), i = 1, . . . , p

are linearly independent and there exists a vector d ∈ R
m such that

∇hi (x∗)T d = 0 i = 1, . . . , p, ∇g j (x∗)T d < 0 j ∈ A(x∗),

where A(x∗):={ j : g j (x∗) = 0} is the set of active inequality constraints at x∗, using
the fact that the above condition is equivalent to the NNAMCQ by the Motzkin’s
transposition theorem. The above condition is now well-known as the Mangasarian-
Fromovitz Constraint Qualification (MFCQ).
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Nonsmooth enhanced KKT condition 355

The first but weaker versions of the enhanced Fritz John conditions were considered
in a largely overlooked analysis by Hestenes [13] for the case of smooth optimization
problem without an abstract set constraint. A version of the enhanced Fritz John
condition first given by Bertsekas in [2] for a smooth problem with X = R

m states that
if x∗ is a local optimal solution of problem (P) with X = R

m , then there exist scalars
λ∗

1, . . . , λ
∗
p and μ∗

0 ≥ 0, . . . , μ∗
q ≥ 0 not all zero satisfying (1.2) and the following

sequential property: If the index set I ∪ J is nonempty, where I = {i |λ∗
i 	= 0},

J = { j 	= 0|μ∗
j > 0}, then there exists a sequence {xk} ⊂ X converging to x∗ such

that for all k,

f (xk) < f (x∗), λ∗
i hi (xk) > 0, ∀ i ∈ I, μ∗

j g j (xk) > 0, ∀ j ∈ J. (1.4)

Condition (1.4) is stronger than the complementary slackness condition (1.3) since if
μ∗

j > 0, then according to condition (1.4), the corresponding j th inequality constraint
must be violated arbitrarily close to x∗, implying that g j (x∗) = 0. For this reason,
the condition (1.4) is called the complementarity violation condition (CV for short)
by Bertsekas and Ozdaglar [4].

Since the enhanced Fritz John condition is stronger than the classical Fritz John
condition, it results in a stronger KKT condition under a weaker constraint qualification
than the MFCQ. The enhanced Fritz John condition has been further extended to the
case of smooth problem data with a convex abstract set constraint in Bertsekas [2] and
with nonconvex set in Bertsekas and Ozdaglar [4] and Bertsekas et al. [3].

The first result on the enhanced Fritz John condition for nonsmooth problems with
no abstract set constraint can be found in Bector et al. [1] where the classical gradient
is replaced by the Clarke subdifferential. Duality results for convex problems in terms
of the enhanced Fritz John condition have also been studied by Bertsekas et al. [6].
One of the main results of this paper is an improved version of the enhanced Fritz
John condition for problem (P) with Lipschitz problem data based on the limiting
subdifferential and limiting normal cone. Even in the case of a smooth problem,
our improved enhanced Fritz John condition provides some new information. In our
improved CV, we have an extra condition that the sequence {xk} can be found such
that the functions f, hi (i ∈ I ), g j ( j ∈ J ) are proximal subdifferentiable at xk (see
Definition 2). Note that our improved CV is stronger than the original CV for the
smooth problem since a continuously differentiable function may not be proximal
subdifferentiable (a sufficient condition for a function to be proximal subdifferentiable
is C1+, i.e. the gradient of the function is locally Lipschitz).

Based on the enhanced Fritz John condition, Bertsekas and Ozdaglar [4] intro-
duced the so-called pseudonormality and quasinormality as constraint qualifications
that are weaker than the MFCQ. Since our improved enhanced Fritz John condition
is stronger than the original enhanced Fritz John condition even in the smooth case,
our pseudonormality and quasinormality conditions are even weaker than the origi-
nal pseudonormality and quasinormality respectively and are much weaker than the
NNAMCQ (which is in general weaker than the MFCQ in the nonsmooth case).

In recent years, it has been shown that constraint qualifications have strong con-
nections with certain Lipschitz-like property of the set-valued map C : R

p+q ⇒ R
m

defined by the perturbed feasible region
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356 J. J. Ye, J. Zhang

C(α, β):={x ∈ X : h(x) = α, g(x) ≤ β},

where h:=(h1, . . . , h p), g:=(g1, . . . , gq). For the case of a smooth optimization prob-
lem with X = R

m , by Mordukhovich’s criteria for pseudo-Lipschitz continuity
[24,25], MFCQ (or equivalently NNAMCQ) at a feasible point x∗ is equivalent to
the pseudo-Lipschitz continuity (or so-called Aubin continuity) of the set-valued map
C(α, β) around (0, 0, x∗). Calmness of a set-valued map (introduced as the pseudo
upper-Lipschitz continuity by Ye and Ye [32] and coined as calmness by Rockafellar
and Wets [29]) is a much weaker condition than the pseudo-Lipschitz continuity. It is
known that the calmness of the set-valued map C(α, β) around (0, 0, x∗) is equivalent
to the existence of local error bound for the constraint region, i.e., the existence of
positive constants c, δ such that

dC(x) ≤ c(‖h(x)‖1 + ‖g+(x)‖1) ∀ x ∈ B(x∗, δ) ∩ X , (1.5)

where dC(x) denotes the distance of x to set C, g+(x):= max{0, g(x)} where the max-
imization is taken componentwise, ‖ · ‖1 denotes the one norm and B(x∗, δ) denotes
the closed ball centered at x∗ with radius δ. In this paper we show that either pseudo-
normality or quasinormality with regularity on the constraint functions and the set
constraint implies that the set-valued map C(α, β) is calm around the point (0, 0, x∗).
Hence pseudonormality and quasinormality are much weaker than the NNAMCQ.

NNAMCQ plays an important role in the sensitivity analysis. In particular it is a suf-
ficient condition for the value function of a perturbed problem to be Lispchitz contin-
uous (see e.g. [17,18]). In this paper we apply our improved enhanced KKT condition
to derive an estimate for the Fréchet subdifferential and the limiting subdifferential of
the value function. We provide a tighter upper estimate for the Fréchet subdifferential
and the limiting subdifferentials of the value function in terms of the quasinormal
multipliers. As a consequence we show that the value function is Lipschitz continuous
under the perturbed quasinormality condition which is a much weaker condition than
the NNAMCQ.

We organize our paper as follows. In the next section, we review the preliminaries for
nonsmooth analysis that will be used in this paper. We derive the improved enhanced
Fritz John condition in Sect. 3. New constraint qualifications, the enhanced KKT and
the relationship between pseudonormality and quasinormality are given in Sect. 4.
Section 5 is devoted to the sufficient condition for the existence of local error bounds.
In Sect. 6, the results is applied to the sensitivity analysis to provide a tighter upper
estimate for the subdifferential of the value function.

2 Preliminaries

This section contains some background material on nonsmooth analysis and prelim-
inary results which will be used later. We give only concise definitions and results
that will be needed in the paper. For more detailed information on the subject our
references are Borwein and Lewis [7], Borwein and Zhu [8], Clarke [10], Clarke et al.
[11], Loewen [19], Mordukhovich [25,26] and Rockafellar and Wets [29].
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Nonsmooth enhanced KKT condition 357

We first give the following notations that will be used throughout the paper. We
denote by B(x∗, ε) the closed ball centered at x∗ with radius ε and B the closed unit ball
centered at 0. For a set C, we denote by intC, clC, coC its interior, closure and convex
hull respectively. For a function g : R

n → R, we denote by g+(x):= max{0, g(x)}
and if it is vector-valued then the maximum is taken componentwise. For a cone N ,
we denote by N ∗ its polar.

For a set-valued map Φ : R
n ⇒ R

n , we denote by lim supx→x0
Φ(x) and

lim infx→x0 Φ(x) the Kuratowski-Painlevé upper (outer) and lower (inner) limit
respectively.

Definition 1 (Subdifferentials) Let f : R
n → R ∪ {+∞} be a lower semicontin-

uous (l.s.c.) function and x0 ∈ dom f :={x ∈ R
n : f (x) < +∞}. The proximal

subdifferential of f at x0 is the set

∂π f (x0)

:=
{
ξ ∈ R

n : ∃ σ > 0, η > 0 s.t.
f (x) ≥ f (x0) + 〈ξ, x − x0〉 − σ‖x − x0‖2 ∀ x ∈ B(x0, η)

}
.

The Fréchet (regular) subdifferential of f at x0 is the set

∂ F f (x0) :=
{
ξ ∈ R

n : lim inf
h→0

f (x0 + h) − f (x0) − 〈ξ, h〉
‖ h ‖ ≥ 0

}
.

The limiting (Mordukhovich or basic) subdifferential of f at x0 is the set

∂ f (x0) :=
{
ξ ∈ R

n : ∃ xk → x0, and ξk → ξ with ξk ∈ ∂ F f (xk)
}

= {
ξ ∈ R

n : ∃ xk → x0, and ξk → ξ with ξk ∈ ∂π f (xk)
}
.

The singular limiting (Mordukhovich) subdifferential of f at x0 is the set

∂∞ f (x0) :=
{
ξ ∈ R

n : ∃ xk → x0, and tkξk → ξ with ξk ∈ ∂ F f (xk), tk ↓ 0
}

= {
ξ ∈ R

n : ∃ xk → x0, and tkξk → ξ with ξk ∈ ∂π f (xk), tk ↓ 0
}
.

Let f : R
n → R be Lipschitz near x0. The Clarke subdifferential (generalized gradi-

ent) of f at x0 is the set ∂c f (x0) = clco ∂ f (x0).

When f is strictly differentiable (see the definition, e.g. in Clarke [10]), ∂ f (x0) =
∂c f (x0) = {∇ f (x0)}. A l.s.c. function f is said to be subdifferentially regular
([25, Definition 1.91]) at x0 if ∂ f (x0) = ∂ F f (x0). It is known that for a locally
Lipschitz continuous function, the subdifferential regularity is the same as the Clarke
regularity (see [10, Definition 2.3.4] for the definition).

The following facts about the subdifferentials are well-known.

Proposition 1 (i) A function f : R
n → R is Lipschitz near x0 and ∂ f (x0) = {ζ } if

and only if f is strictly differentiable at x0 and the gradient of f at x0 is equal
to ζ .
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358 J. J. Ye, J. Zhang

(ii) If a function f : R
n → R is Lipschitz near x0 with positive constant L f , then

∂ f (x0) ⊂ L f clB.

(iii) A l.s.c. function f : R
n → R ∪ {+∞} is Lipschitz near x0 if and only if

∂∞ f (x0) = {0}.
(iv) Let a ∈ R. Then

∂ max{0, a} =
⎧
⎨

⎩

{0} a < 0
[0, 1] a = 0
{1} a > 0

, ∂|a| =
⎧
⎨

⎩

{−1} a < 0
[−1, 1] a = 0
{1} a > 0

.

Definition 2 (Proximal subdifferentiability) Let f : R
n → R∪{+∞} be a l.s.c. func-

tion and x0 ∈ dom f . We say that f is proximal subdifferentiable at x0 if ∂π f (x0) 	= ∅.

Definition 3 (Normal cones) Let � be a nonempty subset of R
n and x0 ∈ cl�. The

convex cone

N π
� (x0):=

{
ξ ∈ R

n : ∃ σ > 0 s.t. 〈ξ, x − x0〉 ≤ σ‖x − x0‖2 ∀ x ∈ �
}

is called the proximal normal cone to � at x0. The convex cone

N F
� (x0):=

{
ξ ∈ R

n : lim sup
x→x0,x∈�

〈ξ, x − x0〉
‖x − x0‖ ≤ 0

}

is called the Fréchet (regular) normal cone to � at x0. The nonempty cone

N�(x0):= lim sup
x→x0

N F
� (x0) = lim sup

x→x0

N π
� (x0)

is called the limiting (Mordukhovich or basic) normal cone to � at x0. The Clarke
normal cone is the closure of the convex hull of the limiting normal cone, i.e.,
N c

�(x0) = clcoN�(x0).

We say a set � is regular if N F
� (x) = N�(x) for all x ∈ �.

Proposition 2 (Calculus rules) (i) Let f : R
n → R be Lipschitz near x0 and g :

R
n → R ∪ {+∞} be l.s.c. and finite at x0. Let α, β be nonnegative scalars. Then

∂(α f + βg)(x0) ⊂ α∂ f (x0) + β∂g(x0).

(ii) [27, Corollary 3.4] Let f : R
n → R ∪ {+∞} be l.s.c. near x0 and g : R

n → R

be Lipschitz near x0. Assume that ∂ F g(x0) 	= ∅ for all x near x0. Then

∂( f − g)(x0) ⊂ ∂ f (x0) − ∂g(x0).

(iii) Let ϕ : R
m → R

n be Lipschitz near x0 and f : R
n → R be Lipschitz near

ϕ(x0). Then

∂( f ◦ ϕ)(x0) ⊂ ∪ξ∈∂ f (ϕ(x0))∂〈ξ, ϕ〉(x0).
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Nonsmooth enhanced KKT condition 359

(iv) Let f : R
n → R be Lipschitz near x∗ and C be a closed subset of R

n. If x∗ is a
local minimizer of f on C, then 0 ∈ ∂ f (x∗) + NC(x∗).

(v) Let f : R
n → R be Fréchet differentiable at x∗ and C be a closed subset of R

n.
If x∗ is a local minimizer of f on C, then 0 ∈ ∇ f (x∗) + N F

C (x∗).

3 Enhanced Fritz John necessary optimality condition

For nonsmooth problem (P), the classical Fritz John necessary optimality condition is
generalized to one where the classical gradient is replaced by the generalized gradient
by Clarke ([9], see also [10, Theorem 6.1.1]). The limiting subdifferential version
of the Fritz John condition was first obtained by Mordukhovich in [23] (see also
[30, Corollary 4.2] for more explicit expressions).

The following theorem strengthens the limiting subdifferential version of the
Fritz John conditions by replacing the complementary slackness condition with a
stronger condition [Theorem 1(iv)], and hence their effectiveness has been signifi-
cantly enhanced. Although [Theorem 1(iv)] is slightly stronger than the complemen-
tarity violation condition of Bertsekas and Ozdaglar [4], for convenience we still refer
to it as the complementarity violation condition (CV).

Theorem 1 Let x∗ be a local minimum of problem (P). Then there exist scalars
μ∗

0, λ
∗
1, . . . , λ

∗
p, μ

∗
1, . . . , μ

∗
q , satisfying the following conditions:

(i) 0 ∈ μ∗
0∂ f (x∗) + ∑p

i=1 ∂(λ∗
i hi )(x∗) + ∑q

j=1 μ∗
j∂g j (x∗) + NX (x∗).

(ii) μ∗
j ≥ 0, for all j = 0, 1, . . . , q.

(iii) μ∗
0, λ

∗
1, . . . , λ

∗
p, μ

∗
1, . . . , μ

∗
q are not all equal to 0.

(iv) The complementarity violation condition holds: If the index set I ∪ J is nonempty,
where I = {i |λ∗

i 	= 0}, J = { j 	= 0|μ∗
j > 0}, then there exists a sequence

{xk} ⊂ X converging to x∗ such that for all k,

f (xk) < f (x∗), λ∗
i hi (xk) > 0, ∀ i ∈ I, μ∗

j g j (xk) > 0, ∀ j ∈ J,

and f, hi (i ∈ I ), g j ( j ∈ J ) are all proximal subdifferentiable at xk .

Proof Similar to the differentiable case in Bertsekas and Ozdaglar [4], we use a
quadratic penalty function approach originated with McShane [21] to prove the result.
For each k = 1, 2, . . . , we consider the penalized problem

(Pk) min Fk(x) = f (x) + k

2

p∑

i=1

(hi (x))2 + k

2

q∑

j=1

(g+
j (x))2 + 1

2
‖x − x∗‖2

s.t. x ∈ X ∩ B(x∗, ε),

where ε > 0 is such that f (x∗) ≤ f (x) for all feasible x with x ∈ B(x∗, ε). Since
X ∩ B(x∗, ε) is compact, by the Weierstrass theorem, an optimal solution xk of the
problem (Pk) exists. Consequently
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360 J. J. Ye, J. Zhang

f (xk) + k

2

p∑

i=1

(hi (x
k))2 + k

2

q∑

j=1

(g+
j (xk))2 + 1

2
‖xk − x∗‖2 = Fk(xk)

≤ Fk(x∗) = f (x∗). (3.1)

Since f (xk) is bounded over x ∈ X ∩ B(x∗, ε), we obtain from (3.1) that

lim
k→∞ |hi (x

k)| = 0, i = 1, . . . , p, lim
k→∞ |g+

j (xk)| = 0, j = 1, . . . , q

and hence every limit point x̄ of {xk} is feasible; i.e., x̄ ∈ C. Furthermore, (3.1) yields

f (xk) + 1

2
‖xk − x∗‖2 ≤ f (x∗), ∀ k (3.2)

So by taking limit as k → ∞, we obtain

f (x̄) + 1

2
‖x̄ − x∗‖2 ≤ f (x∗).

Since x̄ ∈ B(x∗, ε) and x̄ is feasible, we have f (x∗) ≤ f (x̄), which combined with
the preceding inequality yields ‖x̄ − x∗‖ = 0 so that x̄ = x∗. Thus, the sequence {xk}
converges to x∗, and it follows that xk is an interior point of the closed ball B(x∗, ε)
for all k greater than some k̄.

For k > k̄, since xk is an optimal solution of (Pk) and xk is an interior point of
the closed ball B(x∗, ε), we have by the necessary optimality condition in terms of
limiting subdifferential in Proposition 2 (iv) that

0 ∈ ∂ Fk(xk) + NX (xk).

Applying the calculus rules in Proposition 2 (i), (iii) to ∂ Fk(xk) we have the exis-
tence of multipliers

ξ k
i :=khi (x

k), ζ k
j :=kg+

j (xk) (3.3)

such that

0 ∈ ∂ f (xk) +
p∑

i=1

∂(ξ k
i hi )(x

k) +
q∑

j=1

ζ k
j ∂g j (x

k) + (xk − x∗) + NX (xk). (3.4)

Denote by

δk :=
√

1 +
∑p

i=1
(ξ k

i )2 +
∑q

j=1
(ζ k

j )
2,

μk
0 := 1

δk
, λk

i :=
ξ k

i

δk
, i = 1, . . . , p, μk

j :=
ζ k

j

δk
, j = 1, . . . , q. (3.5)
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Nonsmooth enhanced KKT condition 361

Then since δk > 0, dividing (3.4) by δk , we obtain for all k > k̄,

0 ∈ μk
0∂ f (xk) +

p∑

i=1

∂(λk
i hi )(x

k) +
q∑

j=1

μk
j∂g j (x

k) + 1

δk
(xk − x∗)

+NX (xk). (3.6)

Since by construction we have

(μk
0)

2 +
p∑

i=1

(λk
i )

2 +
q∑

j=1

(μk
j )

2 = 1 (3.7)

the sequence {μk
0, λ

k
1, . . . , λ

k
p, μ

k
1, . . . , μ

k
q} is bounded and must contain a subse-

quence that converges to some limit {μ∗
0, λ

∗
1, . . . , λ

∗
p, μ

∗
1, . . . , μ

∗
q}.

Since hi is Lipschitz near x∗, we have

∂(λk
i hi )(x

k) ⊂ ∂[(λk
i − λ∗

i )hi ](xk) + ∂(λ∗
i hi )(x

k) by Proposition 2 (i)

⊂ Lhi |λk
i − λ∗

i |cl B + ∂(λ∗
i hi )(x

k) by Proposition 1 (ii),

where Lhi is the Lipschitz constant of hi . Similarly,

μk
0∂ f (xk) ⊂ L f |μk

0 − μ∗
0|cl B + μ∗

0∂ f (xk),

μk
j∂g j (x

k) ⊂ Lg j |μk
j − μ∗

j |cl B + μ∗
j∂g j (x

k),

where L f , Lg j are the Lipschitz constants of f, g j . Hence we have from (3.6) that

0 ∈ μ∗
0∂ f (xk) +

p∑

i=1

∂(λ∗
i hi )(x

k) +
q∑

j=1

μ∗
j∂g j (x

k) + 1

δk
(xk − x∗)

+
⎛

⎝L f |μk
0 − μ∗

0| +
p∑

i=1

Lhi |λk
i − λ∗

i | +
q∑

j=1

Lg j |μk
j − μ∗

j |
⎞

⎠ clB + NX (xk).

Taking limit as k → ∞, by the definition of the limiting subdifferential and the limiting
normal cone (or the fact ∂ f is outer semicontinuous [29, Proposition 8.7]), we see that
μ∗

0, λ
∗
i and μ∗

j must satisfy condition (i). From (3.3) and (3.5), μ∗
0 and μ∗

j must satisfy
condition (ii) and from (3.7), μ∗

0, λ
∗
i and μ∗

j must satisfy condition (iii).
Finally, to show that condition (iv) is satisfied, assume that I ∪ J is nonempty

(otherwise there is nothing to prove). Since λk
i → λ∗

i as k → ∞ and λ∗
i 	= 0 for

i ∈ I , for sufficiently large k, λk
i have the same sign as λ∗

i . Hence we must have
λ∗

i λ
k
i > 0 for all i ∈ I and sufficiently large k. Similarly μ∗

jμ
k
j > 0 for all j ∈ J

and sufficiently large k. Therefore from (3.3) and (3.5) we must have λ∗
i hi (x

k) > 0
for all i ∈ I and μ∗

j g j (x
k) > 0 for all j ∈ J and k ≥ K0 for some positive
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integer K0. Consequently since I ∪ J is nonempty, it follows that there exists either
i ∈ I such that hi (x

k) 	= 0 or j ∈ J such that g j (x
k) 	= 0 for all k ≥ K0 and hence

from (3.1) we have f (xk) < f (x∗) for all k ≥ K0. It remains to show the proximal
subdifferentiability of the functions f, hi (i ∈ I ), g j ( j ∈ J ) at xk . By the density
theorem in [11, Theorem 3.1], for each xk with k ≥ K0, there exists a sequence
{xk,l} ⊂ X with liml→∞ xk,l = xk such that f, hi , g j are proximal subdifferentiable
at xk,l . Since

f (xk) < f (x∗), λ∗
i hi (x

k) > 0,∀ i ∈ I, μ∗
j g j (x

k) > 0, ∀ j ∈ J,

we have that and for all sufficiently large l,

f (xk,l) < f (x∗), λ∗
i hi (x

k,l) > 0, ∀ i ∈ I, μ∗
j g j (x

k,l) > 0, ∀ j ∈ J.

For each k ≥ K0, choose an index lk such that l1 < · · · < lk−1 < lk and

lim
k→∞xk,lk = x∗.

Consider the sequence {xk} defined by xk = x(K0+k),(lK0+k ), k = 1, 2, . . . . It follows
from the preceding relations that {xk} ⊂ X ,

lim
k→∞ xk = x∗, f (xk) < f (x∗), λ∗

i hi (xk) > 0,∀ i ∈ I, μ∗
j g j (xk) > 0,∀ j ∈ J,

and f, hi (i ∈ I ), g j ( j ∈ J ) are all proximal subdifferentiable at xk . ��
The condition (iv) is illustrated in Fig. 1.

4 Enhanced KKT condition and weakened CQs

Based on the enhanced Fritz John condition, we define the following enhanced KKT
condition.

Definition 4 (Enhanced KKT condition) Let x∗ be a feasible point of the problem (P).
We say the enhanced KKT condition holds at x∗ if the enhanced Fritz John condition
holds with μ∗

0 = 1.

Theorem 2 Let x∗ be a local minimum of problem (P). Suppose that there is no
nonzero vector (λ, μ) ∈ R

p × R
q
+ such that

0 ∈
p∑

i=1

∂(λi hi )(x∗) +
q∑

j=1

μ j∂g j (x∗) + NX (x∗), (4.1)

and the CV condition defined in [Theorem 1(iv)] hold. Then the enhanced KKT con-
dition holds at x∗.
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Fig. 1 Existence of μ∗ and {xk }

Proof Under the assumptions of the theorem, (i)–(iv) of Theorem 1 never hold if
μ∗

0 = 0. Hence μ∗
0 must be nonzero. The enhanced KKT condition then holds after a

scaling. ��

Note that the condition in Theorem 4.1 is not a constraint qualification since it
involves the objective function f . However Theorem 2 leads to the introduction of
some constraint qualifications for a weaker version of the enhanced KKT condition
to hold. In the smooth case, the pseudonormality and the quasinormality are slightly
weaker than the original definitions introduced by Bertsekas and Ozdaglar [4].

Definition 5 Let x∗ be in the feasible region C.

(a) x∗ is said to satisfy NNAMCQ if there is no nonzero vector (λ, μ) ∈ R
p × R

q
+

such that (4.1) and CS holds: μ j g j (x∗) = 0 for all j = 1, . . . , q.

(b) x∗ is said to be pseudonormal (for the feasible region C) if there is no vector
(λ, μ) ∈ R

p × R
q
+ and no infeasible sequence {xk} ⊂ X converging to x∗ such

that (4.1) and the pseudo-complementary slackness condition (pseudo-CS for
short) hold: if the index set I ∪ J is nonempty, where I = {i |λi 	= 0}, J =
{ j |μ j > 0}, then for each k
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p∑

i=1

λi hi (xk) +
q∑

j=1

μ j g j (xk) > 0,

and hi (i ∈ I ), g j ( j ∈ J ) are all proximal subdifferentiable at xk for each k.
(c) x∗ is said to be quasinormal (for the feasible region C) if there is no nonzero

vector (λ, μ) ∈ R
p × R

q
+ and no infeasible sequence {xk} ⊂ X converging to

x∗ such that (4.1) and the quasi-complementary slackness condition (quasi-CS
for short) hold: if the index set I ∪ J is nonempty, where I = {i |λi 	= 0}, J =
{ j |μ j > 0}, then for all i ∈ I, j ∈ J, λi hi (xk) > 0 and μ j g j (xk) > 0, and
hi (i ∈ I ), g j ( j ∈ J ) are all proximal subdifferentiable at xk for each k.

Since Quasi-CS �⇒ Pseudo-CS �⇒ CS, the following implications hold:

NNAMCQ �⇒ Pseudonormali t y �⇒ Quasinormali t y.

The first reverse implication is obviously not true. [4, Example 3] shows that the second
reverse implication is not true either. We will show later that under the assumption that
NX (x∗) is convex, quasinormality is in fact equivalent to a slightly weaker version of
pseudonormality.

In [4, Proposition 3.1] Bertsekas and Ozadaglar showed that any feasible point of
a constraint region where the equality functions are linear and inequality functions
are concave and smooth and there is no abstract constraint must be pseudonormal. In
what follows we extend it to the nonsmooth case.

Proposition 3 Suppose that hi are linear and g j are concave and X = R
m. Then any

feasible point of problem (P) is pseudonormal.

Proof We prove it by contradiction. To the contrary, suppose that there is a feasible
point x∗ which is not pseudonormal. Then there exists nonzero vector (λ, μ) ∈ R

p ×
R

q
+ and a sequence {xk} ⊂ X converging to x∗ such that (4.1) and the following

condition hold: for each k

p∑

i=1

λi hi (xk) +
q∑

j=1

μ j g j (xk) > 0. (4.2)

By the linearity of hi and concavity of g j , we have that for all x ∈ R
m ,

hi (x) = hi (x∗) + ∇hi (x∗)T (x − x∗) i = 1, . . . , p,

g j (x) ≤ g j (x∗) + ξ T
j (x − x∗) ∀ ξ j ∈ ∂g j (x∗), j = 1, . . ., q.

By multiplying these two relations with λi and μ j and by adding over i and j , respec-
tively, we obtain that for all x ∈ R

m and all ξ j ∈ ∂g j (x∗), j = 1, . . ., q
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p∑

i=1

λi hi (x) +
q∑

j=1

μ j g j (x)

≤
p∑

i=1

λi hi (x∗) +
q∑

j=1

μ j g j (x∗) +
⎡

⎣
p∑

i=1

λi∇hi (x∗) +
q∑

j=1

μ jξ j

⎤

⎦
T

(x − x∗)

=
⎡

⎣
p∑

i=1

λi∇hi (x∗) +
q∑

j=1

μ jξ j

⎤

⎦
T

(x − x∗)

where the last equality holds because we have

λi hi (x∗) = 0 for all i and
q∑

j=1

μ j g j (x∗) = 0.

By (4.1), since NRm (x∗) = {0} there exists ξ∗
j ∈ ∂g j (x∗), j = 1, . . . , q such that

p∑

i=1

λi∇hi (x∗) +
q∑

j=1

μ jξ
∗
j = 0.

Hence it follows that for all x ∈ R
m ,

p∑

i=1

λi hi (x) +
q∑

j=1

μ j g j (x) ≤ 0

which contradicts (4.2). Hence the proof is complete. ��
Definition 6 Let x∗ be a feasible point of problem (P). We call a vector (λ, μ) ∈
R

p × R
q
+ satisfying the following weaker version of the enhanced KKT conditions a

quasinormal multiplier:

(i) 0 ∈ ∂ f (x∗) + ∑p
i=1 ∂(λ∗

i hi )(x∗) + ∑q
j=1 μ∗

j∂g j (x∗) + NX (x∗).
(ii) There exists a sequence {xk} ⊂ X converging to x∗ such that the quasi-CS as

defined in Definition 5 holds.

Since the only difference of the quasinormality with the sufficient condition given
in Theorem 2 is the condition f (xk) < f (x∗), it is obvious that the quasinormality
is a constraint qualification for the weaker version of the enhanced KKT condition
to hold and hence the following result follows immediately from Theorem 2 and the
definitions of the three constraint qualifications.

Corollary 1 Let x∗ be a local minimizer of problem (P). Then if x∗ satisfies NNAMCQ,
or is pseudonormal, or is quasinormal, then the weaker version of the enhanced KKT
condition holds at x∗.
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It is known that NNAMCQ implies the boundedness of the set of all normal multipli-
ers (see e.g. [15]). In what follows, we show that the set of all quasinormal multipliers
are bounded under the quasinormality condition.

Theorem 3 Let x∗ be a feasible point for problem (P). If quasinormality holds at x∗,
then the set of all quasinormal multipliers MQ(x∗) is bounded.

Proof To the contrary, suppose that MQ(x∗) is unbounded. Then there exists
(λn, μn) ∈ MQ(x∗) such that ‖(λn, μn)‖ → ∞ as n tends to infinity. By definition
of a quasinormal multiplier, for each n, there exists a sequence {xk

n }k ⊂ X converging
to x∗ such that

0 ∈ ∂ f (x∗) +
p∑

i=1

∂(λn
i hi )(x∗) +

q∑

j=1

μn
j∂g j (x∗) + NX (x∗), (4.3)

μn
j ≥ 0, ∀ j = 1, . . . , q, (4.4)

λn
i hi (xk

n ) > 0 ∀ i ∈ I n, μn
j g j (xk

n ) > 0 ∀ j ∈ J n, (4.5)

hi (i ∈ I n), g j ( j ∈ J n) are proximal subdifferential at xk
n , (4.6)

where I n :={i : λn
i 	= 0} and J n :={ j : μn

j > 0}.
Denote by ξn := λn

‖(λn ,μn)‖ and ζ n := μn

‖(λn ,μn)‖ . Assume without loss of generality that
(ξn, μn) → (ξ∗, μ∗) . Divide both sides of (4.3) by ‖(λn, μn)‖ and take the limit, we
have

0 ∈
p∑

i=1

∂(ξ∗
i hi )(x∗) +

q∑

j=1

ζ ∗
j ∂g j (x∗) + NX (x∗).

It follow from (4.4) that ζ ∗
j ≥ 0, for all j = 1, . . . , q. Finally, let

I = {i : ξ∗
i 	= 0}; J = { j : ζ ∗

j > 0}.

Then I ∪ J is nonempty. By virtue of (4.5), there are some N0 such that for n > N0,
we must have ξ∗

i hi (xk
n ) > 0 for all i ∈ I and ζ ∗

j g j (xk
n ) > 0 for all j ∈ J . Moreover

by (4.6), hi (i ∈ I n), g j ( j ∈ J n) are proximal subdifferential at xk
n . Thus there exist

scalars {ξ∗
1 , . . . ξ∗

p, ζ ∗
1 , . . . , ζ ∗

q } not all zero and a sequence {xk
n } ⊂ X that satisfy the

preceding relation an so violate the quasinormality of x∗. Hence the proof is complete.
��

Combining the proof techniques of Theorem 1 and [5, Lemma 2] in the following
proposition we can extend [5, Lemma 2] to our nonsmooth problem. We omit the
proof here.

Lemma 1 If a vector x∗ ∈ C is quasinormal, then all feasible vectors in a neighbor-
hood of x∗ are quasinormal.
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In the following result we obtain a specific representation of the limiting normal
cone to the constraint region in terms of the set of quasinormal multipliers. Note that
our result is sharper than the result of Bertsekas and Ozdaglar [5, Proposition 1] which
gives a representation of the Fréchet normal cone in terms of the set of quasinormal
multipliers for the case of smooth problems with a closed abstract set constraint. The
result is also sharper than the one given by Henrion, Jourani and Outrata [12, Theorem
4.1] in which the representation is given in terms of the usual normal multipliers.

Proposition 4 If x̄ is quasinormal for C, then

NC(x̄) ⊂
⎧
⎨

⎩

p∑

i=1

∂(λi hi )(x̄) +
q∑

j=1

μ j∂g j (x̄) + NX (x̄) : (λ, μ) ∈ MQ(x̄)

⎫
⎬

⎭ .

Proof Let v be a vector that belongs to NC(x̄). Then by definition, there are sequences
xl → x̄ and vl → v with vl ∈ N F

C (xl) and xl ∈ C.
Step 1. By Lemma 1, for l sufficiently large, xl is quasinormal for C. By

[29, Theorem 6.11], for each l there exists a smooth function ϕl that achieves a strict
global minimum over C at xl with −∇ϕl(xl) = vl . Since xl is a quasinormal vector
of C, by Theorem 2, the weaker version of the enhanced KKT condition holds for
problem

min ϕl(x) s.t. x ∈ C.

That is, there exists a vector (λl , μl) ∈ R
p × R

q
+ such that

vl ∈
p∑

i=1

∂(λl
i hi )(xl) +

q∑

j=1

μl
j∂g j (xl) + NX (xl) (4.7)

and a sequence {xl,k} ⊂ X converging to xl as k → ∞ such that for all
k, λl

i hi (xl,k) > 0,∀ i ∈ I l , μl
j g j (xl,k) > 0,∀ j ∈ J l , and hi (i ∈ I l), g j ( j ∈ J l) are

proximal subdifferentiable at xl,k , where I l = {i : λl
i 	= 0}, J l = { j : μl

j > 0}.
Step 2. We show that the sequence {λl

1, . . . , λ
l
p, μ

l
1, . . . , μ

l
q} is bounded. To

the contrary suppose that the sequence {λl
1, . . . , λ

l
p, μ

l
1, . . . , μ

l
q} is unbounded. For

every l, denote

δl =
√

1+
∑p

i=1
(λl

i )
2+

∑q

j=1
(μl

j )
2, ξ l

i = λl
i

δl
, i =1, . . . , p, ζ l

j =
μl

j

δl
, j =1, . . . , q.

Then from (4.7) it follows that

vl

δl
∈

p∑

i=1

∂(ξ l
i hi )(xl) +

q∑

j=1

ζ l
j∂g j (xl) + NX (xl).
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Since the sequence {ξ l
1, . . . , ξ

l
p, ζ

l
1, . . . , ζ

l
q} is bounded, for the sake of simplicity, we

may assume that {ξ l
1, . . . , ξ

l
p, ζ

l
1, . . . , ζ

l
q} → {ξ∗

1 , . . . , ξ∗
p, ζ ∗

1 , . . . , ζ ∗
q } 	= 0 as l → ∞.

Taking limits in the above inclusion, similar to the proof of Theorem 1 we obtain

0 ∈
p∑

i=1

∂(ξ∗
i hi )(x̄) +

q∑

j=1

ζ ∗
j ∂g j (x̄) + NX (x̄),

where ζ ∗
j ≥ 0 for all j = 1, . . . , q and ξ∗

1 , . . . , ξ∗
p, ζ ∗

1 , . . . , ζ ∗
q are not all zero. Let

i ∈ I ∗:={i : ξ∗
i 	= 0}. Since ξ l

i → ξ∗
i 	= 0 as l → ∞, ξ l

i 	= 0 and has the same
sign as ξ∗

i for sufficiently large l. Consequently since ξ l
i hi (xl,k) > 0 we have also

ξ∗
i hi (xl,k) > 0 for all sufficiently large l and all k. Similarly let j ∈ J ∗:={ j : ζ ∗

j > 0},
we have ζ ∗

j g j (xl,k) > 0. Also similar to the proof of Theorem 1, by using the density

theorem we can find a subsequence {xl,kl } ⊂ {xl,k} ⊂ X converging to x̄ as l → ∞
such that for all sufficiently large l,

ξ∗
i hi (xl,kl ) > 0 ∀ i ∈ I ∗, ζ ∗

j gi (xl,kl ) > 0 ∀ j ∈ J ∗

and hi (xl,kl )(i ∈ I ∗), g j (xl,kl )( j ∈ J ∗) are proximal subdifferentiable at xl,kl . But
this is impossible since x̄ is assumed to be quasinormal and hence the sequence
{λl

1, . . . , λ
l
p, μ

l
1, . . . , μ

l
q} must be bounded.

Step 3. By virtue of Step 2, without loss of generality, we assume that
{λl

1, . . . , λ
l
p, μ

l
1, . . . , μ

l
q} converges to {λ1, . . . , λp, μ1, . . . , μq} as l → ∞. Taking

the limit in (4.7) as l → ∞, we have

v ∈
p∑

i=1

∂(λi hi )(x̄) +
q∑

j=1

μ j∂g j (x̄) + NX (x̄).

Similar to Step 2, we can find a subsequence {xl,kl } ⊂ {xl,k} ⊂ X con-
verging to x̄ as l → ∞ such that for all sufficiently large l, λi hi (xl,kl ) > 0,

∀ i ∈ I, μ j g j (xl,kl ) > 0,∀ j ∈ J , and hi (i ∈ I ), g j ( j ∈ J ) are proximal subd-
ifferentiable at xl,kl , where I = {i : λi 	= 0} and J = { j : μ j > 0}. ��

From Propositions 4 and 2 (v), the following enhanced KKT necessary optimality
condition for the case where the objective function is Fréchet differentiable (but may
not be Lipschitz) follows immediately. Note that for a Fréchet differentiable function
which is not Lipschitz continuous, the limiting subdifferential may not coincide with
the usual gradient and hence the following result provides a sharper result for this
case.

Corollary 2 Let x∗ be a local minimizer of problem (P) where the objective function
f is Fréchet differentiable at x∗. If x∗ either satisfies NNAMCQ, is pseudonormal, or
is quasinormal, then the weaker version of the enhanced KKT condition holds.

We close this section with a result showing that quasinormality and a weaker version
of pseudonormality coincide under the condition that the normal cone is convex and
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Nonsmooth enhanced KKT condition 369

the constraint functions are strictly differentiable at the point x∗. This result is an
extension of a similar result of Bertsekas and Ozdaglar [4, Proposition 3.2] in that we
do not require the function to be continuously differentiable at x∗.

Proposition 5 Let x∗ ∈ C. Assume that for each i = 1, . . . , p, j = 1, . . . , q, hi (x),

g j (x) are strictly differentiable at x∗, and the limiting normal cone NX (x∗) is convex.
Then x∗ is quasinormal if and only if the following weaker version of pseudonormality
holds: there are no vector (λ, μ) ∈ R

p × R
q
+ and no sequence {xk} ⊂ X converging

to x∗ such that

(i) 0 ∈ ∑p
i=1 λi∇hi (x∗) + ∑q

j=1 μ j∇g j (x∗) + NX (x∗).
(ii) λi hi (xk) ≥ 0 for all i and μ j g j (xk) ≥ 0 for all j , and if the index sets I ∪ J 	= ∅

where I = {i |λi 	= 0} J = { j |μ j > 0} then

p∑

i=1

λi hi (xk) +
q∑

j=1

μ j g j (xk) > 0, ∀ k

and hi (i ∈ I ), g j ( j ∈ J ) are proximal subdifferentiable at xk .

Proof It is easy to see that the weaker version of pseudonormality implies the quasi-
normality. So what we have to do is to show the converse. To the contrary, suppose that
the quasinormality holds but the weaker version of pseudonormality does not hold.
Then there exist scalars λ1, . . . , λp, μ1, . . . , μq and a sequence {xk} ⊂ X converging
to x∗ such that (i)–(ii) hold. Condition (ii) implies that λi hi (xk) > 0 for some ī such
that λī 	= 0 or μ j g j (xk) > 0 for some j̄ such that μ j̄ > 0. We now suppose that such

j̄ exists (the case where j̄ does not exist but ī exists can be similarly proved and we
omit it here). Without loss of generality, we can assume j̄ = 1 and μ1 = 1 (otherwise
we can normalize it) such that (i) holds:

−
(
∇g1(x∗) +

p∑

i=1

λi∇hi (x∗) +
q∑

j=2

μ j∇g j (x∗)
)

∈ NX (x∗). (4.8)

Since g1(xk) > 0 for all k, μ2, . . . , μq , λ1, . . . , λp are not all equal to 0, otherwise it
would contradicts the quasinormality of x∗. Besides, because NX (x∗) is closed and
convex, by [4, Lemma 2.2] there exists a vector d̄ ∈ NX (x∗)∗ with 〈d̄,∇g1(x∗)〉 < 0,

〈d̄,∇g j (x∗)〉 > 0 for all j = 2, . . . , q, such that μ j > 0 and 〈d̄, λi∇hi (x∗)〉 > 0 for
all i = 1, . . . , p, such that λi 	= 0.

In the remaining part of the proof, we show that the scalars μ1 = 1, μ2, . . . , μq ,

λ1, . . . , λp achieved above satisfy condition: λi hi (xk) > 0 ∀ i ∈ I :={i : λi 	= 0},
μ j g j (xk) > 0 ∀ j ∈ J :={ j = 2, . . . , q : μ j > 0} which would contradicts the fact
that x∗ is quasinormal. Since g j and hi are strictly differentiable at x∗, the gradients
coincide with the limiting subdifferentials, i.e.,

∇(μ j g j )(x∗) = lim
k→∞ ρk

j for some ρk
j ∈ ∂π (μ j g j )(xk)

∇(λi hi )(x∗) = lim
k→∞ �k

j for some �k
i ∈ ∂π (λi hi )(xk).
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By [29, Theorem 6.26, Theorem 6.28], for vector d̄ ∈ NX (x∗)∗ and the sequence
xk converging to x∗ constructed above, there is a sequence dk ∈ TX (xk) such that
dk → d̄ . By virtue of xk → x∗, dk → d̄ and 〈d̄,∇(μ j g j )(x∗)〉 > 0 for all j =
2, . . . , q, with μ j > 0, 〈d̄,∇(λi hi )(x∗)〉 > 0 for all i = 1, . . . , p, with λi 	= 0,
we have that, for all sufficiently large k, 〈dk, ρk

j 〉 > 0 for all j = 2, . . . , q, with

μ j > 0, 〈dk, �k
i 〉 > 0 for all i = 1, . . . , p, with λi 	= 0. Since dk ∈ TX (xk), there

exists a sequence {xk,l} ∈ X such that, for each k, we have xk,l 	= xk for all l and

xk,l → xk,
xk,l − xk

‖xk,l − xk‖ → dk

‖dk‖ , as l → ∞,

hi , g j are proximal subdifferentiable at xk,l . Since ρk
j ∈ ∂π (μ j g j )(xk) ⊂

∂ F (μ j g j )(xk), by definition of the Fréchet subdifferential, for some vector sequence
υ converging to 0, and for each j = 2, . . . , q, with μ j > 0,

μ j g j (xk,l) ≥ μ j g j (xk) + 〈xk,l − xk, ρk
j 〉 + o(‖xk,l − xk‖)

≥ μ j

〈
dk

‖dk‖ + υ, ρk
j

〉
‖xk,l − xk‖ + o(‖xk,l − xk‖)

where the second inequality above follows from the assumption that μ j g j (xk) ≥ 0,
for all j and xk . It follows that, for l and k sufficiently large, there exists xk,l ∈ X
arbitrary close to xk such that μ j g j (xk,l) > 0 and, g j are proximal subdifferentiable
at xk,l for all j = 2, . . . , q, with μ j > 0. Similarly, for l and k sufficiently large, there
exists xk,l ∈ X arbitrary close to xk such that λi hi (xk,l) > 0 and, hi are proximal
subdifferentiable at xk,l for all i = 1, . . . , p with λi 	= 0. ��

5 Sufficient conditions for error bounds

In this section we show that either pseudonormality or quasinormality plus the subdif-
ferential regularity condition on constraints implies the existence of local error bounds.
Our results are new even for the smooth case.

In order to derive the desired error bound formula (1.5), let us first rewrite the
constraint region (1.1) equivalently as follows:

C = {x ∈ X : ‖h(x)‖1 + ‖g+(x)‖1 = 0}. (5.1)

By [31, Theorem 3.3], to prove the desired error bound result we only need to derive
the following estimation.

Lemma 2 Let x∗ be feasible for problem (P) such that pseudonormality holds. Then
there are δ, c > 0 such that
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1

c
≤ ‖ξ‖1 ∀ ξ ∈ ∂π (‖h(x)‖1 + ‖g+(x)‖1 + δX (x)), x ∈ B(x∗, δ/2) ∩ X , x /∈ C,

where δC(x) denotes the indicator function of the set C at x.

Proof To the contrary, assume that there exists a sequence {xk} → x∗ with xk ∈ X \C
and ξ k ∈ ∂π (‖h‖1 + ‖g+‖1 + δX )(xk) for all k ∈ N such that ‖ξ k‖1 → 0. By the
calculus rule in Proposition 2 (i), (iii) and Proposition 1 (iv), we can find bounded
multipliers (μk, λk) with μk ≥ 0 such that

ξ k ∈
q∑

i=1

∂(λk
i hi )(xk) +

q∑

j=1

μk
j∂g j (xk) + NX (xk) (5.2)

for all k ∈ N. Hence, we may assume without loss of generality that it converges to a
limit (λ, μ). Taking the limit as k → ∞ in (5.2) yields

0 ∈
p∑

i=1

∂(λi hi )(x∗) +
q∑

j=1

μ j∂g j (x∗) + NX (x∗).

In addition, by the existence of λk
i , μ

k
j and Proposition 1 (iv), for k large enough, it is

easy to see that

λi hi (xk) ≥ 0 ∀ i = 1, . . . , p, μ j g j (xk) ≥ 0 ∀ j = 1, . . . , q.

Since xk /∈ C for all k, at least one functional constraint has to be violated infinitely
many times. Using again Proposition 1 (iv), it is easy to see that there exists at least
one multiplier λi or μ j not equal to zero, and the corresponding product is strictly
positive for all k such that the constraint is violated, i.e. if constraint hi (xk) = 0 is
violated for infinitely many k, we may have λi 	= 0 and λi hi (xk) > 0 for all those k,
if the constraint g j (xk) ≤ 0 is violated for infinitely many k, we may have μ j > 0
and μ j g j (xk) > 0 for all those k. Therefore

p∑

i=1

λi hi (xk) +
q∑

j=1

μ j g j (xk) > 0

at least on a subsequence. Moreover by the density theorem hi (i ∈ I ), g j ( j ∈ J )

can be selected to be proximal subdifferentiable at xk . This, however, implies that
pseudonormality is violated in x∗ since xk is chosen from X , a contradiction. ��

Using the local error bound result of [31, Theorem 3.3], we obtain the following
error bound result.

Theorem 4 Let x∗ be feasible for problem (P) such that pseudonormality holds. Then
the local error bound holds: there exist positive constants c and δ such that

dC(x) ≤ c(‖h(x)‖1 + ‖g+(x)‖1) ∀ x ∈ B(x∗, δ) ∩ X .
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By Clarke’s exact penalty principle [10, Proposition 2.4.3] we obtain the following
exact penalty result immediately.

Corollary 3 Let x∗ be a local minimizer of problem (P). If pseudonormality holds at
x∗, then x∗ is a local minimizer of the penalized problem:

min f (x) + α(‖h(x)‖1 + ‖g+(x)‖1)

s.t. x ∈ X ,

where α ≥ L f c, L f is the Lipschitz constant of f and c is the error bound constant.

Notice that Corollary 3 even works for nonstrict local minima x∗ in the nonsmooth
case. However, we find that the exact penalty result in [4, Proposition 4.2], estab-
lished in the smooth case, requires x∗ to be a strict local minimum, and it is stated in
[4, Example 7.7] that this assumption might be crucial. The example is the following:

min f (x1, x2) := x2 s.t. h(x1, x2) := x2/(x2
1 + 1) = 0.

The feasible points are of the form (x1, 0) with x1 ∈ R. And each feasible point is
a local minimum. Since the gradient ∇h(x1, x2) is nonzero, every feasible point is
quasinormal. The authors claim that pseudonormality at a nonstrict local minimum
may not imply the exact penalty since for any c > 0,

inf
(x1,x2)∈R2

{x2 + c|x2|/|x2
1 + 1|} = −∞,

which shows that a local optimal solution of the original problem is not a global
optimal solution of the penalized problem. However this example is not a counter
example since (x1, 0) is a local minimum of the function x2 + c|x2|/|x2

1 + 1| for large
enough c > 0. Since the limiting subdifferential agrees with the classical gradient
when a function is strictly differentiable, we stress, that not only did we extend the
exact penalty result in [4] to a more general case, but we also improved their result
in another way. We have now answered positively the open question raised in [16] in
which the authors ask whether or not the proof technique based on error bound and the
exact penalty principle of Clarke (which is completely different from the one used in
[4]) can be used to prove the exact penalty result in [4] with a nonstrict local optimum.

The following example shows that the converse of Theorem 3 does not hold. Since
when the objective function is Lipschitz continuous, the existence of an exact penalty
function implies the exact penalty. It also shows that the existence of an exact penalty
function does not imply pseudonormality.

Example 1 Consider the locally Lipschitz optimization problem

min f (x) = |x1| + |x2|
s.t. g(x) = |x1| − x2 ≤ 0

x ∈ X := {(x1, x2) : x2
1 + (x2 + 1)2 ≤ 1}.
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At the only feasible point x∗ = (0, 0), ∂g(x∗) = {(ζ,−1)| − 1 ≤ ζ ≤ 1} and
NX (x∗) = {t (0, 1)|t ≥ 0}. However, if we choose μ = 1 and a sequence {xk} located
in X where for each k = 1, 2, . . . , xk = (

cos(π
2 − π

2k ),−1 + sin(π
2 − π

2k )
)
, we have

0 ∈ μ∂g(x∗) + NX (x∗) and μg(xk) > 0 for all k > 1. This implies x∗ is not
pseudonormal. However it is easy to see that the error bound holds:

dC(x) ≤ |x1| − x2 = |x1| + |x2| ∀ x ∈ X ,

where C = {(0, 0)}.
Naturally, after showing that pseudonormality implies the existence of local error

bound, we would like to explore the relation between quasinormality and the error
bound property. In [22, Theorem 2.1], under the assumption that the constraint func-
tions are C1+, Minchenko and Tarakanov show that quasinormality implies the error
bound for a smooth optimization problem with X = R

m . In what follows, we will show
that quasinormality implies the error bound property for our nonsmooth optimization
problem (P) under the condition that the constraint functions are subdifferential regular
and the abstract constraint set is regular. Since a smooth function must be subdifferen-
tially regular, our results show that the condition of C1+ for the constraint functions
in Minchenko and Tarakanov [22, Theorem 2.1] can be removed.

Theorem 5 Assume in the constraint system (1.1) that X is a nonempty closed regular
set. Further let x∗ ∈ C, assume hi (x) are continuously differentiable, g j (x) are
subdifferentially regular around x∗ (automatically holds when g j are convex or C1

around x∗). If x∗ is a quasinormal point of C, then there exist positive numbers c and
δ, such that

dC(x) ≤ c(‖h(x)‖1 + ‖g+(x)‖1) ∀ x ∈ B(x∗, δ) ∩ X . (5.3)

Proof By assumption we can find δ0 > 0 such that hi (x), g j (x) are subdifferentially
regular for all x ∈ B(x∗, δ0). Since the required assertion is always true if x∗ ∈ intC,
we only need to consider the case when x∗ ∈ ∂C. In this case, (5.3) can be violated only
for x /∈ C. Let us take some sequences {xk} and {xk} , such that xk → x∗,xk ∈ X \C,
and xk = ∏

C(xk), the projection of xk onto the set C. Note that xk → x∗, since
‖xk −xk‖ ≤ ‖xk − x∗‖. For simplicity we may assume both {xk} and {xk} belong to
B(x∗, δ0) ∩ X .

Since xk − xk ∈ N π
C (xk) ⊂ N F

C (xk), we have

ηk = xk − xk

‖xk − xk‖ ∈ N F
C (xk).

Since x∗ is quasinormal, from Lemma 1 it follows that the point xk is also
quasinormal for all sufficiently large k and, without loss of generality, we may
assume that all xk are quasinormal. Then, by Proposition 4 there exists a sequence
{ξ k

1 , . . . , ξ k
p, ζ

k
1 , . . . , ζ k

q } with ζ k
j ≥ 0, such that
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ηk ∈
p∑

i=1

ξ k
i ∇hi (xk) +

q∑

j=1

ζ k
j ∂g j (xk) + NX (xk), (5.4)

and there exists a sequence {xk,l} ⊂ X , such that xk,l → xk as l → ∞ and for
all l = 1, 2, . . . , ξ k

i hi (xk,l) > 0 for i ∈ I k ; ζ k
j g j (xk,l) > 0 for j ∈ J k , where

I k = {i : ξ k
i 	= 0} and J k = { j : ζ k

j > 0}. As in the proof of Step 2 in
Proposition 4, we can show that the quasinormality of x∗ implies that the sequence
{ξ k

1 , . . . , ξ k
p, ζ

k
1 , . . . , ζ k

q } is bounded. Therefore, without loss of generality, we may

assume {ξ k
1 , . . . , ξ k

p, ζ
k
1 , . . . , ζ k

q } converges to some vector {ξ∗
1 , . . . , ξ∗

p, ζ ∗
1 , . . . , ζ ∗

q }.
Then there exists a number M0 > 0, such that for all k, ‖(ξ k, ζ k)‖ ≤ M0.

Without loss of any generality, we may assume that xk ∈ B(x∗, δ0
2 ) ∩ X \ C and

xk ∈ B(x∗, δ0) ∩ X for all k. Setting (ξ̄ k, ζ̄ k) = 2(ξ k, ζ k), then from (5.4) for each k
there exist ρk

j ∈ ∂g j (xk),∀ j = 1, . . . , q, and ωk ∈ NX (xk) such that

xk − xk

‖xk − xk‖ = xk − xk

‖xk − xk‖ +
p∑

i=1

ξ̄ k
i ∇hi (xk) +

q∑

j=1

ζ̄ k
j ρ

k
j + 2ωk .

We obtain from the discussion above that

‖xk − xk‖ = 〈xk − xk,xk − xk〉
‖xk − xk‖

=
〈 xk − xk

‖xk − xk‖ +
p∑

i=1

ξ̄ k
i ∇hi (xk) +

q∑

j=1

ζ̄ k
j ρ

k
j + 2ωk,xk − xk

〉

≤
〈 xk − xk

‖xk − xk‖ +
p∑

i=1

ξ̄ k
i ∇hi (xk) +

q∑

j=1

ζ̄ k
j ρ

k
j ,x

k − xk
〉
+ o(‖xk − xk‖)

≤
p∑

i=1

〈
ξ̄ k

i ∇hi (xk),xk − xk
〉
+

q∑

j=1

〈
ζ̄ k

j ρ
k
j ,x

k − xk
〉
+ o(‖xk − xk‖)

≤
p∑

i=1

ξ̄ k
i

(
hi (x

k) − o(‖xk − xk‖)
)

+
q∑

j=1

ζ̄ k
j

(
g j (x

k) − o(‖xk − xk‖)
)

+ o(‖xk − xk‖)

≤ 2
∣∣∣

p∑

i=1

ξ k
i hi (x

k)+
q∑

j=1

ζ k
j g j (x

k)

∣∣∣+2
∣∣∣

p∑

i=1

ξ k
i +

q∑

j=1

ζ k
j +1

∣∣∣o(‖xk − xk‖)

≤ 2
∣∣∣

p∑

i=1

ξ k
i hi (x

k) +
q∑

j=1

ζ k
j g j (x

k)

∣∣∣ + 1

2
‖xk − xk‖
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where the first inequality comes from the fact that X is regular, the third one arises
from the subdifferential regularity assumption of hi (x) and g j (x) in B(x∗, δ0) ∩ X ,
and the last one is valid because without loss of generality, we may assume for k
sufficiently large,

o(‖xk − xk‖) ≤ 1

4(M0 + 1)
‖xk − xk‖

since xk − xk → 0 as k tends to infinity. This means

dC(xk) = ‖xk − xk‖ ≤ 4M0

( p∑

i=1

|hi (x
k)| +

q∑

i=1

g+
j (xk)

)
.

Thus, for any sequence {xk} ⊂ X converging to x∗ there exists a number c > 0 such
that

dC(xk) ≤ c(‖h(xk)‖1 + ‖g+(xk)‖1) ∀ k = 1, 2, . . . .

This further implies the error bound property at x∗. Indeed, suppose the contrary. Then
there exists a sequence x̃k → x∗, such that x̃k ∈ X \ C and dC(x̃k) > c(‖h(x̃k)‖1 +
‖g+(x̃k)‖1) for all k = 1, 2, . . . , which is a contradiction. ��

A natural question to ask is: Is the quasinormality strictly stronger than the error
bound property. This question has been answered positively in [22, Example 2.1], with
a smooth optimization problem without an abstract set constraint.

6 Sensitivity analysis of value functions

In this section we consider the following perturbed optimization problem:

P(a) min f̂ (x, a) s.t. x ∈ C(a),

with

C(a) = {x ∈ X : ĥ(x, a) = 0, ĝ(x, a) ≤ 0}, (6.1)

where X is closed subset of R
m, f̂ : R

m × R
n → R, ĥ : R

m × R
n → R

p, ĝ :
R

m × R
n → R

q are Lipschitz continuous around (x̄, ā).
In practice it is often important to know how well the model responds to the per-

turbation a. For this we need to consider, for instance, the value function V (a) related
to the parametric optimization problem:

V (a):= inf
x∈C(a)

f̂ (x, a), (6.2)
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with the solution map S(·) defined by

S(a) := {x ∈ C(a) : V (a) = f̂ (x, a)}. (6.3)

In the recent paper [28], Mordukhovich, Nam and Yen obtain some new results for
computing and estimating the Fréchet subgradient of the value function in paramet-
ric optimization (6.1) with smooth and nonsmooth data using normal multipliers. In
the following result we estimate the Fréchet subdifferential of the value function by
using the quasinormal multipliers instead. Since the set of quasinormal multipliers are
smaller than the set of normal multipliers, our estimate provides a tighter bound for
the Fréchet subdifferential of the value function.

Let Mr
Q(x̄, ā) denotes the set of vectors (λ, μ, γ ) ∈ R

p × R
q
+ × R such that

0 ∈ r∂ f̂ (x̄, ā) +
p∑

i=1

∂(λi ĥi )(x̄, ā) +
q∑

j=1

μi∂ ĝ j (x̄, ā) + (0, γ ) + NX (x̄) × {0}

and there exists a corresponding sequence {(xk, ak)} ⊂ X × R
n converging to (x̄, ā)

such that λi ĥi (xk, ak) > 0 for all i ∈ I := {i : λi 	= 0}, μ j ĝ j (xk, ak) > 0 for
all j ∈ J :={μ j > 0}, and ĥi (i ∈ I ), ĝ j ( j ∈ J ) are proximal subdifferentiable at
(xk, ak) for each k.

Theorem 6 Let V (a) be the value function as defined in (6.2) and x̄ ∈ S(ā). Assume
also that (x̄, ā) is quasinormal for the constraint region

{(x, a) ∈ X × R
n : ĥ(x, a) = 0, ĝ(x, a) ≤ 0}.

Then one has the upper estimation:

∂ F V (ā) ⊂ {−γ : (λ, μ, γ ) ∈ M1
Q(x̄, ā)}. (6.4)

Proof There is nothing to prove if ∂ F V (ā) = ∅. Let γ ∈ ∂ F V (ā) 	= ∅. Then by
definition of the Fréchet subdifferential, for arbitrary κ > 0, there exists δκ > 0 such
that

V (a) − V (ā) ≥ 〈γ, a − ā〉 − κ‖a − ā‖ ∀ a ∈ B(ā, δκ).

By definition of the value function, for every x ∈ C(a), we have f̂ (x, a) ≥ V (a) and
hence for all x ∈ C(a), f̂ (x, a) − 〈γ, a − ā〉 + κ‖a − ā‖ ≥ f̂ (x̄, ā)

Thus, (x̄, ā) is a local optimal solution to the optimization problem

min f̂ (x, a) − 〈γ, a − ā〉 + κ‖a − ā‖
s.t. ĥi (x, a) = 0, i = 1, . . . , p,

ĝ j (x, a) ≤ 0, j = 1, . . . , q,

(x, a) ∈ X × R
n .
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Since (x̄, ā) is quasinormal by assumption, by the enhanced KKT condition
(Theorem 1), there exist a vector (λ , μ) ∈ R

p × R
q
+ and a sequence {(xk, ak)} ⊂

X × R
n converging to (x̄, ā) such that the following conditions hold:

0 ∈ ∂ f̂ (x̄, ā) +
p∑

i=1

∂(λi ĥi )(x̄, ā) +
q∑

j=1

μ j∂ ĝ j (x̄, ā) +

NX×Rm (x̄, ā) −
(

0
γ

)
+ κ

(
0
B

)
, (6.5)

λi ĥi (xk, ak) > 0 ∀ i ∈ I, μ j ĝ j (xk, ak) > 0 ∀ j ∈ J,

ĥi (i ∈ I ), ĝ j ( j ∈ J ) are proximal subdifferentiable at (xk, ak).

The desired upper estimation follows since κ is arbitrary. ��
We now give a tighter estimate for the limiting subdifferential of the value function

in terms of the quasinormality.

Theorem 7 Let V (a) be the value function as defined in (6.2). Suppose that the growth
hypothesis holds, i.e., there exists δ > 0 such that the set

{x ∈ X : ĥ(x, ā) = α, ĝ(x, ā) ≤ β, f̂ (x, ā) ≤ M, (α, β) ∈ δB}

is bounded for each M ∈ R. Assume that for each x̄ ∈ S(ā), (x̄, ā) is quasinormal
for the constraint region

{(x, a) ∈ X × R
n : ĥ(x, a) = 0, ĝ(x, a) ≤ 0}. (6.6)

Then the value function V (a) is l.s.c. near ā and

∂V (ā) ⊂
⋃

x̄∈S(ā)

{−γ : (λ, μ, γ ) ∈ M1
Q(x̄, ā)}

∂∞V (ā) ⊂
⋃

x̄∈S(ā)

{−γ : (λ, μ, γ ) ∈ M0
Q(x̄, ā)}.

Proof By [17, Theorem 3.6], the value function V (a) is lower semicontinuous near ā
under our assumption.

Step 1. Let v be a vector that belongs to ∂V (ā), by definition there are sequences
al → ā and vl → v with vl ∈ ∂ F V (al). By the growth hypothesis, for l sufficiently
large, we may find a solution xl ∈ S(al). Following [10, Theorem 6.5.2], without loss
of generality we may assume xl converges to an element x̄ ∈ S(ā). Since (x̄, ā) is
quasinormal and it is a limit point of the sequence {(xl , al)}, by Lemma 1 we find that
for sufficient large l, (xl , al) is also quasinormal for the constraint region (6.6) and
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hence from Theorem 6 it follows that for each l there exist a vector (λl , μl) ∈ R
p ×R

q
+

and a sequence {(xl,k, al,k)}k ⊂ X × R
n converging to (xl , al) as k → ∞ such that

(0, vl) ∈ ∂ f̂ (xl , al) +
p∑

i=1

∂(λl
i ĥi )(xl , al) +

q∑

j=1

μl
j∂ ĝ j (xl , al) + NX (xl) × {0},

(6.7)

λl
i ĥi (xl,k, al,k) > 0 ∀ i ∈ I l , μl

j ĝ j (xl,k, al,k) > 0 ∀ j ∈ J l , (6.8)

ĥi (i ∈ I l), ĝ j ( j ∈ J l) are proximal subdifferentiable at (xl,k, al,k), (6.9)

where I l :={i : λl
i 	= 0}, J l :={ j : μl

j > 0}. Similar as in Step 2 of the
proof of Proposition 4, we may obtain the boundedness of the multipliers sequence
{λl

1, . . . , λ
l
p, μ

l
1, . . . , μ

l
q}. Therefore, without loss of generality, we may assume

{λl
1, . . . , λ

l
p, μ

l
1, . . . , μ

l
q} converges to {λ1, . . . , λp, μ1, . . . , μq}. Taking the limit on

both sides of (6.7), similar to Theorem 1, we obtain

(0, v) ∈ ∂ f̂ (x̄, ā) +
p∑

i=1

∂(λi ĥi )(x̄, ā) +
q∑

j=1

μ j∂ ĝ j (x̄, ā) + NX (x̄) × {0}.

Also we find a sequence {(xl,kl , al,kl )} ⊂ X ×R
n converging to x̄ as l → ∞ and is such

that for all l, λi ĥi (xl,kl , al,kl ) > 0,∀ i ∈ I, μ j g j (xl,kl , al,kl ) > 0,∀ j ∈ J , and hi , g j

are proximal subdifferentiable at xl,kl , where I = {i |λi 	= 0} and J = { j |μ j > 0}.
Step 2. Let v ∈ ∂∞V (ā). By definition there are sequence al → ā, vl ∈ ∂ F V (al)

and t l ↓ 0 such that t lvl → v. Similar as in Step 1, for each l there exist a vector
(λl , μl) ∈ R

p × R
q
+ and a sequence {(xl,k, al,k)} ⊂ X × R

n converging to (xl , al)

such that (6.7)–(6.9) hold. Multiplying both sides of (6.7) by t l we have

(0, t lvl) ∈ t l∂ f̂ (xl , al) +
p∑

i=1

∂(t lλ
l
i ĥi )(xl , al) +

q∑

j=1

t lμl
j∂ ĝ j (xl , al)

+NX (x̄) × {0}. (6.10)

Since (x̄, ā) is quasinormal for the constraint region (6.6), similarly as in Step 2
of the proof of Proposition 4, the sequence {t lλl

1, . . . , t lλl
p, t lμl

1, . . . , t lμl
q} must

be bounded as l → ∞. Without loss of generality assume that the limit is
{λ1, . . . , λp, μ1, . . . , μq}. Talking limits in (6.10), we have

(0, v) ∈
p∑

i=1

λi∂ ĥi (x̄, ā) +
q∑

j=1

μ j∂ ĝ j (x̄, ā) + NX (x̄) × {0}.

The rest of the proof is similar to Step 1. ��
From Theorem 7 we derive the following very interesting result which significantly

improves the classical result in that our sufficient condition is the perturbed quasinor-
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mality which is much weaker than the classical condition of NNAMCQ (see e.g.
[17, Corollary 3.7]).

Corollary 4 Let V (a) be the value function as defined in (6.2). Suppose that the
growth hypothesis holds at each x̄ ∈ S(ā).

(i) Assume that (x̄, ā) is quasinormal for the constraint region (6.6). If

⋃

x̄∈S(ā)

{−γ : (λ, μ, γ ) ∈ M0
Q(x̄, ā)} = {0}, (6.11)

then the value function V (a) is Lipschitz continuous around ā with

∅ 	= ∂V (ā) ⊂
⋃

x̄∈S(ā)

{−γ : (λ, μ, γ ) ∈ M1
Q(x̄, ā)}.

In addtion to the above assumptions, if

⋃

x̄∈S(ā)

{−γ : (λ, μ, γ ) ∈ M1
Q(x̄, ā)} = {−γ̄ }

for some (λ̄, μ̄, γ̄ ) ∈ M1
Q(x̄, ā), then V is strictly differentiable at ā and

∇V (ā) = −γ̄ .
(ii) For the functions φ = f̂ ,±ĥi , ĝ j , suppose that the partial limiting subdifferential

property holds at (x̄, ā):

∂φ(x̄, ā) = ∂xφ(x̄, ā) × ∂aφ(x̄, ā).

Also assume that (x̄, ā) is quasinormal for the constraint region (6.6). If

⋃

x̄∈S(ā)

⎧
⎨

⎩

p∑

i=1

∂a(λi ĥi )(x̄, ā) +
q∑

j=1

μ j∂a ĝ j (x̄, ā) : (μ, λ) ∈ M̃0
Q(x̄, ā)

⎫
⎬

⎭ = {0}

(6.12)

then the value function V (a) is Lipschitz continuous around ā and

∅ 	=∂V (ā) ⊂
⋃

x̄∈S(ā)

(μ,λ)∈M̃1
Q(x̄,ā)

×
⎧
⎨

⎩∂a f̂ (x̄, ā) +
p∑

i=1

∂a(λi ĥi )(x̄, ā) +
q∑

j=1

μi∂a ĝ j (x̄, ā)

⎫
⎬

⎭ (6.13)
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where M̃r
Q(x̄, ā) denotes the set of perturbed quasinormal multipliers which are

the set of vectors (λ, μ) ∈ R
p × R

q
+ such that

0 ∈ r∂x f̂ (x̄, ā) +
p∑

i=1

∂x (λi ĥi )(x̄, ā) +
q∑

j=1

μ j∂x ĝ j (x̄, ā) + NX (x̄)

and there exists a corresponding sequence {(xk, ak)} ⊂ X × R
n converging to

(x̄, ā) such that λi ĥi (xk, ak) > 0 for all i ∈ I := {i : λi 	= 0}, μ j ĝ j (xk, ak) > 0
for all j ∈ J :={μ j > 0}, and ĥi (i ∈ I ), ĝ j ( j ∈ J ) are proximal subdifferen-
tiable at (xk, ak) for each k.

(iii) Suppose that the partial limiting subdifferential property at (x̄, ā) holds as in
(ii) and M̃0

Q(x̄, ā) = {0} for each x̄ ∈ S(ā). Then the value function V (a) is
Lipschitz continuous around ā and (6.13) holds.

Proof (i) It follows from Theorem 7 that

⋃

x̄∈S(ā)

{−γ : (λ, μ, γ ) ∈ M0
Q(x̄, ā)} = {0}

implies that ∂∞V (ā) = {0}. We conclude that the value function is Lipschitz around
ā by virtue of Proposition 1 (iii). The assertion about the strict differentiability then
follows from Proposition 1 (i).

(ii) It is clear that under the partial limiting subdifferential property, (6.11) is
equivalent to (6.12). The conclusion then follows from applying Theorem 7 and
Proposition 1 (iii).

(iii) follows immediately from (ii) and the fact that M̃0
Q(x̄, ā) = {0} implies the

quasinormality of (x̄, ā). ��
Acknowledgments The authors are grateful to the anonymous referees for their helpful suggestions and
comments.

References

1. Bector, C.R., Chandra, S., Dutta, J.: Principle of Optimization Theory. Narosa Publishers, India and
Alpha Science Publishers, Delhi (2004)

2. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific Publishers, Belmont, MA (1999)
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