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Abstract. In this paper, we perform sensitivity analysis of the value function for paramet-
ric mathematical programs with equilibrium constraints (MPEC). We show that the value function
is directionally differentiable in every direction under the MPEC relaxed constant rank regularity
condition, the MPEC no nonzero abnormal multiplier constraint qualification, and the restricted
inf-compactness condition. This result is new even in the setting of nonlinear programs in which case
it means that under the relaxed constant rank regularity condition, the Mangasarian–Fromovitz con-
straint qualification, and the restricted inf-compactness condition, the value function for parametric
nonlinear programs is directionally differentiable in every direction. Enhanced Mordukhovich (M-)
and Clarke (C-) stationarity conditions are M- and C-stationarity conditions with certain enhanced
properties and the sets of enhanced M- and C-multipliers are usually smaller than their associated
sets of M- and C-multipliers. In this paper, we give upper estimates for the subdifferential of the
value function in terms of the enhanced M- and C-multipliers, respectively. Such estimates give
sharper results than their M- and C-counterparts.
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1. Introduction. In practice, it is important to know how well a model re-
sponds to perturbations. This paper considers the following mathematical program
with equilibrium constraints (MPEC) formulated as a mathematical program with
complementarity constraints subject to perturbation p:

(MPECp) min
x∈C

f(x, p)

s.t. g(x, p) ≤ 0, h(x, p) = 0,

0 ≤ G(x, p) ⊥ H(x, p) ≥ 0,

where f : �n1+n2 → �, g : �n1+n2 → �m1 , h : �n1+n2 → �m2 , and G,H : �n1+n2 →
�m, C is a nonempty and closed subset of �n1 , and a ⊥ b means that vector a is
perpendicular to vector b. We denote by X (p) the feasible region of (MPECp). The
value function of (MPECp) is an extended-valued function defined by

V(p) := inf{f(x, p) | x ∈ X (p)}
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and the optimal solution mapping is a set-valued mapping defined by

O(p) := {x ∈ X (p) | f(x, p) = V(p)}.

It is well known that MPECs play very important roles in many fields such as en-
gineering design, economic equilibria, transportation science, and multilevel games.
However, these kinds of problems are generally difficult to deal with because their con-
straints fail to satisfy the standard Mangasarian–Fromovitz constraint qualification
(MFCQ) at any feasible point (see, e.g., [34]). A lot of research has been done during
the last two decades to study the optimality conditions for MPECs. Such optimality
conditions include the Clarke (C-), Mordukhovich (M-), strong (S-), and Bouligand
(B-) stationarity conditions; see, e.g., [7, 8, 14, 21, 22, 28, 29, 30, 31, 33, 34]. At
the same time, algorithms for solving MPECs have been proposed using a number of
approaches such as sequential quadratic programming, penalty function, relaxation,
active set identification, etc.; see, e.g., [5, 17, 26] and the references therein. The sta-
bility of parametric MPEC has also been studied systematically; see, e.g., [9, 13, 28].

Compared with the developments on optimality conditions, algorithms, and sta-
bility, there are only a few publications on the sensitivity of the value function for
(MPECp). In particular, Lucet and Ye [15, 16] addressed the sensitivity of the value
function for optimization programs with variational inequality constraints (OPVIC),
which includes MPEC as a special case. They established an upper estimate of the
limiting subdifferential of the value function in terms of the normal coderivative mul-
tipliers for OPVIC. For the case of MPECs, they provided upper estimates for the
limiting subdifferentials in terms of various multipliers. Hu and Ralph [11] established
formulas for the first- and second-order directional derivatives of the value function un-
der the so-called MPEC linear independence constraint qualification (MPEC-LICQ)
by making use of the piecewise programming approach. In a general framework,
Mordukhovich and Nam [23] and Mordukhovich, Nam, and Yen [24] derived some
results which provide upper estimates for basic and singular subgradients of the value
function for general mathematical programs with an abstract set-valued mapping in
infinite dimensional Hilbert spaces which include problem (MPECp) as a subclass.

Janin [12] introduced the constant rank (CR) regularity condition, under which
they studied the directional differentiability of the value function for parametric non-
linear programs. Note that the constant rank regularity condition holds automatically
if either all the constraint functions are linear or the LICQ holds, but it is not compara-
ble with the MFCQ. Recently, Minchenko and Stakhovski [20] introduced the relaxed
constant rank (RCR) regularity condition, which is weaker than the CR regularity
condition, and studied the parametric nonlinear programs under the RCR regularity
condition. Under the RCR regularity condition, the nonemptiness and uniform com-
pactness of the optimal solution mapping, and the assumption that the constraint
functions are C1,1 (i.e., the gradient is locally Lipschitzian) with respect to the de-
cision variables, they showed that the value function is directionally differentiable in
any direction along which the lower Dini directional derivative of the feasible solution
mapping is nonempty at any optimal solution, and they also derived the formula for
the first-order directional derivative of the value function [20, Theorem 5].

In this paper, we first extend the results of Minchenko and Stakhovski [20] to
MPECs. Even in the case of nonlinear programs, our result improves [20, Theorem 5]
in that the constraint functions are only assumed to be C1 (i.e., the gradient is conti-
nous) instead of C1,1, and the restricted inf-compactness [3, Hypothesis 6.5.1], which
is much weaker than the nonemptiness and uniform compactness of the optimal so-
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lution mapping, is required. We establish the formula for the first-order directional
derivative in any direction along which the lower Dini directional derivative of the
tightened feasible solution mapping of (MPECp) is nonempty at any optimal solution
under the so-called MPEC relaxed constant rank (MPEC-RCR) regularity condi-
tion, which is an MPEC version of the RCR regularity condition. We then show
that, under the MPEC-RCR condition, the MPEC no nonzero abnormal multiplier
constraint qualification (MPEC-NNAMCQ), and the restricted inf-compactness, the
value function is directionally differentiable in every direction. This result is new even
for the special case of nonlinear programs. In this case, since the MPEC-NNAMCQ
reduces to the MFCQ, our result means that, under the RCR regularity condition, the
MFCQ, and the restricted inf-compactness condition, the value function is direction-
ally differentiable in every direction. Note that, under the MFCQ and the restricted
inf-compactness condition, Clarke [3, Corollary 4 on page 243] has given bounds for
the upper and lower Dini directional derivatives of the value function. Even under
the stronger MPEC-LICQ, our result improves the one given by Hu and Ralph [11] in
that the restricted inf-compactness is strictly weaker than the inf-compactness condi-
tion. Based on the obtained results, we also study the differentiability of the localized
optimal value function of (MPECp). We show that the localized optimal value func-
tion is differentiable under the MPEC-LICQ and the refined second-order sufficient
condition (RSOSC), which improve [11, Theorem 1] in that their result requires that
the strong second-order sufficient condition holds for all piecewise nonlinear programs
of MPECs, which is much stronger than the RSOSC.

For parametric nonlinear programs, under the MFCQ, Gauvin [6] first established
the locally Lipschitzian continuity of value functions and also gave an upper estimate
for the Clarke subdifferential of value functions in terms of the usual Lagrange multi-
pliers. Since enhanced Fritz John conditions are generally stronger than the classical
Fritz John conditions, the set of enhanced multipliers are in general smaller than
the set of usual Lagrange multipliers. Recently, Ye and Zhang [32] used the enhanced
multipliers to estimate the limiting subdifferential of value functions for nonlinear pro-
grams. In this paper, we first obtain the enhanced Fritz John condition for MPECs
and then investigate the subdifferentials of the value function for (MPECp) in terms
of enhanced M-multipliers and enhanced C-multipliers, respectively, which provide
much sharper upper estimates than those given in [15, 16], in which they gave upper
estimates for the limiting subdifferential of the value function in terms of the usual
S-, M-, and C-multipliers.

2. Preliminaries. We first give notation that will be used in the paper. We
denote by Bδ(x) := {y ∈ �n | ‖y − x‖ < δ} and B̄δ(x) := {y ∈ �n | ‖y − x‖ ≤ δ}
the open and the closed ball centered at x with radius δ > 0, respectively. For a
point x and a closed set Ω, we denote by dist(x,Ω) := inf{‖y − x‖ | y ∈ Ω} the
Euclidean distance from x to Ω and by PΩ(x) := {y ∈ Ω | ‖y − x‖ = dist(x,Ω)}
the set of projection from x to Ω. Moreover, given a set Ω ⊆ �n and a function
ϕ : �n → �̄ := �∪{±∞}, xk →Ω x

∗ means that xk → x∗ with xk ∈ Ω and xk →ϕ x
∗

means that xk → x∗ with ϕ(xk)→ ϕ(x∗).

2.1. Variational analysis. In this subsection, we review some basic concepts
and results in variational analysis, which will be used later on. For more details, see,
e.g., [2, 3, 21, 22, 27].

Let Φ : �n ⇒ �m be a set-valued mapping. The graph of Φ is defined by

gphΦ := {(x, y) | y ∈ Φ(x)}
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and the domain of Φ is defined by

domΦ := {x ∈ �n | Φ(x) �= ∅}.

The Painlevé–Kuratowski outer and inner limit of Φ with respect to a set Ω at x∗ is
defined, respectively, by

lim sup
x→Ωx∗

Φ(x) := {v ∈ �m | ∃xk →Ω x
∗, ∃vk → v s.t. vk ∈ Φ(xk) for each k},

lim inf
x→Ωx∗ Φ(x) := {v ∈ �

m | ∀xk →Ω x
∗, ∃vk → v s.t. vk ∈ Φ(xk) for each k}.

The tangent cone and the inner tangent cone of a set Ω at x∗ ∈ Ω is a closed cone
defined, respectively, by

TΩ(x∗) := lim sup
t↓0

Ω− x∗
t

, T i
Ω(x

∗) := lim inf
t↓0

Ω− x∗
t

.

The tangent cone and inner tangent cone can be equivalently written as (see, e.g.,
[2, section 2.2.4])

TΩ(x∗) = {d | ∃tk ↓ 0, dist(x∗ + tkd,Ω) = o(tk)},
T i
Ω(x

∗) = {d | dist(x∗ + td,Ω) = o(t) ∀t ≥ 0}.

Consider a point x∗ ∈ �n with ϕ(x∗) finite. The regular (or Fréchet) subdiffer-
ential of ϕ at x∗ is defined by

∂̂ϕ(x∗) := {v | ϕ(x) ≥ ϕ(x∗) + vT (x− x∗) + o(‖x− x∗‖)},

the limiting (or Mordukhovich) subdifferential of ϕ at x∗ is defined by

∂ϕ(x∗) := lim sup
x→ϕx∗

∂̂ϕ(x) = {v | ∃xk →ϕ x
∗, ∃vk ∈ ∂̂ϕ(xk) s.t. vk → v},

and the horizon (or singular Mordukhovich) subdifferential of ϕ at x∗ is defined by

∂∞ϕ(x∗) := {v | ∃xk →ϕ x
∗, ∃vk ∈ ∂̂ϕ(xk), ∃tk ↓ 0 s.t. tkv

k → v}.

The following results will be useful.
Proposition 2.1 (see [27, Theorem 9.13]). Suppose that ϕ : �n → �̄ is lower

semicontinuous around x∗ with ϕ(x∗) finite. Then ϕ is Lipschitzian around x∗ if and
only if ∂∞ϕ(x∗) = ∅.

Proposition 2.2 (see [21, Corollary 8.10]). If ϕ : �n → �̄ is Lipschitzian
around x̄, then ∂ϕ(x̄) �= ∅.

Proposition 2.3 (see [21, Theorem 3.54]). Suppose that ϕ : �n → �̄ is Lip-
schitzian around x̄. Then ϕ is strictly differentiable at x̄ if and only if ∂ϕ(x̄) =
{∇ϕ(x̄)}.

2.2. Directional differentiability for nonlinear programs. In this subsec-
tion, we review some related results of directional derivatives of the value function for
the parametric nonlinear program (NLP):

(NLPp) min
x

f(x, p)

s.t. g(x, p) ≤ 0, h(x, p) = 0,
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where the functions {f, g, h} are the same as in the definition of problem (MPECp).
We denote the feasible region of (NLPp) by the set-valued mapping

F(p) := {x | g(x, p) ≤ 0, h(x, p) = 0}

and define the generalized Lagrangian function of (NLPp) by

Lr(x, p;λ, μ) := rf(x, p) + g(x, p)Tλ+ h(x, p)Tμ, r ≥ 0.

The value function of (NLPp) is an extended-valued function defined by

V(p) := inf{f(x, p) | x ∈ F(p)}

and the optimal solution mapping is a set-valued mapping defined by

O(p) := {x ∈ F(p) | f(x, p) = V(p)}.

The set of Lagrange multipliers associated with x∗ ∈ F(p∗) is

Γ(x∗, p∗) :=
{
(λ, μ) | ∇xL

1(x∗, p∗;λ, μ) = 0, g(x∗, p∗)Tλ = 0, λ ≥ 0
}
.

In the following, we introduce some constraint qualifications which are useful
in what follows. The CR regularity was first introduced by Janin [12] and its re-
laxed version–RCR regularity—was first introduced by Minchenko and Stakhovski
[20]. Neither of them is comparable with the MFCQ:

(i) The gradients {∇xhi(x
∗, p∗) | i = 1, . . . ,m2} are linearly independent;

(ii) there exists d such that

∇xgi(x
∗, p∗)T d < 0, i ∈ I∗g , ∇xhi(x

∗, p∗)T d = 0, i = 1, . . . ,m2,

where I∗g := {i | gi(x∗, p∗) = 0}; see [12].
Definition 2.4. We say that the set-valued mapping F is CR regular at x∗ ∈

F(p∗) if there exists δ > 0 such that, for each I ⊆ I∗g and J ⊆ {1, . . . ,m2}, the
family of gradients {∇xgi(x, p),∇xhj(x, p) | i ∈ I, j ∈ J } has the same rank for each
p ∈ Bδ(p∗) and x ∈ Bδ(x∗).

We say that the set-valued mapping F is RCR regular at x∗ ∈ F(p∗) if there exists
δ > 0 such that, for each I ⊆ I∗g , the family of gradients {∇xgi(x, p),∇xhj(x, p) | i ∈
I, j = 1, . . . ,m2} has the same rank for each p ∈ Bδ(p∗) and x ∈ Bδ(x∗).

Given a direction dp, we denote by

D+
V(p∗; dp) := lim sup

t↓0
t−1(V(p∗ + tdp)− V(p∗)),

D+V(p
∗; dp) := lim inf

t↓0
t−1(V(p∗ + tdp)− V(p∗)),

the upper and lower Dini directional derivative of V at p∗ in direction dp, respectively.
We define the directional derivative of V at p∗ in direction dp as

DV(p∗; dp) := lim
t↓0

t−1(V(p∗ + tdp)− V(p∗)).

Janin [12, Corollary 3.4] obtained the following sufficient condition for the direc-
tional differentiabilitiy of the value function under the MFCQ and the CR regularity
which are both weaker than the usual regularity condition LICQ.

Proposition 2.5. Assume that all the functions {f, g, h} are C1 and the optimal
solution mapping O(p) is nonempty and uniformly compact around p∗, i.e., there exist
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a positive number δ and a bounded set S such that ∅ �= O(p) for each p ∈ Bδ(p∗) and

{x ∈ O(p) | p ∈ Bδ(p∗)} ⊆ S.

Suppose further that the MFCQ and the CR regularity hold at each x∗ ∈ O(p∗).
Then the value function V is directionally differentiable at p = p∗ in every direction
dp ∈ �n2 and

DV(p∗; dp) = min
x∗∈O(p∗)

max
(λ,μ)∈Γ(x∗,p∗)

∇pL
1(x∗, p∗;λ, μ)T dp.

Since MPECs reduce to NLPs when m = 0, Theorem 3.11 shows that in Janin’s
sufficient conditions, the CR regularity can be replaced by the RCR regularity and
the nonemptiness and the uniform compactness of the optimal solution mapping can
be replaced by a weaker condition called the restricted inf-compactness as defined
in Definition 3.8. The following is an example for which Theorem 3.11 can be used
to show the directional differentiability of the value function while Proposition 2.5
cannot be used.

Example 2.6. Consider the problem

min
x

f(x, p) := (x1 − 1)2 + x22 + p

s.t. h(x, p) := x1 − 1 = 0,

g(x, p) := x2 + p ≤ 0, g2(x, p) := x1x2 ≤ 0.

It is not difficult to verify that the optimal solution of the above problem is
(1,min(−p, 0)). Thus, the value function is V(p) = min2(−p, 0)+ p, which is differen-
tiable at p∗ = 0, and the optimal solution for p∗ = 0 is x∗ = (1, 0). The active index
set of inequality constraints at x∗ is I∗g = {1, 2}. Note that in Definition 2.4, in order
to satisfy the CR regularity, taking J = ∅, the family of gradients {∇xgi(x, p)| i ∈ I∗g }
must have the same rank for each (x, p) in some neighborhood of (x∗, p∗). But since
the family of gradients

{∇xgi(x, p)| i ∈ I∗g } =
{(

0
1

)
,

(
x2
x1

)}

has rank one at x∗ but rank two near x∗ when x2 �= 0, the CR regularity does not
hold at x∗. Thus, Proposition 2.5 fails to be applied to this situation. However, since
the family of gradients

{∇xh(x, p),∇xgi(x, p)| i ∈ I}

has constant rank for each I ⊆ I∗g and for all (x, p) in some neighborhood of (x∗, p∗),
the RCR regularity holds at x∗. Then, by Theorem 3.11, we can obtain the directional
differentiability of the value function.

In the rest of this subsection, we review some sufficient conditions for the di-
rectional differentiability of the value function in certain directions under the RCR
regularity condition, which are obtained by Minchenko and Stakhovski [20], and then
indicate our improvements. The lower Dini directional derivative of set-valued map-
ping F at a point (p∗, x∗) ∈ gphF in direction dp is defined as

D+F(x∗, p∗; dp) := lim inf
t↓0

F(p∗ + tdp)− x∗
t

= {dx | ∃o(t) s.t. x∗ + tdx + o(t) ∈ F(p∗ + tdp) ∀t ≥ 0}.
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For any (p∗, x∗) ∈ gphF , by the definition, one always has D+F(x∗, p∗; dp) ⊆
LF (x∗, p∗; dp), where LF (x∗, p∗; dp) is the x-projection of the linearization cone of
gphF at (p∗, x∗), i.e.,

LF (x∗, p∗; dp) :=

⎧⎪⎪⎨
⎪⎪⎩dx

∣∣∣∣∣∣∣∣
∇gi(x∗, p∗)T

(
dx
dp

)
≤ 0, i ∈ I∗g

∇hi(x∗, p∗)T
(
dx
dp

)
= 0, i = 1, . . . ,m2

⎫⎪⎪⎬
⎪⎪⎭

(see [18, Corollary 6.26]). Moreover, the equality holds provided that the RCR regu-
larity holds as stated in the following lemma.

Lemma 2.7 (see [20, Corollary 2]). If the RCR regularity holds at x∗ ∈ F(p∗)
and D+F(x∗, p∗; dp) �= ∅, then

D+F(x∗, p∗; dp) = LF (x∗, p∗; dp).

Recall that the set-valued mapping F(p) is calm at (p∗, x∗) ∈ gphF if there exist
δ > 0 and κ > 0 such that, for any p ∈ Bδ(p∗) and x ∈ Bδ(x∗) ∩ F(p), there exists a
point x̄ ∈ F(p∗) such that ‖x− x̄‖ ≤ κ‖p− p∗‖. The following result shows that the
RCR regularity condition is slightly stronger than the calmness condition.

Lemma 2.8 (see [20, Lemma 5]). If the RCR regularity holds at x∗ ∈ F(p∗), then
there exist δ > 0 and κ > 0 such that, for any p ∈ Bδ(p∗) and x ∈ Bδ(x∗)∩F(p), there
exists a point x̄ ∈ F(p∗) such that ‖x − x̄‖ ≤ κ‖p − p∗‖ and gi(x, p) ≤ gi(x̄, p

∗) ≤ 0
for each i ∈ I∗g .

Based on Lemmas 2.7 and 2.8, Minchenko and Stakhovski [20, Theorem 5] gave
the following result.

Proposition 2.9. Assume that the objective function f is C1, the constraint
functions {g, h} are C1,1, and the optimal solution mapping O(p) is nonempty and
uniformly compact around p∗. Suppose further that F is RCR regular at each x∗ ∈
O(p∗). Then the value function V is directionally differentiable at p = p∗ in each
direction dp ∈ ∩x∗∈O(p∗)domD+F(x∗, p∗; ·) and

DV(p∗; dp) = min
x∗∈O(p∗)

min
dx∈LF (x∗,p∗;dp)

∇f(x∗, p∗)T
(
dx
dp

)
= min

x∗∈O(p∗)
max

(λ,μ)∈Γ(x∗,p∗)
∇pL

1(x∗, p∗;λ, μ)T dp.

Since NLPs can be considered as a special case of MPECs with m = 0, Theo-
rem 3.9 shows that, in order to obtain the differentiability of the value function as in
Proposition 2.9, the functions {f, g, h} are only needed to be C1 and the nonemptiness
and the uniform compactness of the optimal solution mapping can be replaced by the
weaker restricted inf-compactness. The following example illustrates this point.

Example 2.10. Consider the problem

min
x

f(x, p) := −x2 + p

s.t. 0 ≤ g1(x, p) ≤ 3, g2(x, p) ≤ 0,

where g1(x, p) := x+ p and

g2(x, p) :=

⎧⎪⎪⎨
⎪⎪⎩

2

3
(x− 3 + p)

3
2 + x− 3 + p if x ≥ 3− p,

−2

3
[−(x− 3) + p]

3
2 + x− 3 + p if x < 3− p.
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It is not difficult to see that the feasible region of the above problem is {x | − p ≤
x ≤ 3 − p}, the optimal solution is x∗ = 3 for p∗ = 0, and around p∗ = 0, the value
function V(p) = −(3 − p)2 + p, which is differentiable at p = p∗. It is easy to verify
that the RCR regularity holds at the optimal solution x∗. Moreover, g2 is C1 but not
C1,1 around the optimal solution. Thus, Proposition 2.9 fails to be applied to this
situation. However, we can get the directional differentiability of the value function
by Theorem 3.9.

3. Directional differentiability of the value function. In this section, we
study the directional differentiability of the value function for (MPECp) under the
assumptions that all the involved functions {f, g, h,G,H} are C1 and C ≡ �n1 . For
a given feasible point x∗ ∈ X (p∗), we define the following index sets:⎧⎪⎪⎨

⎪⎪⎩
I∗g := { i | gi(x∗, p∗) = 0},
I∗ := { i | Gi(x

∗, p∗) = 0 < Hi(x
∗, p∗)},

J ∗ := { i | Gi(x
∗, p∗) = 0 = Hi(x

∗, p∗)},
K∗ := { i | Gi(x

∗, p∗) > 0 = Hi(x
∗, p∗)}.

The MPEC generalized Lagrangian function of (MPECp) is given by

L r(x, p;λ, μ, u, v) := rf(x, p)+g(x, p)Tλ+h(x, p)Tμ−G(x, p)Tu−H(x, p)T v, r ≥ 0,

and the MPEC linearization cone at x∗ ∈ X (p∗) is given by

L(x∗, p∗) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
d

∣∣∣∣∣∣∣∣∣∣

∇xgi(x
∗, p∗)T d ≤ 0, i ∈ I∗g

∇xhi(x
∗, p∗)T d = 0, i = 1, . . . ,m2

∇xGi(x
∗, p∗)T d = 0, i ∈ I∗

∇xHi(x
∗, p∗)Td = 0, i ∈ K∗

0 ≤ ∇xGi(x
∗, p∗)T d ⊥ ∇xHi(x

∗, p∗)T d ≥ 0, i ∈ J ∗

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

We say that x∗ ∈ X (p∗) is generalized strongly stationary (generalized S-stationary)
to (MPECp∗) if there exist multipliers (λ, μ, u, v) ∈ �m1 ×�m2 ×�m×�m and r ≥ 0
such that (r, λ, μ, u, v) �= 0 and⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇xL r(x∗, p∗;λ, μ, u, v) = 0,
λ ≥ 0, g(x∗, p∗)Tλ = 0,
ui = 0, i ∈ K∗,
vi = 0, i ∈ I∗,
ui ≥ 0, vi ≥ 0, i ∈ J ∗.

(3.1)

We define the set of generalized S-multipliers at x∗ ∈ X (p∗) as

Mr
S(x

∗, p∗) := {(λ, μ, u, v) | 0 �= (r, λ, μ, u, v) satisfies (3.1) }.

We say that x∗ ∈ X (p∗) is a B-stationary point or a piecewise stationary point of
(MPECp∗) if, for each J ⊆ J ∗, there exist multipliers (λ, μ, u, v) ∈ �m1 × �m2 ×
�m ×�m such that ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇xL 1(x∗, p∗;λ, μ, u, v) = 0,
λ ≥ 0, g(x∗, p∗)Tλ = 0,
ui = 0, i ∈ K∗,
vi = 0, i ∈ I∗,
ui ≥ 0, i ∈ J c,
vi ≥ 0, i ∈ J ,

(3.2)
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where J c := J ∗ \ J is the complement of J in J ∗. We denote by BJ (x∗, p∗) the set
of multipliers (λ, μ, u, v) satisfying (3.2) at x∗ ∈ X (p∗) for each J ⊆ J ∗.

The following constraint qualifications are useful in the subsequent analysis.
Definition 3.1 (see [28]). We say that MPEC-LICQ holds at x∗ ∈ X (p∗) if the

gradients{
∇xgi(x

∗, p∗),∇xhj(x
∗, p∗),∇xGı(x

∗, p∗),∇xHj(x
∗, p∗)

∣∣
i ∈ I∗g , j = 1, . . . ,m2, ı ∈ I∗ ∪ J ∗, j ∈ K∗ ∪ J ∗

}
are linearly independent.

The following condition is a parametric version of the MPEC-RCR constraint
qualification introduced in [8]. It extends the RCR regularity (see Definition 2.4)
to the MPEC setting. It is weaker than the MPEC-LICQ, the MPEC Linear CQ
(i.e., all constraint functions are linear with respect to x), and the MPEC constant
rank constraint qualification (MPEC-CRCQ) but it is not comparable to the MPEC-
NNAMCQ; see [8] for more discussions.

Definition 3.2. We say that the set-valued mapping X is MPEC-RCR regular
at x∗ ∈ X (p∗) if there exists δ > 0 such that, for any I1 ⊆ I∗g and I2, I3 ⊆ J ∗, the
family of gradients{

∇xgi(x, p),∇xhj(x, p),∇xGı(x, p),∇xHj(x, p)
∣∣

i ∈ I1, j = 1, . . . ,m2, ı ∈ I∗ ∪ I2, j ∈ K∗ ∪ I3
}

has the same rank for each p ∈ Bδ(p∗) and x ∈ Bδ(x∗).
Let L(x∗, p∗; dp) be the x-projection of the MPEC linearization cone of gphX at

(p∗, x∗), i.e.,

L(x∗, p∗; dp) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
dx

∣∣∣∣∣∣∣∣∣∣

∇gi(x∗, p∗)T d ≤ 0, i ∈ I∗g
∇hi(x∗, p∗)Td = 0, i = 1, . . . ,m2

∇Gi(x
∗, p∗)T d = 0, i ∈ I∗

∇Hi(x
∗, p∗)Td = 0, i ∈ K∗

0 ≤ ∇Gi(x
∗, p∗)T d ⊥ ∇Hi(x

∗, p∗)T d ≥ 0, i ∈ J ∗

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

For the sake of simplicity, we denote

F (x, p) :=

⎛
⎝ g(x, p)

h(x, p)
Ψ(x, p)

⎞
⎠ , Λ := �m1− × {0}m2 × Cm,(3.3)

where �− denotes the nonpositive orthant {v ∈ � | v ≤ 0} and

Ψ(x, p) :=

⎛
⎜⎜⎜⎜⎜⎝

G1(x, p)
H1(x, p)

...
Gm(x, p)
Hm(x, p)

⎞
⎟⎟⎟⎟⎟⎠ , C := { (a, b) ∈ �2 | 0 ≤ a ⊥ b ≥ 0}.(3.4)

Thus, the feasible region of (MPECp) can be rewritten as X (p) := {x | F (x, p) ∈ Λ}.
By direct calculation, we have (see, e.g., [8, 14])

L(x∗, p∗; dp) = {dx | ∇F (x∗, p∗)Td ∈ TΛ(F (x∗, p∗))}.
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Lemma 3.3. Let x∗ ∈ X (p∗). Then D+X (x∗, p∗; dp) ⊆ L(x∗, p∗; dp). Suppose
that the set-valued mapping X is MPEC R-regular at x∗ ∈ X (p∗) in direction dp, i.e.,
there exist κ > 0 and δ > 0 such that

dist(x,X (p∗ + tdp)) ≤ κ dist(F (x, p∗ + tdp),Λ) ∀t ∈ (0, δ), ∀x ∈ Bδ(x∗).

Then

D+X (x∗, p∗; dp) = L(x∗, p∗; dp).

Proof. Let dx ∈ D+X (x∗, p∗; dp). By the definition of the lower Dini directional
derivative of set-valued mappings, there exists o(t) such that

x∗ + tdx + o(t) ∈ X (p∗ + tdp) ∀t ≥ 0.

Thus, by Taylor’s theorem, we have

Λ � F (x∗ + tdx + o(t), p∗ + tdp) = F (x∗, p∗) + t∇F (x∗, p∗)T
(
dx
dp

)
+ o(t).

Then, it is easy to see that

∇F (x∗, p∗)T
(
dx
dp

)
∈ TΛ(F (x∗, p∗)).

Thus, we have dx ∈ L(x∗, p∗; dp) and hence D+X (x∗, p∗; dp) ⊆ L(x∗, p∗; dp).
Next, we show that L(x∗, p∗; dp) ⊆ D+X (x∗, p∗; dp). To this end, we first show

that

TΛ(F (x∗, p∗)) = T i
Λ(F (x

∗, p∗)).

It follows from [14, Lemma 5.3] that

TΛ(F (x∗, p∗)) =
m1∏
i=1

T�−(gi(x
∗, p∗))×

m2∏
i=1

T{0}(hi(x∗, p∗))

×
m∏
i=1

TC(Gi(x
∗, p∗), Hi(x

∗, p∗)).

Since �− and {0} are convex and closed, it follows from [2, Proposition 2.55] that for
each j,

T�−(gj(x
∗, p∗)) = T i

�−(gj(x
∗, p∗)), T{0}(hj(x∗, p∗)) = T i

{0}(hj(x
∗, p∗)).

Moreover, by direct calculation, it is not hard to get that for each j,

TC(Gj(x
∗, p∗), Hj(x

∗, p∗)) = T i
C(Gj(x

∗, p∗), Hj(x
∗, p∗)).

Thus, it suffices to show that

T i
Λ(F (x

∗, p∗)) =
m1∏
j=1

T i
�−(gj(x

∗, p∗))×
m2∏
j=1

T i
{0}(hj(x

∗, p∗))

×
m∏
j=1

T i
C(Gj(x

∗, p∗), Hj(x
∗, p∗)).
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If d ∈ T i
Λ(F (x

∗, p∗)), then dist(F (x∗, p∗) + td,Λ) = o(t) (∀t ≥ 0). It remains true for
any of its components. Thus, we have

d ∈
m1∏
j=1

T i
�−(gj(x

∗, p∗))×
m2∏
j=1

T i
{0}(hj(x

∗, p∗))×
m∏
j=1

T i
C(Gj(x

∗, p∗), Hj(x
∗, p∗)).

In a similar way, we can show that the converse part also holds. Therefore, we have

TΛ(F (x∗, p∗)) = T i
Λ(F (x

∗, p∗)).

Let dx ∈ L(x∗, p∗; dp). Then, by the definition, we have

∇F (x∗, p∗)T
(
dx
dp

)
∈ TΛ(F (x∗, p∗)) = T i

Λ(F (x
∗, p∗)).

By the definition of inner tangent cone, we have

dist

(
F (x∗, p∗) + t∇F (x∗, p∗)T

(
dx
dp

)
,Λ

)
= o(t) ∀t ≥ 0.

Thus, it follows from the MPEC R-regularity in direction dp and the above equality
that

dist(x∗ + tdx,X (p∗ + tdp)) ≤ κ dist(F (x∗ + tdx, p
∗ + tdp),Λ)

= κ dist

(
F (x∗, p∗) + t∇F (x∗, p∗)T

(
dx
dp

)
+ o(t),Λ

)

= κ dist

(
F (x∗, p∗) + t∇F (x∗, p∗)T

(
dx
dp

)
,Λ

)
+ o(t)

= o(t),

which implies that dx ∈ D+X (x∗, p∗; dp). Thus, we have

L(x∗, p∗; dp) ⊆ D+X (x∗, p∗; dp),

and then L(x∗, p∗; dp) = D+X (x∗, p∗; dp). The proof is complete.
Next we investigate some sufficient conditions to ensure that the directional

MPEC R-regularity in Lemma 3.3 holds. To this end, for x∗ ∈ O(p∗), we let

XT (p) :=

{
x

∣∣∣∣ g(x, p) ≤ 0, h(x, p) = 0
GI∗∪J ∗(x, p) = 0, HK∗∪J ∗(x, p) = 0

}
.

Note that XT (p) is the so-called tightened constraint region of problem (MPECp) [28].
Clearly, XT (p) ⊆ X (p) around (x∗, p∗) and henceD+XT (x

∗, p∗; dp) ⊆ D+X (x∗, p∗; dp)
for each dp. We first give a technical lemma.

Lemma 3.4. For any (a, b) ∈ �2, we have

ϕ(a, b) := min(|a|+max(−b, 0), |b|+max(−a, 0)) ≤
√
2dist((a, b), C),

where C is the set defined in (3.4).
Proof. To complete the proof, we consider the following five cases:
• a ≥ b ≥ 0: ϕ(a, b) = b = dist((a, b), C);
• a > 0, b ≤ 0: ϕ(a, b) = −b = dist((a, b), C);
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• a ≤ 0, b ≤ 0: ϕ(a, b) = −a− b ≤
√
2dist((a, b), C);

• a ≤ 0, b > 0: ϕ(a, b) = −a = dist((a, b), C);
• b > a > 0: ϕ(a, b) = a = dist((a, b), C).

In conclusion, we have the desired result.
Lemma 3.5. Suppose that the set-valued mapping X is MPEC-RCR regular at

x∗ ∈ X (p∗). If D+XT (x
∗, p∗; dp) �= ∅, then X is MPEC R-regular at x∗ ∈ X (p∗) in

direction dp and D+X (x∗, p∗; dp) = L(x∗, p∗; dp) �= ∅.
Proof. We will show the desired result by mathematical induction. First we show

that the MPEC R-regularity holds when the numberm of complementarity constraints
is 0. Note that in this case F (x, p) = (g(x, p), h(x, p))T , Λ = �m1− × {0}m2, and
X (p) = XT (p). Assume to the contrary that X is not MPEC R-regular at x∗ ∈ X (p∗)
in direction dp, i.e., there exist tk ↓ 0 and xk → x∗ such that for each k,

dist(xk,X (pk)) > k(‖max(g(xk, pk), 0)‖+ ‖h(xk, pk)‖),(3.5)

where pk := p∗ + tkdp. Clearly, xk /∈ X (pk). Since D+X (x∗, p∗; dp) �= ∅, there exist
dx and o(t) such that x∗ + tdx + o(t) ∈ X (p∗ + tdp) and hence X (p∗ + tdp) �= ∅ for
t ≥ 0 sufficiently small. Thus, there exists x̄k ∈ PX (pk)(x

k) for each k sufficiently
large. Since

‖xk − x̄k‖ ≤ ‖xk − (x∗ + tkdx + o(tk))‖ → 0 as k →∞,
we have x̄k → x∗ as k → ∞. Then it is easy to see that RCR regularity holds at
(x̄k, pk) for each k sufficiently large. By the definition of the projection, x̄k is an
optimal solution of the following optimization problem for each k sufficiently large:

min
x

‖xk − x‖

s.t. g(x, pk) ≤ 0, h(x, pk) = 0.

Then it follows from [19, Theorem 1] that x̄k is a KKT point of the above problem,
i.e., there exist multipliers (λk, μk) such that{

x̄k−xk

‖x̄k−xk‖ +∇xg(x̄
k, pk)λk +∇xh(x̄

k, pk)μk = 0,

0 ≤ λk ⊥ − g(x̄k, pk) ≥ 0.
(3.6)

By Caratheodory’s theorem for cone hulls (see, e.g., [1, Proposition 1.3.1]), in a very
similar way to the proof of [8, Theorem 4.1], we can show that there exists a bounded
multiplier sequence {(λ̄k, μ̄k)} satisfying (3.6). Without loss of generality, we let
‖(λ̄k, μ̄k)‖ ≤ M (M > 0) for each k. It follows from (3.6) that for each k sufficiently
large,

‖xk − x̄k‖ =
m1∑
i=1

λ̄ki∇xgi(x̄
k, pk)T (xk − x̄k) +

m2∑
j=1

μ̄k
j∇xhj(x̄

k, pk)T (xk − x̄k)

=

m1∑
i=1

λ̄ki (gi(x
k, pk)− gi(x̄k, pk)) +

m2∑
j=1

μ̄k
j (hj(x

k, pk)− hj(x̄k, pk))

+ o(‖xk − x̄k‖)

=

m1∑
i=1

λ̄ki gi(x
k, pk) +

m2∑
j=1

μ̄k
jhj(x

k, pk) + o(‖xk − x̄k‖)

≤
m1∑
i=1

λ̄ki max(gi(x
k, pk), 0) +

m2∑
j=1

|μ̄k
j ||hj(xk, pk)|+

1

2
‖xk − x̄k‖.
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This means that for each k sufficiently large, we have

dist(xk,X (pk)) = ‖xk − x̄k‖ ≤ (m1 +m2)M(‖max(g(xk, pk), 0)‖+ ‖h(xk, pk)‖),
which contradicts (3.5). Thus, X is MPEC R-regular at x∗ ∈ X (p∗) in direction dp
when m = 0.

Next we show that the MPEC R-regularity holds when m = 1. To this end, we
consider the following two constraint systems:

X1(p) :=

{
x

∣∣∣∣ g(x, p) ≤ 0, h(x, p) = 0
G1(x, p) = 0, H1(x, p) ≥ 0

}
,

X2(p) :=

{
x

∣∣∣∣ g(x, p) ≤ 0, h(x, p) = 0
G1(x, p) ≥ 0, H1(x, p) = 0

}
.

It is easy to verify that X1(p) ∪ X2(p) = X (p) and XT (p) ⊆ Xi(p) around (x∗, p∗) for
i = 1, 2. Thus, by the definition of the lower Dini directional derivative of set-valued
mappings, we have

∅ �= D+XT (x
∗, p∗; dp) ⊆ D+Xi(x

∗, p∗; dp) ∀i = 1, 2.(3.7)

To complete the proof, we consider the following three cases.
(i) x∗ ∈ X1(p

∗)\X2(p
∗): In this case, for any (x, p) sufficiently close to (x∗, p∗),

dist(x,X (p)) = dist(x,X1(p)).

Moreover, we have 0 = G1(x
∗, p∗) < H1(x

∗, p∗) which indicates that, for any
(x, p) sufficiently close to (x∗, p∗),

G1(x, p) < H1(x, p) > 0.(3.8)

Moreover, the MPEC-RCR regularity assumption implies that X1 is RCR
regular at x∗ ∈ X1(p

∗). This and (3.7) indicate from the first part of the
proof that the MPEC R-regularity holds at x∗ ∈ X1(p

∗) in direction dp.
Then it follows from (3.8) that there exist κ > 0 and δ > 0 such that for each
x ∈ Bδ(x∗) and t ∈ (0, δ),

dist(x,X1(p
∗ + tdp) ≤ κ

(
‖max(g(x, p∗ + tdp), 0)‖+ ‖h(x, p∗ + tdp)‖

+ |G1(x, p
∗ + tdp)|+max(−H1(x, p

∗ + tdp), 0)
)
,

= κ
(
‖max(g(x, p∗ + tdp), 0)‖+ ‖h(x, p∗ + tdp)‖

+ |G1(x, p
∗ + tdp)|

)
,

= κ
(
‖max(g(x, p∗ + tdp), 0)‖+ ‖h(x, p∗ + tdp)‖

+dist((G1(x, p
∗ + tdp), H1(x, p

∗ + tdp)), C)
)
.

(ii) x∗ ∈ X2(p
∗)\X1(p

∗): In the same way as (i), we can show the desired result
in this case.

(iii) x∗ ∈ X1(p
∗) ∩ X2(p

∗): The MPEC-RCR regularity assumption implies that
both X1 and X2 are RCR regular at x∗. This and (3.7) imply from the first
part of the proof that the MPEC R-regularity holds at x∗ ∈ X1(p

∗)∩X2(p
∗).

Thus there exist κ > 0 and δ > 0 such that for each x ∈ Bδ(x∗) and t ∈ (0, δ),

dist(x,X1(p
∗ + tdp) ≤ κ

(
‖max(g(x, p∗ + tdp), 0)‖+ ‖h(x, p∗ + tdp)‖

+ |G1(x, p
∗ + tdp)|+max(−H1(x, p

∗ + tdp), 0)
)
,

dist(x,X2(p
∗ + tdp)) ≤ κ

(
‖max(g(x, p∗ + tdp), 0)‖+ ‖h(x, p∗ + tdp)‖

+ |H1(x, p
∗ + tdp)|+max(−G1(x, p

∗ + tdp), 0)
)
.
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Thus, it follows from the above inequalities and Lemma 3.4 that for any
x ∈ Bδ(x∗) and t ∈ (0, δ),

dist(x,X (p∗ + tdp)) = min
(
dist(x,X1(p

∗ + tdp)), dist(x,X2(p
∗ + tdp))

)
≤
√
2κ

(
‖max(g(x, p∗ + tdp), 0)‖+ ‖h(x, p∗ + tdp)‖

+dist((G1(x, p
∗ + tdp), H1(x, p

∗ + tdp)), C)
)
.

In conclusion, the MPEC R-regularity holds at x∗ ∈ X (p∗) in direction dp when
m = 1. In a similar way, we can show that if the MPEC R-regularity holds when
m ≤ k, then the MPEC R-regularity holds when m = k + 1. By mathematical
induction, we have shown that X is MPEC R-regular at x∗ ∈ X (p∗) in direction dp
and hence from Lemma 3.3 we have D+X (x∗, p∗; dp) = L(x∗, p∗; dp). The proof is
complete.

Since XT (p) coincides with X (p) around (x∗, p∗) when J ∗ = ∅ (i.e., the strict
complementarity holds at x∗ ∈ X (p∗)), we have the following result immediately.

Corollary 3.6. Suppose that the set-valued mapping X is MPEC-RCR regular
at x∗ ∈ X (p∗) and the strict complementarity condition holds at x∗ ∈ X (p∗). If
D+X (x∗, p∗; dp) �= ∅, then X is MPEC R-regular at x∗ ∈ X (p∗) in direction dp.

By making use of the piecewise programming approach, we can obtain the fol-
lowing MPEC version of Lemma 2.8.

Lemma 3.7. Let x∗ ∈ X (p∗). If X is MPEC-RCR regular at x∗ ∈ X (p∗), then
there exist δ > 0 and κ > 0 such that, for any p ∈ Bδ(p∗) and x ∈ Bδ(x∗) ∩ X (p),
there exists a point x̄ ∈ X (p∗) such that

(a) ‖x− x̄‖ ≤ κ‖p− p∗‖ and gi(x, p)− gi(x̄, p∗) ≤ 0, i ∈ I∗g ;
(b)

(
Gi(x, p)−Gi(x̄, p

∗), Hi(x, p) −Hi(x̄, p
∗)
)
∈ C, i ∈ J ∗.

Proof. For each J ⊆ J ∗, consider the piecewise constraint region

XJ (p) :=

⎧⎨
⎩x

∣∣∣∣∣∣
g(x, p) ≤ 0, h(x, p) = 0
Gi(x, p) = 0 (i ∈ I∗ ∪ J ), Gi(x, p) ≥ 0 (i ∈ J c)
Hi(x, p) = 0 (i ∈ K∗ ∪ J c), Hi(x, p) ≥ 0 (i ∈ J )

⎫⎬
⎭ .(3.9)

Clearly, x∗ ∈ XJ (p∗) and the RCR regularity holds at x∗ ∈ XJ (p∗) for each J ⊆ J ∗.
Then, for each J ⊆ J ∗, by Lemma 2.8, there exist δJ > 0 and κJ > 0 such that, for
any p ∈ BδJ (p∗) and x ∈ BδJ (x∗) ∩XJ (p), there exists a point x̄ ∈ XJ (p∗) such that

(1) ‖x− x̄‖ ≤ κJ ‖p− p∗‖ and gi(x, p)− gi(x̄, p∗) ≤ 0, i ∈ I∗g ;
(2) Gi(x, p) = Gi(x̄, p

∗) = 0 and Hi(x, p) ≥ Hi(x̄, p
∗) ≥ 0, i ∈ J ; Hi(x, p) =

Hi(x̄, p
∗) = 0 and Gi(x, p) ≥ Gi(x̄, p

∗) ≥ 0, i ∈ J c.
Since J ∗ = J

⋃
J c, we have

(
Gi(x, p)−Gi(x̄, p

∗), Hi(x, p)−Hi(x̄, p
∗)
)
∈ C, i ∈ J ∗.

Since it is not hard to verify that X (p) =
⋃

J⊆J ∗ XJ (p) around (x∗, p∗), we can get
the desired result by setting κ := maxJ⊆J ∗ κJ and δ := minJ⊆J ∗ δJ .

Motivated by Proposition 2.9, we study the directional derivative of the value
function V under the MPEC-RCR regularity. Note that Theorem 3.9 only requires
that the constraint functions are C1 and the following restricted inf-compactness
holds.

Definition 3.8 (see [3, Hypothesis 6.5.1]). We say that the restricted inf-
compactness holds around p∗ if V(p∗) is finite and there exist a compact Ω and a
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positive number ε0 such that, for all p ∈ Bε0(p∗) for which V(p) < V(p∗) + ε0, the
problem (MPECp) has a solution in Ω.

Theorem 3.9. Assume that the restricted inf-compactness holds around p∗. Let
X be MPEC-RCR regular at each x∗ ∈ O(p∗). Then the value function V is direction-
ally differentiable at p = p∗ in every direction dp ∈ ∩x∗∈O(p∗)domD+XT (x

∗, p∗; ·) and

DV(p∗; dp) = min
x∗∈O(p∗)

min
dx∈L(x∗,p∗;dp)

∇f(x∗, p∗)T
(
dx
dp

)
= min

x∗∈O(p∗)
min

J⊆J ∗
max

(λ,μ,u,v)∈BJ (x∗,p∗)
∇pL

1(x∗, p∗;λ, μ, u, v)Tdp.(3.10)

Proof. If the restricted inf-compactness holds, then it follows from [3, page 246]
that V(p) is lower semicontinuous at p∗. But for the sake of completeness, we give a
brief proof here. Let pk → p∗ as k →∞ such that

lim inf
p→p∗ V(p) = lim

k→∞
V(pk).

Assume to the contrary that limk→∞ V(pk) < V(p∗). Then, by the restricted inf-
compactness, there exists a bounded sequence {xk} such that xk ∈ O(pk) for each k
sufficiently large, i.e., V(pk) = f(xk, pk). Without loss of generality, we assume that
xk → x̄ as k →∞. Then, by the outer semicontinuity of X (i.e., its graph is closed),
we have x̄ ∈ X (p∗). Thus,

V(p∗) > lim
k→∞

V(pk) = lim
k→∞

f(xk, pk) = f(x̄, p∗) ≥ V(p∗),

which gives a contradiction and then V is lower semicontinuous at p∗. We now show
that V is continuous at p∗ in direction dp ∈ domD+X (x∗, p∗; ·). SinceD+X (x∗, p∗; dp)
�= ∅, there exist o(t) and dx such that x∗ + tdx + o(t) ∈ X (p∗ + tdp) ∀t ≥ 0. Thus,

lim sup
t↓0

V(p∗ + tdp) ≤ lim sup
t↓0

f(x∗ + tdx + o(t), p∗ + tdp) = f(x∗, p∗) = V(p∗),

which implies that V is upper semicontinuous at p∗ in direction dp. Therefore, V is
continuous at p∗ in direction dp ∈ domD+X (x∗, p∗; ·).

Let x∗ ∈ O(p∗) and dp ∈ ∩x∗∈O(p∗)domD+XT (x
∗, p∗; ·). SinceD+XT (x

∗, p∗; dp) �=
∅, by Lemma 3.5 and the MPEC-RCR regularity assumption,

D+X (x∗, p∗; dp) = L(x∗, p∗; dp).(3.11)

Thus, for each dx ∈ L(x∗, p∗; dp), by the definition of the lower Dini directional
derivative of set-valued mappings, there exists o(t) such that x∗+ tdx+ o(t) ∈ X (p∗+
tdp) for t ≥ 0. Thus, we have

D+V(p∗; dp) = lim sup
t↓0

V(p∗ + tdp)− V(p∗)
t

≤ lim sup
t↓0

f(x∗ + tdx + o(t), p∗ + tdp)− f(x∗, p∗)
t

= ∇f(x∗, p∗)T
(
dx
dp

)
.

Therefore, it is easy to get

D+V(p∗; dp) ≤ min
x∗∈O(p∗)

inf
dx∈L(x∗,p∗;dp)

∇f(x∗, p∗)T
(
dx
dp

)
.(3.12)
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Since L(x∗, p∗; dp) �= ∅ for each x∗ ∈ O(p∗), it follows from (3.12) that

D+V(p∗; dp) <∞.(3.13)

On the other hand, let {tk} be a positive sequence converging to 0 such that

D+V(p∗; dp) = lim
k→∞

V(p∗ + tkdp)− V(p∗)
tk

.

It follows from (3.13) that D+V(p∗; dp) <∞. Thus, it is easy to see that there exists
k0 > 0 such that

V(p∗ + tkdp)− V(p∗) < ε0 ∀k ≥ k0,

where ε0 is defined as in Definition 3.8. Let pk := p∗ + tkdp. By the restricted
inf-compactness assumption, there exists xk ∈ O(pk) ⊆ X (pk) for any k sufficiently
large such that {xk} is bounded. Without loss of generality, we assume that xk → x̄.
Obviously, x̄ ∈ X (p∗) by the outer semicontinuity of X . Since

V(pk) = V(p∗) + tkD+V(p∗, dp) + o(tk),

it follows that

f(x̄, p∗) = lim
k→∞

f(xk, pk) = lim sup
k→∞

V(pk) = V(p∗),

which implies

x̄ ∈ O(p∗).(3.14)

Since the MPEC-RCR regularity holds at x̄ ∈ O(p∗), it follows from Lemma 3.7
that for each sufficiently large k, there exist κ > 0 independent of k and a sequence
{xk′ ∈ X (p∗)} such that

(a) ‖xk − xk′‖ ≤ κ‖pk − p∗‖, gi(xk, pk)− gi(xk
′
, p∗) ≤ 0 (i ∈ Īg);

(b)
(
Gi(x

k, pk)−Gi(x
k′
, p∗), Hi(x

k, pk)−Hi(x
k′
, p∗)

)
∈ C (i ∈ J̄ ),

where Īg := { i | gi(x̄, p∗) = 0} and J̄ := { i | Gi(x̄, p
∗) = 0 = Hi(x̄, p

∗)}. It follows
that for each k sufficiently large,

gi(x
k, pk)− gi(xk

′
, p∗) ≤ 0 (i ∈ Īg), hi(x

k, pk)− hi(xk
′
, p∗) = 0 (i = 1, . . . ,m2),

Gi(x
k, pk)−Gi(x

k′
, p∗) = 0 (i ∈ Ī), Hi(x

k, pk)−Hi(x
k′
, p∗) = 0 (i ∈ K̄),(

Gi(x
k, pk)−Gi(x

k′
, p∗), Hi(x

k, pk)−Hi(x
k′
, p∗)

)
∈ C (i ∈ J̄ ),

where Ī := { i | Gi(x̄, p
∗) = 0 < Hi(x̄, p

∗)} and K̄ := { i | Gi(x̄, p
∗) > 0 = Hi(x̄, p

∗)}.
Since it is easy to see that {xk−xk′

tk
} is bounded, we assume without loss of generality

that xk−xk′

tk
→ x′ and then xk = xk

′
+ tkx

′ + o1(tk), where
o1(t)

t → 0 as t→ 0. Thus,
we have

∇gi(x̄, p∗)T
(
x′

dp

)
≤ 0 (i ∈ Īg), ∇hi(x̄, p∗)T

(
x′

dp

)
= 0 (i = 1, . . . ,m2),

∇Gi(x̄, p
∗)T

(
x′

dp

)
= 0 (i ∈ Ī), ∇Hi(x̄, p

∗)T
(

x′

dp

)
= 0 (i ∈ K̄),(

∇xGi(x̄, p
∗)T

(
x′

dp

)
,∇xHi(x̄, p

∗)T
(
x′

dp

))
∈ C,
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which indicates that

x′ ∈ L(x̄, p∗; dp).(3.15)

Moreover, since xk
′ ∈ X (p∗), we have

D+V(p∗; dp) = lim
k→∞

V(pk)− V(p∗)
tk

≥ lim
k→∞

f(xk, pk)− f(xk′
, p∗)

tk

= lim
k→∞

f(xk
′
+ tkx

′ + o1(tk), p
k)− f(xk′

, p∗)
tk

= ∇f(x̄, p∗)T
(
x′

dp

)
.

Therefore, it follows from (3.14) and (3.15) that

D+V(p∗; dp) ≥ ∇f(x̄, p∗)T
(

x′

dp

)
≥ min

x̄∈O(p∗)
inf

x′∈L(x̄,p∗;dp)
∇f(x̄, p∗)T

(
x′

dp

)
.

This and (3.12) indicate that

DV(p∗; dp) = min
x∗∈O(p∗)

inf
dx∈L(x∗,p∗;dp)

∇f(x∗, p∗)T
(
dx
dp

)
.(3.16)

Next we consider the directional derivative of value function from the dual per-
spective. For each x∗ ∈ O(p∗), we consider the piecewise feasible region XJ defined
as in (3.9) associated with x∗ ∈ O(p∗) and let LJ (x∗, p∗; dp) be the x-projection of
the linearization cone of ghpXJ at (p∗, x∗). It is not hard to verify that

L(x∗, p∗; dp) =
⋃

J⊆J ∗
LJ (x∗, p∗; dp).(3.17)

Since X (p) =
⋃

J⊆J ∗ XJ (p) around (x∗, p∗), x∗ is an optimal solution for each piece-
wise problem. Moreover, by the MPEC-RCR regularity assumption, the RCR regu-
larity holds at x∗ ∈ XJ (p∗) and hence BJ (x∗, p∗) �= ∅ for each J ⊆ J ∗ (see, e.g., [19,
Theorem 1]). It follows from (3.17) and the duality theorem in linear programming
that for each x∗ ∈ O(p∗),

inf
dx∈L(x∗,p∗;dp)

∇f(x∗, p∗)T
(
dx
dp

)

= min
J⊆J ∗

min
dx∈LJ (x∗,p∗;dp)

∇f(x∗, p∗)T
(
dx
dp

)
= min

J⊆J ∗
max

(λ,μ,u,v)∈BJ (x∗,p∗)
∇pL

1(x∗, p∗;λ, μ, u, v)T dp.(3.18)

Therefore, we have from (3.16) and (3.18) that

DV(p∗; dp) = min
x∗∈O(p∗)

min
dx∈L(x∗,p∗;dp)

∇f(x∗, p∗)T
(
dx
dp

)
= min

x∗∈O(p∗)
min

J⊆J ∗
max

(λ,μ,u,v)∈BJ (x∗,p∗)
∇pL

1(x∗, p∗;λ, μ, u, v)Tdp.

The proof is complete.
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The requirement dp ∈ ∩x∗∈O(p∗)domD+XT (x
∗, p∗; ·) in Theorem 3.9 restricts the

range of the differentiable directions. We next investigate how to expand the range.
To this end, we need the following lemma. The result extends the metric regularity
result from the case of additive perturbation, i.e., when F (x, p) := F (x)− p (see, e.g.,
[27, Example 9.44]), to the case of nonadditive perturbation.

Lemma 3.10 (see [9, Lemma 3.1]). If the MPEC-NNAMCQ holds at x∗ ∈ X (p∗),
i.e., {

∇xF (x
∗, p∗)y = 0,

y ∈ NΛ(F (x
∗, p∗)) =⇒ y = 0,

then there exist δ > 0 and κ > 0 such that

dist(x,X (p)) ≤ κ dist(F (x, p),Λ) ∀x ∈ Bδ(x∗), ∀p ∈ Bδ(p∗).

Theorem 3.11. Assume that the restricted inf-compactness holds around p∗.
Suppose further that the MPEC-RCR regularity and the MPEC-NNAMCQ hold at
each x∗ ∈ O(p∗). Then the value function V is directionally differentiable at p = p∗

in every direction dp ∈ �n2 and the formula (3.10) holds.
Proof. From the proof of Theorem 3.9, we know that the requirement

dp ∈ ∩x∗∈O(p∗)domD+XT (x
∗, p∗; ·)

is to ensure that D+XT (x
∗, p∗; dp) �= ∅ for each x∗ ∈ O(p∗) and then to make use of

the fact that D+X (x∗, p∗; dp) = L(x∗, p∗; dp). Since the MPEC-NNAMCQ holds, we
get from Lemmas 3.3 and 3.10 that

D+X (x∗, p∗; dp) = L(x∗, p∗; dp) ∀dp ∈ �n2 .

Moreover, it follows from [27, Exercise 6.39] that

∇xF (x
∗, p∗)T�n1 + TΛ(F (x∗, p∗)) = �m1+m2+2m.

This implies that for any given dp, there exists dx such that

∇xF (x
∗, p∗)Tdx +∇pF (x

∗, p∗)T dp ∈ TΛ(F (x∗, p∗)).

That is to say, L(x∗, p∗; dp) �= ∅. Thus, the desired result is obtained easily from the
proof of Theorem 3.9.

Formula (3.10) has an explicit combinatorial construction corresponding to com-
plementarity constraints. Obviously, M1

S(x
∗, p∗) ⊆ BJ (x∗, p∗) for each J ⊆ J ∗.

Thus, we have the following lower estimate for the directional derivative:

min
x∗∈O(p∗)

max
y∈M1

S(x∗,p∗)
∇pL

1(x∗, p∗; y)Tdp ≤ DV(p∗; dp).

We next give a result which relieves the combinatorial aspects under the MPEC-
LICQ.

Corollary 3.12. Assume that the restricted inf-compactness holds around p∗.
Let the MPEC-LICQ hold at each x∗ ∈ O(p∗). Then the value function is directionally
differentiable at p = p∗ in every direction dp ∈ �n2 and

DV(p∗; dp) = min
x∗∈O(p∗)

∇pL
1(x∗, p∗;λ, μ, u, v)T dp,

where (λ, μ, u, v) is the unique S-multiplier vector at x∗ ∈ X (p∗).
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Proof. It is not difficult to see that the MPEC-LICQ implies the MPEC-RCR
regularity and MPEC-NNAMCQ. Thus, (3.10) holds. Moreover, since the MPEC-
LICQ holds at x∗ ∈ O(p∗), it is easy to get that BJ (x∗, p∗) = {(λ, μ, u, v)} for each
J ⊆ J ∗ (see [28, Theorem 4]), where (λ, μ, u, v) is actually the unique S-multiplier.
The proof is complete.

Corollary 3.12 is similar to [11, Theorem 2], which requires the MPEC-LICQ and
the following inf-compactness assumption.

Definition 3.13. We say that inf-compactness holds for (MPECp) around p∗ if
there exist two positive numbers {α, δ} and a bounded set S such that α > V(p∗) and

{x ∈ X (p) | f(x, p) ≤ α, p ∈ Bδ(p∗)} ⊆ S.

It is not difficult to verify that the inf-compactness in Definition 3.13 is stronger
than the restricted inf-compactness in Definition 3.8. In fact, we can show that the
inf-compactness and the MPEC-LICQ imply the nonemptiness and uniform compact-
ness of O(p) around p∗. In the following, we compare the inf-compactness with the
nonemptiness and uniform compactness of O(p).

Theorem 3.14. Let x∗ ∈ O(p∗). The MPEC-LICQ at x∗ and the inf-compactness
around p∗ imply the nonemptiness and uniform compactness of O(p) around p∗. Con-
versely, if there exists a sequence pk → p∗ such that V(pk) ↓ V(p∗), then the nonempti-
ness and uniform compactness of O(p) around p∗ imply the inf-compactness around
p∗.

Proof. First, we observe that, by the continuity of the objective function f , if
∅ �= {x ∈ X (p) | f(x, p) ≤ β} ⊆ Δ, then the solution set

∅ �= O(p) ⊆ {x ∈ X (p) | f(x, p) ≤ β} ⊆ Δ.

Thus, to show the first part, by the inf-compactness around p∗, it suffices to show
that there exists δ0 ∈ (0, δ] such that the set {x ∈ X (p) | f(x, p) ≤ α} �= ∅ for each
p ∈ Bδ0(p∗), where α and δ are defined as in Definition 3.13. We now show that,
under the MPEC-LICQ, the set {x ∈ X (p) | f(x, p) ≤ α} �= ∅ for each p ∈ Bδ0(p∗).
Consider the system {

g(x, p) ≤ 0, h(x, p) = 0,
GI∗∪J ∗(x, p) = 0, HK∗∪J ∗(x, p) = 0.

(3.19)

Since the MPEC-LICQ holds at x∗ for p = p∗, by the implicit function theorem, there
exist neighborhoods V1 and V2 of p∗ and x∗, respectively, and a smooth function
x(·) : V1 → V2 such that x(p∗) = x∗ and x(p) satisfies the above system (3.19).
Then, it is easy to see that x(p) ∈ X (p) and f(x(p), p) → f(x∗, p∗) < α as p → p∗.
Thus, there exists δ0 ∈ (0, δ] such that, for each fixed p ∈ Bδ0(p∗), the set
{x ∈ X (p) | f(x, p) ≤ α} is nonempty. Consequently, the nonemptiness and bound-
edness assumption holds.

We next show the converse part. Assume to the contrary that the inf-compactness
does not hold. That is, for each αk ↓ V(p∗), there exist pk → p∗ and xk ∈ X (pk) such
that f(xk, pk) ≤ αk and ‖xk‖ → ∞ as k →∞. By the assumption, we let αk = V(pk)
and, by the nonemptiness and boundedness assumption, we let xk ∈ X (pk) such
that f(xk, pk) = αk and {xk} is bounded, which gives a contradiction. The proof is
complete.

We next give an example to show that the assumption of the second part of The-
orem 3.14 is necessary even for nonlinear programs and then show that Corollary 3.12
may be applied to more cases than [11, Theorem 2].
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Fig. 1. Example 3.15.

Example 3.15. Consider the problem

min
x

f(x, p) := f(x)− p2

s.t. x+ 1 ≥ 0,

where

f(x) :=

{
−x2 + 1 if x ≤ 0

e−x2

if x ≥ 0

(see Figure 1). Clearly, f is C1 in x. Moreover for each p, the LICQ holds at the
unique optimal solution x∗ = −1. Thus, the nonemptiness and uniform compactness
condition holds. However, the optimal value function V(p) = −p2 is increasing as
p→ 0 and hence the assumption of the second part of Theorem 3.14 fails. Moreover,
it is easy to see that, for any α > V(0), the α-level set of f(x, p) is unbounded for any
p and hence the inf-compactness around p∗ = 0 does not hold. Thus, [11, Theorem 2]
fails to be applied to this situation but by Corollary 3.12, we can have the directional
differentiability of the value function.

Theorem 3.14 and Example 3.15 show that the nonemptiness and uniform com-
pactness of the optimal solution mapping and the MPEC-LICQ are strictly weaker
than the inf-compactness and the MPEC-LICQ. Moreover, it is easy to see that the
restricted inf-compactness is strictly weaker than the nonemptiness and uniform com-
pactness of the optimal solution mapping. Therefore, Corollary 3.12 improves [11,
Theorem 2].

In the rest of this section, we study the differentiability of the localized optimal
value function. The following definition and lemmas will be useful.

Definition 3.16 (see [8]). We say that the S-multiplier refined second-order
sufficient condition (S-RSOSC) holds at x∗ ∈ X (p∗) if, for every d ∈ C(x∗, p∗)\{0},
there exist r ≥ 0 and y∗ ∈Mr

S(x
∗, p∗) such that

dT∇2
xL r(x∗, p∗; y∗)d > 0,

where C(x∗, p∗) := L(x∗, p∗) ∩ {d | ∇xf(x
∗, p∗)T d ≤ 0}.
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Lemma 3.17 (see [8]). Let x∗ ∈ X (p∗). If the S-RSOSC holds at x∗, then x∗

satisfies the second-order growth condition, i.e., there exist δ > 0 and c > 0 such that

f(x, p∗) ≥ f(x∗, p∗) + c‖x− x∗‖2 ∀x ∈ X (p∗) ∩ Bδ(x∗).

Lemma 3.18 (see [9]). Let x∗ ∈ X (p∗) be an M-stationary point of (MPECp∗ ).
Suppose that the MPEC relaxed constant positive linear dependence (MPEC-RCPLD)
and the second-order growth condition hold at x∗. Then there exists a neighborhood
V of x∗ containing no other M-stationary points of (MPECp∗ ).

The MPEC-RCPLD, which was introduced in [8] and was shown to be a constraint
qualification for M-stationarity in [7], is weaker than the MPEC relaxed constant rank
constraint qualificiation (MPEC-RCRCQ) and MPEC-NNAMCQ.

From Lemmas 3.17–3.18, we have the following result immediately.
Theorem 3.19. Let x∗ ∈ X (p∗). Suppose that the MPEC-NNAMCQ and S-

RSOSC hold at x∗. Then there exists δ0 > 0 such that the localized MPEC

min
x

f(x, p)(3.20)

s.t. x ∈ X (p), ‖x− x∗‖2 ≤ δ0,

has a uniquely and globally optimal solution x∗ for p = p∗. Furthermore, there exists
δ̄ > 0 such that the set of globally optimal solutions of (3.20) is nonempty and is
contained in B̄√δ0

(x∗) for each p ∈ Bδ̄(p∗).
Proof. Since the S-RSOSC holds at x∗, by Lemma 3.17, there exists δ1 > 0 such

that x∗ is a global minimizer of (MPECp∗) over B̄δ1(x∗). Since the MPEC-NNAMCQ
persists under small perturbations, there exists δ2 ∈ (0, δ1] such that the MPEC-
NNAMCQ holds over B̄δ2(x∗) ∩ X (p). By Lemma 3.18, we pick δ0 ∈ (0, δ2/2] such
that there is no other M-stationary points over B̄δ0(x∗). If problem (3.20) has another
minimizer x0 �= x∗ when p = p∗, then f(x0) = f(x∗). Thus, x0 is a global minimizer
of (MPECp) over B̄δ1(x∗) and by δ0 ≤ δ1

2 , it is easy to see that x0 is a local minimizer
of (MPECp∗), which implies that it is an M-stationary point by the fact that the
MPEC-NNAMCQ implies that any local minimizer is an M-stationary point. Thus,
problem (3.20) has a uniquely and globally optimal solution x∗ for p = p∗. Since the
MPEC-NNAMCQ holds at x∗, it follows from Lemma 3.10 that there exist κ > 0 and
δ > 0 such that, for each p ∈ Bδ(p∗),

dist(x∗,X (p)) ≤ κ dist(F (x∗, p),Λ)
≤ κ‖F (x∗, p)− F (x∗, p∗)‖.

It follows from the continuity of F in p and the last inequality that there exists
δ̄ > 0 such that, for each p ∈ Bδ̄(p∗), dist(x∗,X (p) ≤ δ0. Thus, the feasible region of
problem (3.20) is nonempty and hence the desired result is obtained. The proof is com-
plete.

We denote by W and O the value function and the optimal solution mapping
of problem (3.20), respectively. Note that x∗ is the uniquely and globally optimal
solution of (3.20) for p = p∗ and the constraint ‖x − x∗‖2 ≤ δ0 is not active at x∗.
By Corollary 3.12 and Theorem 3.19, we have the following result immediately. Since
the MPEC strong second order sufficient condition (MPEC-SSOSC) in the sense of
[11] is much stronger than the S-SROSC as the critical cone in [11] is much bigger,
the following result improves [11, Theorem 1].
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Corollary 3.20. Suppose that the MPEC-LICQ and S-RSOSC hold at x∗ ∈
X (p∗). Then W is differentiable at p = p∗ and

∇W(p∗) = ∇pL
1(x∗, p∗;λ, μ, u, v),

where (λ, μ, u, v) is the unique S-multiplier vector at x∗ ∈ X (p∗).
Proof. It follows from Theorem 3.19 that O(p∗) = {x∗} and the restricted inf-

compactness holds. Since the constraint ‖x−x∗‖2 ≤ δ0 is not active at x∗, the MPEC-
LICQ holds at x∗ for (3.20). Thus, we have the desired result from Corollary 3.12
immediately.

From Corollary 3.20, we have the following result, which means that the S-
multipliers are actually the shadow prices as in NLP.

Corollary 3.21. Let

X (p) := {x | g(x) + pg ≤ 0, h(x) + ph = 0, 0 ≤ G(x) + pG ⊥ H(x) + pH ≥ 0}

and f(x, p) := f(x). Assume that the MPEC-LICQ and S-RSOSC hold at x∗ ∈ X (p∗).
Then we have

∇W(p∗) = (λ, μ,−u,−v),

where (λ, μ, u, v) is the unique S-multiplier vector at x∗ ∈ X (p∗).

4. Subdifferential of the value function. For (MPECp), Lucet and Ye [15,
16] gave upper estimates for the singular subdifferential and limiting subdifferential
of the value function by C-, M-, and S-multipliers under the conditions that the
growth condition and some normality conditions hold. In this section, we obtain some
sharper upper estimates for the singular subdifferential and the limiting subdifferential
of the value function for (MPECp) based on the enhanced Fritz John condition for
MPECs under the weaker conditions that the restricted inf-compactness and some
quasi-normality conditions hold. For the sake of simplicity, we denote

∂xL r(x, p;λ, μ, u, v) := r∂xf(x, p) +

m1∑
i=1

λi∂xgi(x, p) +

m2∑
j=1

∂x(μjhj)(x, p)

+

m∑
l=1

∂x(ulGl)(x, p) +

m∑
l=1

∂x(vlHl)(x, p).

Note that the limiting subdifferential of L r at (x, p, λ, μ, u, v) with respect to x is not
equal to the right-hand side of the above equation and, for simplicity, we use all plus
signs in the formula above in contrast with the standard MPEC Lagrangian function.
Moreover, in this section, we assume that all the involved functions {f, g, h,G,H} are
only Lipschitzian around the point of interest.

4.1. Subdifferential via enhanced M-multipliers. Let us first give the en-
hanced Fritz John-type M-stationary condition for (MPECp∗). In fact, Kanzow and
Schwartz [14, Theorem 3.1] have presented the smooth enhanced Fritz John-type M-
stationary condition. In the following, we show that, for the nonsmooth case, any
local minimizer for MPEC is also an enhanced Fritz John-type M-stationary point.

An enhanced Fritz John optimality condition is given for a very general mathe-
matical program with geometric constraints in Banach spaces in [10, Theorem 3.1 and
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Corollaries 3.1–3.2]. We next specialize this result to MPEC. By means of (3.3)–(3.4),
(MPECp) can be rewritten as the more compact form

min
x∈C

f(x, p)(4.1)

s.t. F (x, p) ∈ Λ.

Since problem (4.1) is the problem of the form considered in [10], we can specialize
[10, Corollary 3.3] to problem (4.1).

Theorem 4.1. Let x∗ ∈ X (p∗) be a local minimizer of (MPECp∗). Then there
exists 0 �= (r, λ∗, μ∗, u∗, v∗) with r ≥ 0 such that

(1) 0 ∈ ∂xL r(x∗, p∗;λ∗, μ∗, u∗, v∗) + NC(x∗), λ∗ ≥ 0, λ∗i = 0 (i /∈ I∗g ), u
∗
i =

0 (i ∈ K∗), v∗i = 0 (i ∈ I∗), u∗i v∗i = 0 or u∗i < 0, v∗i < 0 (i ∈ J ∗);
(2) there exists a sequence {xk} ⊂ C converging to x∗ such that, for each k,

λ∗i > 0 =⇒ λ∗i gi(x
k, p∗) > 0, μ∗

i > 0 =⇒ μihi(x
k, p∗) > 0,

u∗i �= 0 =⇒ u∗iGi(x
k, p∗) > 0, v∗i �= 0,=⇒ v∗iH(xk, p∗) > 0,

and {h, g,G,H} are all differentiable with respect to x at (xk, p∗).
Proof. Since x∗ is a local minimizer of (4.1) for p = p∗, by [10, Corollary 3.3], there

exist a scalar r ≥ 0 and a vector η∗, not all zero, such that the following conditions
hold, where {ei | i = 1, . . . ,m1 +m2 + 2m} is the orthogonal basis of �m1+m2+2m:

(i) 0 ∈ r∂xf(x∗, p∗) +
∑m1+m2+2m

i=1 ∂x〈η∗, ei〉〈F, ei〉(x∗, p∗) +NC(x∗);
(ii) η∗ ∈ NΛ(F (x

∗, p∗));
(iii) there exists a sequence {(xk, yk, ηk)} ⊂ C × Λ × �m1+m2+2m converging to

(x∗, F (x∗), η∗) such that, for all k,

f(xk, p∗) < f(x∗, p∗),
ηk ∈ NΛ(y

k),(4.2)

〈η∗, ei〉 �= 0 =⇒ 〈η∗, ei〉〈F (xk, p∗)− yk, ei〉 > 0.(4.3)

Let η := (λ, μ, u, v) and y := (y1, y2, y3, y4) with appropriate dimensional components
corresponding to (f, h,G,H). By the explicit expression of limiting normal cone NΛ

(see, e.g., [9, Proposition 5.1]), we have (1) immediately. We next show (2). It follows
from (iii) that {xk} ⊆ C, {y1,k} ⊆ �m1− , {y2,k} = {0}m2, {(y3,k, y4,k)} ⊆ Cm, and

λ∗i > 0 =⇒ λ∗i (gi(x
k, p∗)− y1,ki ) > 0, μ∗

i > 0 =⇒ μ∗
i (hi(x

k, p∗)− y2,ki ) > 0,(4.4)

u∗i �= 0 =⇒ u∗i (Gi(x
k, p∗)− y3,ki ) > 0, v∗i �= 0,=⇒ v∗i (H(xk, p∗)− y4,ki ) > 0.(4.5)

Next, we show that, for each sufficiently large k, {y1,ki , y2,ki , y3,ki , y4,ki } in (4.4)–(4.5) is
equal to 0. Assume to the contrary that there exists a subsequence such that it does
not hold. We first notice that y2,k = 0. Thus, we consider the following three cases.

• If y1,ki < 0 for a subsequence K1 ⊆ {1, 2, . . .}, then N�−(y
1,k
i ) = {0} ∀k ∈

K1. Thus it follows from (4.2) that λki → λ∗i = 0 as K1 � k → ∞, which
contradicts λ∗i > 0.

• If y3,ki > 0 for a subsequenceK2 ⊆ {1, 2, . . .}, then y4,ki = 0 ∀k ∈ K2. Thus, it
follows from the explicit expression of NC that uki → u∗i = 0 as K2 � k →∞,
which contradicts u∗i �= 0.

• Similarly as above we can show that it is impossible to have y4,ki < 0, k ∈ K3

for some subsequence K3 ⊆ {1, 2, . . .}.
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So far we have shown (2) except for the differentiability of {h, g,G,H} with respect
to x at (xk, p∗). By Rademacher’s theorem, if a function ψ is Lipschitzian around x∗,
then ψ is differentiable almost everywhere around x∗. Based on this fact, if xk → x∗

and ψ(xk) > 0, then one can always find a sequence {x̄k} with ψ(x̄k) > 0 such that
for all k, ψ is differentiable at x̄k and ‖x̄k − xk‖ ≤ 1

k . Hence we have shown that the
sequence {x̄k} satisfies the condition (2). The proof of the theorem is complete by
resetting xk with x̄k for each k.

Definition 4.2. Given r ≥ 0 and x∗ ∈ X (p∗), we let M r
M (x∗, p∗) denote the set

of vectors (λ, μ, u, v, ζ) such that
(i) 0 ∈ ∂(x,p)L r(x∗, p∗;λ, μ, u, v)− (0, ζ) +NC(x∗)× {0};
(ii) λ ≥ 0, λi = 0 (i /∈ I∗g ), ui = 0 (i ∈ K∗), vi = 0 (i ∈ I∗), uivi = 0 or ui <

0, vi < 0 (i ∈ J ∗);
(iii) there exists a sequence {(xk, pk)} ⊆ C ×�n2 converging to (x∗, p∗) such that,

for each k,

λi > 0 =⇒ λigi(x
k, pk) > 0, μj �= 0 =⇒ μjhj(x

k, pk) > 0,

ul �= 0 =⇒ ulGl(x
k, pk) > 0, vl �= 0 =⇒ vlHl(x

k, pk) > 0,

and {h, g,G,H} are all differentiable at (xk, pk).
In order to study the subdifferential of the value function of (MPECp), the fol-

lowing constraint qualification for ghpX will be useful.
Definition 4.3. Let x∗ ∈ X (p∗). We say that the MPEC M-quasi-normality

holds at x∗ ∈ X (p∗) if (λ, μ, u, v, 0) ∈M 0
M (x∗, p∗) =⇒ (λ, μ, u, v) = {0}.

Lemma 4.4. Let x∗ ∈ O(p∗). Assume that (p∗, x∗) is MPEC M-quasi-normal for
the constraint region gphX . Then the following upper estimate holds:

∂̂V(p∗) ⊆ {ζ | (λ, μ, u, v, ζ) ∈M 1
M (x∗, p∗)}.(4.6)

Proof. Let ζ ∈ ∂̂V(p∗). Then, by the definition of the Fréchet subdifferential, for
an arbitrary ε > 0, there exists δε > 0 such that

V(p)− V(p∗) ≥ ζT (p− p∗)− ε‖p− p∗‖ ∀p ∈ Bδε(p∗).

By the definition of value function, we have f(x, p) ≥ V(p) for every x ∈ X (p) and
hence

f(x, p)− ζT (p− p∗) + ε‖p− p∗‖ ≥ f(x∗, p∗) ∀x ∈ X (p), ∀p ∈ Bδε(p∗).

Thus, (x∗, p∗) is a locally optimal solution of the optimization problem

min f(x, p)− ζT (p− p∗) + ε‖p− p∗‖
s.t. g(x, p) ≤ 0, h(x, p) = 0,

0 ≤ G(x, p) ⊥ H(x, p) ≥ 0,

(x, p) ∈ C × �n2 .

By Theorem 4.1 and the MPEC M-quasi-normality assumption, there exists a vector
(λ, μ, u, v) such that the following conditions hold:

(i) 0 ∈ ∂(x,p)L
1(x∗, p∗, λ, μ, u, v) − (0, ζ) + NC(x∗) × {0} + ε

(
0
B̄

)
, λ ≥ 0,

λi = 0 (i /∈ I∗g ), ui = 0 (i ∈ K∗), vi = 0 (i ∈ I∗), uivi = 0 or ui < 0, vi <
0 (i ∈ J ∗);
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(ii) there exists a sequence {(xk, pk)} ⊆ C ×�n2 converging to (x∗, p∗) such that,
for each k,

λi > 0 =⇒ λigi(x
k, pk) > 0, μj �= 0 =⇒ μjhj(x

k, pk) > 0,

ul �= 0 =⇒ ulGl(x
k, pk) > 0, vl �= 0 =⇒ vlHl(x

k, pk) > 0,

and {h, g,G,H} are all differentiable at (xk, pk).
The desired upper estimate follows since ε is arbitrary.

We now give a tighter estimate for the limiting subdifferential of the value function
in terms of the enhanced M-multipliers than the one given in [15, 16]. To this end,
we first give several lemmas.

The following lemma is similar to [32, Lemma 1] and [10, Proposition 6.2].
Lemma 4.5. If a vector (p∗, x∗) is MPEC M-quasi-normal for the constraint

region gphX , then there exists a neighborhood V of (p∗, x∗) such that all vectors
(p, x) ∈ gphX ∩ V are MPEC M-quasi-normal.

The following lemma can be obtained from the proof of [15, Lemma 3.4].
Lemma 4.6. Assume that ϕ : �n → � ∪ {∞} is Lipschitzian around x∗. If

uk → u∗, vk → v∗, and xk → x∗ with vk → ∂(ukϕ)(xk), then v∗ ∈ ∂(u∗ϕ)(x∗).
Theorem 4.7. Assume that the restricted inf-compactness holds for (MPECp)

around p∗. Then the value function V(p) is lower semicontinuous at p∗. Suppose
further that, for each x∗ ∈ O(p∗), (p∗, x∗) is MPEC M-quasi-normal for the constraint
region gphX . Then

∂V(p∗) ⊆
⋃

x∗∈O(p∗)

{ζ | (λ, μ, u, v, ζ) ∈M 1
M (x∗, p∗)},

∂∞V(p∗) ⊆
⋃

x∗∈O(p∗)

{ζ | (λ, μ, u, v, ζ) ∈M 0
M (x∗, p∗)}.

Proof. The lower semicontinuity follows from the restricted inf-compactness im-
mediately [3, Page 246] (see also the proof of Theorem 3.9). We complete the proof
by considering the following two cases.

(a) Let ζ ∈ ∂V(p∗). By the definition, there exist sequences pl →V p∗ and ζl → ζ

with ζl ∈ ∂̂V(pl). Since the restricted inf-compactness holds, V(p∗) is finite. Since
V(pl) → V(p∗), we have V(pl) < V(p∗) + ε0 for each sufficiently large l. By the
restricted inf-compactness again, there exists xl ∈ O(pl) for each sufficiently large l
and {xl} is bounded. Without loss of generality, we assume that xl → x∗. Since

V(p∗)← V(pl) = f(xl, pl)→ f(x∗, p∗), k →∞,

we have f(x∗, p∗) = V(p∗) and hence x∗ ∈ O(p∗). Since the MPEC M-quasi-normality
holds at (x∗, p∗) and (xl, pl)→ (x∗, p∗), by Lemma 4.5, the MPEC M-quasi-normality
holds at (xl, pl) for each sufficiently large l. Thus, it follows from Lemma 4.4 that,
for each sufficiently large l, there exists a vector (λl, μl, ul, vl) such that

(i) (0, ζl) ∈ ∂(x,p)L 1(xl, pl;λl, μl, ul, vl) +NC(xl)× {0};
(ii) λl ≥ 0, λli = 0 (i /∈ I lg), uli = 0 (i ∈ Kl), vli = 0 (i ∈ Il), ulivli = 0 or uli <

0, vli < 0 (i ∈ J l);
(iii) there exists a sequence {(xl,k, pl,k)}k converging to (xl, pl) as k → ∞ such

that

λli > 0 =⇒ λligi(x
l,k, pl,k) > 0, μl

j �= 0 =⇒ μl
jhj(x

l,k, pl,k) > 0,

ulı �= 0 =⇒ ulıGı(x
l,k, pl,k) > 0, νlj �= 0 =⇒ vljHj(x

l,k, pl,k) > 0,
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and {h, g,G,H} are all continuously differentiable at (xl,k, pl,k), where {I lg, Il,J l,Kl}
are index sets corresponding to (xl, pl). Since (p∗, x∗) is MPEC M-quasi-normal, by
using the reduction to absurdity, we can show that the sequence {(λl, μl, ul, vl)} is
bounded (see, e.g, [32, Theorem 3] or [10, Proposition 6.3]). Thus, without loss of
generality, we may assume that {(λl, μl, ul, vl)} converges to (λ, μ, u, v). Taking a
limit in (i)–(ii) above and noting that (ii) is the more compact form (λl, ul, vl) ∈
NRm1

−
(g(xl))×NCm(G(xl), H(xl)), it follows from Lemma 4.6 and the outer semicon-

tinuity of the limiting subdifferential and limiting normal cone that

(0, ζ) ∈ ∂(x,p)L 1(x∗, p∗;λ, μ, u, v) +NC(x∗)× {0},
λ ≥ 0, λi = 0 (i /∈ I∗g ), ui = 0 (i ∈ K∗), vi = 0 (i ∈ I∗),

uivi = 0 or ui < 0, vi < 0 (i ∈ J ∗).

Moreover, by the diagonal rule, we can find a sequence {(xl,kl , pl,kl)} converging to
(x∗, p∗) as l→∞ and, for all l,

λi > 0 =⇒ λigi(x
l,kl , pl,kl) > 0, μj �= 0 =⇒ μjhj(x

l,kl , pl,kl) > 0,

uı �= 0 =⇒ uıGı(x
l,kl , pl,kl) > 0, vj �= 0 =⇒ vjHj(x

l,kl , pl,kl) > 0,

and {h, g,G,H} are differentiable at (xl,kl , pl,kl). Therefore, (λ, μ, u, v, ζ) ∈M 1
M (x∗, p∗).

(b) Let ζ ∈ ∂∞V(p∗). By the definition, there exist sequences pl →V p∗, ζl ∈
∂̂V(pl), and tl ↓ 0 such that tlζ

l → ζ. Similarly as (a), for each l sufficiently large,
there exists a vector (λl, μl, ul, vl) such that (i)–(ii) hold. Multiplying (i) by tl implies

(0, tlζ
l) ∈ ∂(x,p)(tlL 1)(xl, pl;λl, μl, ul, vl) +NC(xl)× {0}.(4.7)

Since (p∗, x∗) is MPEC M-quasi-normal, by using the reduction to absurdity, we
can show that the sequence {tlλl, tlμl, tlu

l, tlv
l} is bounded (see, e.g, [32, Theo-

rem 3] or [10, Proposition 6.3]). Without loss of generality, we may assume that
{tlλl, tlμl, tlu

l, tlv
l} converges to {λ, μ, u, v}. Taking a limit in (4.7), we have from

Lemma 4.6 and the outer semiconituity of the limiting subdifferential and limiting
normal cone that

(0, ζ) ∈ ∂(x,p)L 0(x∗, p∗;λ, μ, u, v) +NC(x∗)× {0}.

The rest of the proof is similar to (a).
Corollary 4.8. Assume that the restricted inf-compactness holds for problem

(MPECp) around p
∗. Suppose that, for each x∗ ∈ O(p∗), (p∗, x∗) is MPEC M-quasi-

normal for the constraint region gphX . If⋃
x∗∈O(p∗)

{ζ | (λ, μ, u, v, ζ) ∈M 0
M (x∗, p∗)} = {0},

then the value function V is Lipschitzian around p∗ with

∅ �= ∂V(p∗) ⊆
⋃

x∗∈O(p∗)

{ζ | (λ, μ, u, v, ζ) ∈M 1
M (x∗, p∗)}.

In addition to the above assumptions, if⋃
x∗∈O(p∗)

{ζ | (λ, μ, u, v, ζ) ∈M 1
M (x∗, p∗)} = {ζ},

then V is strictly differentiable at p∗ and ∇V(p∗) = ζ.
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Proof. Since the restricted inf-compactness holds around p∗, V is lower semicon-
tinuous near p∗. Thus, it follows from Proposition 2.1 that V is Lipschitzian around
p∗. The nonemptiness of ∂V(p∗) follows from Proposition 2.2 and the strict differen-
tiability comes from Proposition 2.3.

We now consider the special case where all the functions {f, g, h,G,H} are dif-
ferentiable. In this case, Definition 4.2(i) becomes

(i)1 0 ∈ ∇xL r(x∗, p∗;λ, μ, u, v) +NC(x∗); (i)2 ζ = ∇pL r(x∗, p∗;λ, μ, u, v).
We define the set of the singular and nonsingular enhanced M-multipliers as the set
of vectors (λ, μ, u, v) satisfying (i)1 and Definition 4.2(ii)–(iii), and denote them by
Mr

M (x∗, p∗), r = 0, 1, respectively.
The following example shows that our result Theorem 4.7 is much sharper than

its M-counterpart [16, Theorem 4.4].
Example 4.9. Consider the problem

min
x

f(x) ≡ 1

s.t. g(x) := x1 + x2 + p ≤ 0,

0 ≤ G(x) := x1 + p ⊥ H(x) := x2 ≥ 0.

It is clear that the value function V(p) ≡ 1 and for p∗ = 0, the unique feasible
solution (x∗1, x∗2) = (0, 0) is the optimal solution. By solving the following singular
and nonsingular M-stationarity systems for the parametric MPEC at x∗ ∈ X (p∗),

λ

(
1
1

)
+ u

(
1
0

)
+ v

(
0
1

)
=

(
0
0

)
,

λ ≥ 0, u < 0, v < 0 or uv = 0,

we find the sets of singular and nonsingular M-multipliers

M
r(x∗, p∗) := {λ(1,−1,−1) | λ ≥ 0}, r = 0, 1.

Since the set of singular M-multipliers contains a nonzero vector, [16, Theorem 4.4] is
not applicable and one cannot even get the Lipschitz continuity of the value function.
However, for any sequence (xk, pk) → (x∗, p∗) and any multiplier λ(1,−1,−1) with
λ > 0, the following system of inequalities does not hold:

λ(xk1 + xk2 + pk) > 0, −λ(xk1 + pk) > 0, −λxk2 > 0.

Thus, the sets of enhanced singular and nonsingular M-multipliers areMr
M (x∗, p∗) =

{(0, 0, 0)} for r = 0, 1, which are contained strictly in Mr(x∗, p∗) for r = 0, 1, respec-
tively. Then the MPEC M-quasi-normality holds at x∗ ∈ X (p∗). Since

{λ+ u | (λ, u, v) ∈M0
M (x∗, p∗)} = {λ+ u | (λ, u, v) ∈M1

M (x∗, p∗)} = {0},

by Corollary 4.8, we have that the value function V is strictly differentiable with
∇V(p∗) = 0.

4.2. Subdifferential via enhanced C-multipliers. In this subsection, we
study the subdifferential of the value function in terms of the enhanced C-multipliers.
To this end, we first give the nonsmooth enhanced Fritz John-type C-stationarity
condition for MPECs.

Lemma 4.10 (see [25, Theorems 7.5 and 7.6]). Let

g(x) := max{gi(x) | i = 1, . . . ,m},
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where gi : �n → � ∪ {∞}, and I(x̄) := {i | gi(x̄) = g(x̄)}. Let gi, i = 1, . . . ,m, be
Lipschitzian around x̄. Then g is Lipschitzian around x̄ and

∂g(x̄) ⊆
⋃ ⎧⎨

⎩∂
⎛
⎝ ∑

i∈I(x̄)

λigi

⎞
⎠ (x̄) |

∑
i∈I(x̄)

λi = 1, λi ≥ 0, i ∈ I(x̄)

⎫⎬
⎭ .

Let f(x) := min{fi(x) | i = 1, . . . ,m}, where fi : �n → � ∪ {∞}, and J(x̄) :=
{i | fi(x̄) = f(x̄)}. Assume that fi is lower semicontinuous near x̄ for i ∈ J(x̄) and
lower semicontinuous at x̄ for i /∈ J(x̄). Then f is lower semicontinuous near x̄ and

∂f(x̄) ⊆
⋃
{∂fi(x̄) | i ∈ J(x̄)}.

Theorem 4.11. If x∗ is a local minimizer of (MPECp∗), then there exist nonzero
vectors (r, λ, μ, u, v) with r ≥ 0 such that

(i) 0 ∈ ∂xL r(x∗, p∗;λ, μ, u, v) +NC(x∗);
(ii) λ ≥ 0, λi = 0 (i /∈ I∗g ), ui = 0 (i ∈ K∗), vi = 0 (i ∈ I∗), uivi ≥ 0 (i ∈ J ∗);
(iii) there exists a sequence {xk} ⊆ C converging to x∗ such that, for each k,

λi > 0 =⇒ λigi(x
k, p∗) > 0,

μj �= 0 =⇒ μjhj(x
k, p∗) > 0,

ul �= 0 =⇒ ul min(Gl(x
k, p∗), Hl(x

k, p∗)) > 0,

vl �= 0 =⇒ vl min(Gl(x
k, p∗), Hl(x

k, p∗)) > 0,

and {h(·, p∗), g(·, p∗),min(Gl, Hl)(·, p∗)} are all differentiable at xk.
Proof. Since the feasible region X (p) of (MPECp) can be written as

X (p) = {x ∈ C | g(x, p) ≤ 0, h(x, p) = 0,min(G(x, p), H(x, p)) = 0},

then, by [32, Theorem 3.1] or [10, Corollary 3.4], there exist nonzero vectors (r, λ, μ, ξ)
with r ≥ 0 such that the following conditions hold:

(i) 0 ∈ r∂xf(x∗, p∗) +
∑m1

i=1 λi∂xgi(x
∗, p∗) +

∑m2

j=1 ∂x(μjhj)(x
∗, p∗)

+
∑m

l=1 ∂x(ξl min(Gl, Hl))(x
∗, p∗) +NC(x∗), λ ≥ 0, λi = 0 (i /∈ I∗g );

(ii) there exists a sequence {xk} ⊆ C converging to x∗ such that, for each k,

λi > 0 =⇒ λigi(x
k, p∗) > 0,

μj �= 0 =⇒ μjhj(x
k, p∗) > 0,

ξl �= 0 =⇒ ξl min(Gl(x
k, p∗), Hl(x

k, p∗)) > 0,

and {h(·, p∗), g(·, p∗),min(Gl, Hl)(·, p∗)} are all differentiable at xk.
We investigate ∂x(ξl min(Gl, Hl))(x

∗, p∗) in the following two cases.
(1) ξl ≥ 0: It follows from Lemma 4.10 that

∂x(ξl min(Gl, Hl))(x
∗, p∗) = ξl∂xmin(Gl, Hl)(x

∗, p∗)

⊆

⎧⎨
⎩

ξl∂xGl(x
∗, p∗), l ∈ I∗,

ξl∂xHl(x
∗, p∗), l ∈ K∗,

ξl∂xGl(x
∗, p∗) ∪ ξl∂xHl(x

∗, p∗), l ∈ J ∗.
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(2) ξl < 0: It follows from Lemma 4.10 that

∂x(ξl min(Gl, Hl))(x
∗, p∗)

= ∂xmax(ξlGl, ξlHl)(x
∗, p∗)

⊆

⎧⎨
⎩

∂x(ξlGl)(x
∗, p∗), l ∈ I∗,

∂x(ξlHl)(x
∗, p∗), l ∈ K∗,

{∂x(αξlGl)(x
∗, p∗) + ∂x((1 − α)ξlHl)(x

∗, p∗) | 0 ≤ α ≤ 1}, l ∈ J ∗.

Therefore, by defining the multipliers {u, v} using {ξ, α}, the desired result follows
from (i)–(ii) and (1)–(2) immediately.

Remark 4.12. In the above theorem, all the nonsmooth functions are required to
be differentiable at a given sequence in our nonsmooth enhanced optimality conditions
in contrast to the required proximal subdifferentiability at a given sequence in [32,
Theorem 1]. Because all the involved functions are required to be Lipschitzian around
the point of interest, by Rademacher’s theorem instead of the density theorem in [4,
Theorem 3.1], the proximal subdifferentiability in [32, Theorem 1] can be replaced by
the differentiability.

Definition 4.13. Given r ≥ 0, we let M r
C(x

∗, p∗) denote the set of vectors
(λ, μ, u, v, ζ) at x∗ ∈ X (p∗) such that

(i) 0 ∈ ∂(x,p)L r(x∗, p∗, λ, μ, u, v)− (0, ζ) +NC(x∗)× {0};
(ii) λ ≥ 0, λi = 0 (i /∈ I∗g ), ui = 0 (i ∈ K∗), vi = 0 (i ∈ I∗), uivi ≥ 0 (i ∈ J ∗);
(iii) there exists a sequence {(xk, pk)} ⊆ C ×�n2 converging to (x∗, p∗) such that,

for each k,

λi > 0 =⇒ λigi(x
k, pk) > 0,

μj �= 0 =⇒ μjhj(x
k, pk) > 0,

ul �= 0 =⇒ ul min(Gl(x
k, pk), Hl(x

k, pk)) > 0,

vl �= 0 =⇒ vl min(Gl(x
k, pk), Hl(x

k, pk)) > 0,

and {h, g,min(Gl, Hl)} are all differentiable at (xk, pk).
Definition 4.14. We say that the MPEC C-quasi-normality holds at (p∗, x∗)

for the region gphX if (λ, μ, u, v, 0) ∈M 0
C(x

∗, p∗) =⇒ (λ, μ, u, v) = 0.
It is not difficult to verify that the MPEC C-quasi-normality persists in some

feasible neighborhood.
Similarly to the previous subsection, we can easily get the following results.
Theorem 4.15. Assume that the restricted inf-compactness holds for (MPECp)

around p∗. Then the value function V(p) is lower semicontinuous at p∗. Suppose
further that, for each x∗ ∈ O(p∗), (p∗, x∗) is MPEC C-quasi-normal for the constraint
region gphX . Then

∂V(p∗) ⊆
⋃

x∗∈O(p∗)

{ζ | (λ, μ, u, v, ζ) ∈M 1
C(x

∗, p∗)},

∂∞V(p∗) ⊆
⋃

x∗∈O(p∗)

{ζ | (λ, u, v, ζ) ∈M 0
C(x

∗, p∗)}.

Corollary 4.16. Assume that the restricted inf-compactness holds for problem
(MPECp) around p∗. Suppose that, for each x∗ ∈ O(p∗), (p∗, x∗) is MPEC C-quasi-
normal for the constraint region gphX . If⋃

x∗∈O(p∗)

{ζ | (λ, μ, u, v, ζ) ∈M 0
C(x

∗, p∗)} = {0},
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then the value function V is Lipschitzian around p∗ with

∅ �= ∂V(p∗) ⊆
⋃

x∗∈O(p∗)

{ζ | (λ, μ, u, v, ζ) ∈M 1
C(x

∗, p∗)}.

In addition to the above assumptions, if⋃
x∗∈O(p∗)

{ζ | (λ, μ, u, v, ζ) ∈M 0
C(x

∗, p∗)} = {ζ},

then V is strictly differentiable at p∗ and ∇V(p∗) = ζ.
We now consider the special case where all the functions {f, g, h,G,H} are dif-

ferentiable. In this case, Definition 4.13(i) becomes
(i)1 0 ∈ ∇xL r(x∗, p∗;λ, μ, u, v) +NC(x∗); (i)2 ζ = ∇pL r(x∗, p∗;λ, μ, u, v).

We define the set of the singular and nonsingular enhanced C-multipliers as the set
of vectors (λ, μ, u, v) satisfying (i)1 and Definition 4.13(ii)–(iii), and denote them by
Mr

C(x
∗, p∗), r = 0, 1, respectively.

The following example shows that Theorem 4.15 is much sharper than its C-
counterpart [16, Theorem 4.8].

Example 4.17. Consider the following example

min
x

f(x) := x21 + x22

s.t. g(x) := x1 + x2 + p ≥ 0,

0 ≤ G(x) := x1 + p ⊥ H(x) := x2 ≥ 0.

The value function V(p) =
{

0 p≥0

p2 p<0
is a smooth function. For p∗ = 0, the unique

optimal solution x∗ = (0, 0). By solving the following singular and nonsingular C-
stationarity systems for the parametric MPEC at x∗ ∈ X (p∗),

−λ
(

1
1

)
+ u

(
1
0

)
+ v

(
0
1

)
=

(
0
0

)
, λ ≥ 0, uv ≥ 0,

we find the sets of singular and nonsingular C-multipliers

C
i(x∗, p∗) := {(1, 1, 1)λ | λ ≥ 0}, i = 0, 1.

Since the set of singular C-multipliers contains a nonzero vector, [16, Theorem 4.8] is
not applicable and one cannot even get the Lipschitz continuity of the value function.
However, for any sequence (xk, pk)→ (x∗, p∗) and any multiplier λ(1, 1, 1) with λ > 0,
the following system of inequalities does not hold:

λ(xk1 + xk2 + pk) < 0, λmin(xk1 + pk, xk2) > 0.(4.8)

Thus, the sets of singular and nonsingular enhanced C-multipliers areMi
C(x

∗, p∗) =
{0} for i = 0, 1, which are contained strictly in Ci(x∗, p∗) for i = 0, 1, respectively.
Therefore, the MPEC C-quasi-normality holds at x∗ ∈ X (p∗). Since

{λ+ u | (λ, u, v) ∈M0
C(x

∗, p∗)} = {λ+ u | (λ, u, v) ∈M1
C(x

∗, p∗)} = {0},

by Corollary 4.16, we get that the value function is strictly differentiable at p∗ with
∇V(p∗) = 0.
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