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a b s t r a c t

We focus on the discretization approach to distributionally robust optimization (DRO) problems and
propose a numerical scheme originated from the primal–dual hybrid gradient (PDHG) method that
recently has been well studied in convex optimization area. Specifically, we consider the cases where the
ambiguity set of the discretized DRO model is defined through the moment condition and Wasserstein
metric, respectively. Moreover, we apply the PDHG to a portfolio selection problemmodelled by DRO and
verify its efficiency.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Distributionally robust optimization (DRO) can accommodate a
vast amount of noisy and incomplete data while it truthfully cap-
tures the decision maker’s attitude towards both risk and am-
biguity. The study of DRO traces back to the earlier work by
Scarf [20] which is motivated to address incomplete information
on the underlying uncertainty in supply chain and inventory con-
trol problems. Over the past few years, it has gained substantial
popularity through further contributions by, e.g., Bertsimas and
Popescu [2], Delage and Ye [4], Mehrotra and Papp [13], Wiese-
mann et al. [22,23] to just mention a few.

Different from robust optimization problems, the functional
variables in DRO problems induce more challenges on design-
ing implementable and efficient numerical schemes. In the past
decade, authors have proposed various techniques to tackle dif-
ferent DRO problems, such as the one-stage problems, mul-
tistage problems and chance-constrained problems, see, e.g.,
[4,5,11,23–25]. Most of the existing works are focused on the dual
approach whose framework can be summarized as the following
stages: consider the Lagrange dual of the inner max problem,
then reformulate the min-max problem as a min-min (combin-
ing the min-min by min) problem with semi-infinite constraints,
and finally recast the semi-infinite constraints as a linear semi-
definite constraint by S-Lemma or dual method again. Wiesemann
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et al. [24] provide a unified framework of the SDP reformulation
for DRO problems where the ambiguity set is constructed through
some probabilistic and moment constraints.

Another important approach pioneered by Pflug and Woza-
bal [16] is to discretize the ambiguity set of DROproblems and then
solve the discretized min-max optimization problem directly as a
saddle-point problem in the deterministic optimization context.
More recently, Xu et al. [26] propose two schemes to discretize
DRO problem with moment ambiguity sets, one of which is for
the dualized DRO problems and the other is directly through its
ambiguity set.

In this paper, we follow the discretization approach studied
in [12,16,26] to solve the DRO problem directly

min
x∈X

max
P∈P

EP [f (x, ξ )], (1.1)

where X is a compact convex set of Rn, f : Rn
× Rk

→ R
is a continuous function and for each fixed ξ ∈ Ξ , f (·, ξ ) is
convex in x, ξ : Ω → Ξ ⊂ Rk is a vector of random variables
defined on measurable space (Ω,F) equipped with sigma algebra
F ,P ⊆ P(Ξ ) is a convex set of probability distributions andP(Ξ )
denotes the set of all probability measures on compact setΞ .

It is known that solving a DRO problem amounts to finding a
saddle point of a min-max problem and the main challenge lies in
the fact that the inner maximization problem has functional vari-
ables. On the other hand, it is noticed that if the constraint set for
the distribution is discrete, then the DRO problem (1.1) can be re-
cast as aminimax problem in a finite Euclidean space which can be
solved bywell-studied numerical schemes in the context of saddle-
point problems. Following this thought, we suggest applying the
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discretization technique to approximate the DRO problem (1.1) in
a finite Euclidean Space, and then consider the lifting technique to
further reformulate the discretized DRO problem as a saddle-point
problem with certain separable structure. Then, we implement
the primal–dual hybrid gradient (PDGH), which traces back to [1]
and has gained popularity particularly in the image processing
area recently since the work [29] and then [3,9,10,17,27], to the
reformulated saddle-point problem.

Throughout this paper, we use the following notation. Let
d(x, A) := infx′∈A

x − x′
 the distance from a point x to the set

A. For two sets C and A, D(C,A) := supx∈Cd(x,A), denotes the
deviation of C from A and H(C,A) := max{D(C,A),D(A, C)}
denotes the Hausdorff distance between A and C. Finally, for a
sequence of subsets {Ck}, we follow the notation [19] by using
lim supk→+∞Ck to denote its outer limit, that is, lim supk→+∞Ck =

{x : lim infk→+∞d(x, Ck) = 0}.
All the proofs are relegated to the appendix in the electronic

companion (available at http://www.optimization-online.org/DB_
HTML/2017/10/6238.html).

2. Description of the algorithm

In this section, we describe the discretization approach to the
DRO problem (1.1) and then specify the implementation of the
PDHG to the saddle-point problem reformulated by the discretized
DRO problem. Results in this section will be frequently used
throughout this note.

2.1. Discretization approach to DRO problems

The discretization approach means the DRO problem (1.1) is
approximated by a min-max point problem in a finite Euclidean
space, with the ambiguity set P replaced by a set of discrete
distributions. This kind of research is in line with the standard
approach in stochastic programming [14]. To streamline the idea
of the discretization approach, letΞN be a discrete subset ofΞ and
P(ΞN ) denote the set of all probability distributions with support
set contained inΞN . By restricting the ambiguity set P on P(ΞN ),
we have an approximation problem of (1.1):

min
x∈X

max
P∈PN

EP [f (x, ξ )], (2.1)

wherePN := P∩P(ΞN ). Compared to problem (1.1), the problem
(2.1) is a standard min-max problem in a finite dimensional space
and hence usually is easier to be tackled.

We first study some conditions under which it becomes rea-
sonable to approximate the true problem (1.1) via the discretized
problem (2.1).

Theorem 2.1. Let (xN , PN ) be a solution point of the discretized DRO
problem (2.1). Suppose that {PN} converges to P weakly. Then any
accumulation point of the sequence {(xN , PN )} is a solution point of
the true DRO problem (1.1).

2.2. PDHG for saddle-point problems

Saddle-point problems arise in a wide range of areas; and they
are mathematical models of some very important applications
in scientific computing, economics, game theory, and so on. The
literature is too voluminous to list and we just mention very few
works that are the most relevant to the application to the specific
saddle-point problem (2.1). For our purpose, it suffices to discuss
the specific saddle-point problem:

min
s∈S

max
w∈W

⟨s, w⟩. (2.2)

Here we focus on the case that S ⊂ Rm and W ⊂ Rn are
compact convex sets, which ensure problem (2.2) has a saddle-
point [18, Corollary 37.6.2]. We shall specify the sets S andW later
for different ways of forming the ambiguity set of distributions for
the discretized DRO problem (2.1).

For the development on numerical schemes for various saddle-
point problems, there is a vast set of literature. Among them
are primal–dual type methods which originate from the so-called
Uzawa method in [1] and have been well studied in various con-
texts since thework [29]. For simplicity, we justmention the PDHG
method proposed in [3] which was further explained in [10] as
an application of the proximal point algorithm. Other variants of
the PDHG method in, e.g., [8,10,17], are also applicable, but we do
not discuss them in this short paper. More precisely, if the PDHG
method in [3] is applied to the saddle-point problem (2.2), the
iteration scheme reads as the following.

Algorithm 2.1 PDHG method for problem. (2.2)
Require: s0 ∈ Rm, w0 ∈ Rn, ϵ > 0, τ > 0, σ > 0 and στ < 1 for
k = 0, 1, 2, . . . do⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŝk+1 = sk − τ wk

sk+1 = argmin
s∈S

{
1
2τ

∥s − ŝk+1∥
2
}

s̄k+1 = 2sk+1 − sk
ŵk+1 = wk + σ s̄k+1

wk+1 = argmin
w∈W

{
1
2σ

∥w − ŵk+1∥
2
}

ifmax(∥sk+1 − sk∥, ∥wk+1 − wk∥) ≤ ϵ then
Break.

end
end

Certainly, Algorithm 2.1 generates an iterative sequence and
thus by implementing Algorithm 2.1 we can only numerically
obtain an approximate solution to the saddle-point problem (2.2)
subject to certain tolerance. This means only an approximate
solution to the discretized DRO problem (2.1) can be obtained
numerically via certain numerical schemes. To investigate the ap-
proximation of the discretized DRO problem (2.1) to the true DRO
problem (1.1) via implementing Algorithm 2.1 , we introduce the
concept of an ϵN -solution point as follows: (xN , PN ) is said to be an
ϵN -solution point of (2.1) if it satisfies

max
P∈PN

⟨P, f (xN , ξ )⟩ − ϵN ≤ ⟨PN , f (xN , ξ )⟩

≤ min
x∈X

⟨PN , f (x, ξ )⟩ + ϵN , (2.3)

where ϵN > 0 denotes the tolerance which can be well controlled
by a numerical scheme with provable convergence such as Algo-
rithm 2.1 . Indeed, Theorem 2.1 is sill true if ϵN ↓ 0.

Theorem 2.2. Let ϵN ↓ 0 and (xN , PN ) be an ϵN -solution point of
the discretized DRO problem (2.1). Suppose that {PN} converges to P
weakly. Then any accumulation point of the sequence {(xN , PN )} is a
solution point of the true DRO problem (1.1).

Note that the convergence of Algorithm 2.1 (see, e.g., [3,10]) en-
sures that an approximate solution to the discretized DRO problem
(2.1) with an accuracy of ϵN satisfying ϵN ↓ 0 can be obtained.
Hence, based on Theorem 2.2, the approximation of the discretized
DRO problem (2.1) via numerically implementing Algorithm 2.1 to
the true DRO problem (1.1) is justified, in terms of the optimality
of both the solution points and objective function values.

3. DRO with moment ambiguity set

There are different approaches to forming the ambiguity set of
distributions for the DRO problem (1.1); the moment condition is
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one of the most popular ways. In this section, we specify the am-
biguity set in the discretized DRO problem (2.1) with the moment
condition and propose a reformulation of the discretized problem
that turns out to fit the saddle-point problem (2.2). The rationale
of using the reformulated discretized model is also justified. More
specifically, we consider the problem (1.1) where P is constructed
as follows:

P :=
{
P ∈ P(Ξ ) :EP [ψi(ξ )] ≤ 0, for i = 1, . . . , k

}
, (3.1)

where ψi : Ξ → Rni , i = 1, . . . , k, is a vector with measurable
random components, and P(Ξ ) denotes the set of all probability
distributions over space (Ξ ,F). Then we may rewrite problem
(1.1) as:

min
x∈X

max
P∈P(Ξ )

⟨P, f (x, ξ )⟩ (3.2)

s.t. ⟨P, ψi(ξ )⟩ ≤ 0, i = 1, . . . , k.

Let us denote ΞN
:= {ξ̂1, . . . , ξ̂N} and restrict the ambiguity set P

in (3.1) to P(ΞN ), that is PN := P ∩ P(ΞN ). Consequently, the
discrete approximation problem is:

min
x∈X

max
p≥0

⟨p, F (x)⟩

s.t. ⟨p, 1⟩ = 1,
⟨p,Ψi⟩ ≤ 0, i = 1, . . . , k,

(3.3)

where 1 denotes the vector with each component being 1, and

F (x) = (f (x, ξ̂1), . . . , f (x, ξ̂N ))T , (3.4)

Ψi = (ψi(ξ̂1), . . . , ψi(ξ̂N ))T . (3.5)

If F is a linear function, then the objective function in problem
(3.3) is bilinear and problem (3.3) fits the saddle-point problem
(2.2) and Algorithm 2.1 is applicable. For other cases, we use the
lifting technique to recast the objective function in problem (3.3):
by introducing an auxiliary variable t := (t1, . . . , tN )T , the problem
(3.3) can be rewritten as

min
x∈X,t

max
P∈RN

+

⟨p, t⟩

s.t. ⟨P, 1⟩ = 1,
⟨P,Ψi⟩ ≤ 0, i = 1, . . . , k,
f (x, ξ̂i) ≤ ti, i = 1, . . . ,N.

(3.6)

As for any fixed ξ ∈ Ξ , f (·, ξ ) is a convex function, problem (3.6)
turns out to be a special case of the saddle-point problem (2.2)with

S :=

{
(x, t) :

{
x ∈ X, |ti| ≤ tmax

f (x, ξ̂i) ≤ ti, i = 1, . . . ,N,

}
;

W :=

{
P ∈ RN

+
:

{
⟨P, 1⟩ = 1;
⟨P,Ψi⟩ ≤ 0, i = 1, . . . , k

}
,

thusAlgorithm2.1 is applicable,where tmax := maxx∈X,ξ∈Ξ |f (x, ξ )|.
The next theorem justifies that it is reasonable to solve the

reformulated problem (3.6) to pursue a solution point of the prob-
lem (3.3).

Theorem 3.1. Let (x∗, t∗, P∗) be a solution to problem (3.6). Then
(x∗, P∗) is a solution point to problem (3.3). Conversely, let (x∗, P∗)
be a solution to problem (3.3). Then (x∗, t∗, P∗) with t∗ := F (x∗) is a
solution to problem (3.6).

As presented in Theorem 2.1, if the approximate ambiguity set
{PN} converges to P weakly, a solution point to the approximation
problem (3.3) converges to a solution point to the true DRO prob-
lem (1.1). The next proposition provides a sufficient condition to
ensure the convergence of the ambiguity set {PN} to P as N tends
to infinity.

Proposition 3.1 ([26, Corollary 4.1]). Assume: (a)H(ΞN ,Ξ ) → 0 as
N tends to infinity, (b) the Slater condition holds, that is, there exists
P0 ∈ P(Ξ ) such that ⟨P0, ψi(ξ )⟩ < 0, i = 1, . . . , k. Then {PN}

converges to P weakly.

Together with Theorems 2.1 and 3.1, Proposition 3.1 ensures
that the sequence of optimal solutions to the problem (3.6) con-
verges to an optimal solution to the DRO problem (3.2) as N tends
to infinity. Indeed, we may present the quantitative convergence
of optimal values and optimal solutions by employing the stability
results in [12, Theorem 13].

Theorem 3.2. Let ϑ and ϑN denote the optimal values of problems
(3.6) and (3.2), (xN , tN , PN ) and (x∗, P∗) be the corresponding optimal
solutions. Assume that (a) P satisfies the Slater condition; (b) for each
fixed x, there exists a positive constant L independent of x such that
|f (x, ξ ′)−f (x, ξ ′′)| ≤ L∥ξ ′

−ξ ′′
∥. Then, there exists a positive constant

C1 such that |ϑ − ϑN | ≤ C1H(ΞN ,Ξ ). If additionally EP∗ [f (·, ξ )]
satisfies the growth condition at point x∗, that is, there exists a positive
constant r such that

EP∗ [f (x, ξ )] − EP∗ [f (x∗, ξ )] ≥ r∥x − x∗
∥,∀x ∈ X,

then there exists a positive constant C2 such that ∥x∗
− xN∥ ≤

C2H(ΞN ,Ξ ).

4. DRO with distance ambiguity set

Another popular way to characterize the ambiguity of a DRO
problem is by a set of distributions that are sufficiently close to
a given nominal distribution according to some distance defined
on probability space. Particularly, we consider the Wasserstein
metric, which is defined through a distance function between
two probability distributions in a given compact supporting space.
More specifically, given two probability distributions P and Q
with support sets Ξ and Ξ̂ respectively, the Wasserstein metric
is defined as

dlW(P,Q ) := inf
π

{d(ξ, ξ̂ ), π (ξ ) = P, π (ξ̂ ) = Q },

where the infimum is taken over all joint distributions π with
marginal P and Q .

We refer to, e.g., [5,6,28], for some DRO problems whose am-
biguity sets are defined through the Wasserstein metric. Particu-
larly, [5,6,28] consider the DRO problem (1.1) with ambiguity set:

PW := {Q ∈ P(Ξ ) : dlW(P,P0) ≤ c},

where P0 is a nominal probability distribution and c is a small pos-
itive number representing the robustness of the ambiguity set. Of
course, with the growth of c , PW becomes bigger and has a higher
probability to contain the true distribution. When the nominal
distribution is in form of the empirical distribution determined by
direct observations of data, we may choose the parameter c based
on some statistical methods:

P(dlW(P, PN ) ≤ c) ≥ 1 − exp(−
c2

2B2N), (4.1)

where N is the number of historical data and B is the diameter of
Ξ . See [28, Proposition 1] for details.

Similarly, we propose a discrete approximation of the ambigu-
ity set PW as follows:

PN
W := {Q ∈ P(ΞN ) : dlW(P, P0) ≤ c}.

Suppose that the nominal probability is the empirical proba-
bility based on independent and identically distributed sample
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ξ1, . . . , ξM . Then, with the ambiguity set discretized by the men-
tioned Wasserstein metric, the true DRO problem (1.1) can be
recast as:

min
x∈X

max
q≥0,π≥0

N∑
i=1

qif (x, ξ̂i)

s.t.
N∑
i=1

πi,j = pj, j = 1, . . . ,M

M∑
j=1

πi,j = qi, i = 1, . . . ,N

N∑
i=1

M∑
j=1

πi,jd(ξ̂i, ξj) ≤ c,

(4.2)

where π := (π1,1, . . . , πN,M ) is the joint distribution in the space
(ΞN ,B) × (ΞM ,B) and ΞM

:= {ξ1, . . . , ξM}. Similar to problem
(3.6), we introduce an auxiliary variable t := (t1, . . . , tN )T and then
reformulate (4.2) as

min
x∈X,t

max
q≥0,π≥0

N∑
i=1

qiti

s.t.
N∑
i=1

πi,j = pj, j = 1, . . . ,M

M∑
j=1

πi,j = qi, i = 1, . . . ,N

N∑
i=1

M∑
j=1

πi,jd(ξ̂i, ξj) ≤ c

f (x, ξ̂i) ≤ ti, i = 1, . . . ,N,

(4.3)

which fits the saddle-point problem (2.2) with

S :=

{
(x, t) :

{
x ∈ X, |ti| ≤ tmax

f (x, ξ̂i) ≤ ti, i = 1, . . . ,N,

}
;

W :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(q, π ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

πi,j = pj, j = 1, . . . ,M

M∑
j=1

πi,j = qi, i = 1, . . . ,N

N∑
i=1

M∑
j=1

πi,jd(ξ̂i, ξj) ≤ c

(q, π ) ∈ RN
+

× RN×M
+

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

;

and thus Algorithm 2.1 can be applied directly.
The following theorem presents the convergence of the dis-

cretized DRO problem (4.3) to the true DRO problem (1.1) as N
tends to infinity.

Theorem 4.1. Let ϑ and ϑN denote the optimal values of problems
(4.3) and (1.1), (xN , tN ; qN , πN ) and (x∗, P∗) be the corresponding
optimal solutions. Assume that for each fixed x, there exists a positive
constant L independent of x such that |f (x, ξ ′) − f (x, ξ ′′)| ≤ L∥ξ ′

−

ξ ′′
∥. Then, there exists a positive constant C1 such that |ϑ − ϑN | ≤

C1H(ΞN ,Ξ ). If additionally EP∗ [f (·, ξ )] satisfies the growth condi-
tion at point x∗, that is, there exists a positive constant r such that

EP∗ [f (x, ξ )] − EP∗ [f (x∗, ξ )] ≥ r∥x − x∗
∥,∀x ∈ X,

then there exists a positive constant C2 such that ∥x∗
− xN∥ ≤

C2H(ΞN ,Ξ ).

5. Numerical results

In this section, we consider the DRO formulation of a portfolio
optimization problem and implement Algorithm 2.1 to the dis-
cretized reformulation of the DRO model studied in the previous
sections. Some preliminary numerical results are reported to show
the efficiency of Algorithm 2.1 for solving the resulting saddle-
point reformulations of the discretized DRO problems.

We consider the portfolio optimization problem, in which one
is interested in maximizing the expected utility obtained from the
single-step return of his investment portfolio. We consider the
case where there is no trading fee, that is, given that k investment
options are available, the expected utility is defined as:

f (x, ξ ) := r1x1 + · · · + rkxk, (5.4)

where ri is the random return of asset i. In the robust optimization
approach to this problem, one defines a distributional set based on
the sample to contain the true distribution. We consider the cases
where the ambiguity set is defined through moment conditions
and Wasserstein metric respectively. Here the moment-condition
type of ambiguity set is defined as:

P :=

{
P ∈ P :

|E[ξ ] − µ0| ≤ c1
∥EP [(ξ − µ0)(ξ − µ0)T ] −Σ0∥F ≤ c2

}
,

where µ0 and Σ0 are sample mean and sample covariance, c1
and c2 are nonnegative constants. Based on [21, Theorem 3 and
Corollary 6] and Bonferroni’s inequality, if we choose c1 =

ρ
√
N

(
2 +

√
2 ln 1

δ

)
and c2 =

ρ
√
N

(
2 +

√
2 ln 1

δ

)
, then P includes

the true distribution with a probability of 1 − 2δ. For the Wasser-
stein metric type ambiguity set, we choose the parameter c by
statistics (4.1).

We collect the following four stocks: Aberdeen Asset Manage-
ment PLC, Admiral Group PLC, AMEC PLC, Anglo American PLC,
PL (http://finance.google.com) (from 19th Dec 2012 to 15th Nov
2013)with a total of 230 datasets. Similar to thework [4], to ensure
that the sample is independent and it follows the same distribu-
tion, we use 30 days from the most recent history to assign the
portfolio. We have carried out out-of-sample tests with a rolling
window of 30 days: use the first 30 data to construct the ambiguity
set P and calculate the optimal portfolio strategy for the 31-th day
and then move on a rolling basis.

For numerical experiments, we choose the robust parameters
such that the true probability is contained in the ambiguity setwith
a probability of 99% and compare our model with the stochastic
programming model, that is, taking the empirical distribution as
the true distribution. We implement Algorithm 2.1 on MATLAB
2014 installed in a PC with Windows 7 operating system. We use
CVX (version 1.22) developed by Grant and Boyd [7] to solve the
optimization problem in Steps 2 and 4 of Algorithm 2.1. Since
condition στ < 1 guarantees the convergence of PDHG method
(Algorithm 2.1), we set the parameters σ and τ as 9.9 and 0.1
respectively.

Table 1 summarizes the daily returns generated by the portfolio
models, where ‘‘L’’, ‘‘H’’ and ‘‘A’’ denote respectively the lowest,
highest and average return. We record the number of days when
the overall portfolio return rate falls below1and exceeds (or equals
to) 1, denoted by ‘‘Down’’ and ‘‘Up’’. We can see that, compared
to 90 times in SP model, there are 102 times when the return
rate exceeds 1 in the DRO models. The DRO models and average
strategy (1/n) achieve comparable average daily return and display
stable performances within a narrow range between the best and
worst return curves. Fig. 1 depicts the evolution of wealth over

http://finance.google.com
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Table 1
Daily return.

Model L H A Down Up

1/n 0.9735 1.0246 0.9997 103 97
Wasserstein 0.9733 1.0262 0.9999 98 102
Moment 0.9732 1.0262 0.9996 98 102
SP 0.9414 1.0473 0.9970 110 90

Fig. 1. Wealth evolution with the trading times.

200 trading days when managing a portfolio of four assets on
a daily basis with different models. The figure indicates that all
wealth lines have the tendency to going down and the wealth
curves of DRO models and 1/n investment strategy outperform
SP model. Compared to the moment type ambiguity set, distance
type ambiguity set (Wasserstein metric) displays higher average
daily return, wealth at the end of horizon and generatemore stable
daily return over the time horizon. Our experiments also verify the
theory in [15] that the average investment strategy is an optimal
strategy when there is only few historical data.

In the previous test, the objective function is linear, which
means the decision maker is risk-neutral. We now study the fol-
lowing risk-averse variant of the portfolio optimization problem
by considering the exponential utility function [26,24]: U(f (x, ξ )),
where U(y) =: ey/4 and f is defined in (5.4).

Figs. 2–3 compare the DRO models with linear and nonlinear
objective functions (DRO-L and DRO-N for short) on the evolution
of wealth over 200 trading days whenmanaging a portfolio of four
assets. From the two figures, we can see that the DRO-N is more
stable than the DRO-L albeit it does not necessarily achieve best
return in every experiment. Moreover, the DRO-N is insensitive to
the type of the ambiguity sets as the two wealth curves returned
by the DRO-N with moment type and distance type ambiguity sets
are almost same. Fig. 4 shows the results of DRO-N, SP model with
nonlinear objective functions and the 1/n investment strategy. The
figure indicates that all wealth lines have the tendency to going
down and the wealth curves of DRO models and 1/n investment
strategy outperform SP model, but the difference of the wealth
curve between the DROmodel and the 1/n investment strategy are
smaller than Fig. 1.

6. Conclusions

Motivated by the recent research on discrete approximation
method [12,16,26] to distributionally robust optimization (DRO)
problem, we employ the primal–dual hybrid gradient (PDHG)
method to solve the DRO problem where the ambiguity set is
defined through moment condition and/or Wasserstein metric.
As the PDHG method is more efficient for saddle point problem
with bilinear objective function, the lifting technique is used to

Fig. 2. Moment: Linear vs Nonlinear.

Fig. 3. Wasserstein: Linear vs Nonlinear.

Fig. 4. Wasserstein: Linear vs Nonlinear.

recast the nonlinear objective function. The preliminary numerical
test on portfolio selection optimization problem demonstrates the
applicability of the numerical approaches.
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