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a b s t r a c t 

We develop several distributionally robust equilibrium models, following the recent research surge of ro- 

bust game theory, in which some or all of the players in the games lack of complete information on the 

true probability distribution of underlying uncertainty but they need to make a decision prior to the re- 

alization of such uncertainty. We start with a distributionally robust Nash equilibrium model where each 

player uses partial information to construct a set of distributions and chooses an optimal decision on 

the basis of the worst distribution rather than the worst scenario to hedge the risk arising from ambigu- 

ity of the true probability distribution. We investigate the existence of equilibrium, develop a numerical 

scheme for its computation, and consider special cases where the distributionally robust Nash equilibrium 

model can be reformulated as an ordinary deterministic Nash equilibrium. We then extend our model- 

ing scheme to two possible frameworks of distributionally robust Stackelberg setting: a distributionally 

robust follower model and a distributionally robust leader model. These two frameworks are employed 

to study an innovative problem of hierarchical competition in a supply chain where a buyer not only in- 

vests in its own capacity to supply an end-product market under demand uncertainty but also outsources 

a certain amount of market supplies to multiply competing suppliers who invest in capacity for obtaining 

the buyer’s orders. In this application, we show that the buyer has more incentives to invest in capac- 

ity whereas the suppliers have less to do so when those suppliers are confronted with more demand 

uncertainty in the end-product market over the buyer. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Nash equilibrium has been an important modeling paradigm for

ptimal decision making problems which involve several decision

akers who are in a competitive relationship. When the underly-

ng data of these decision making problems contain uncertain pa-

ameters, a stochastic Nash equilibrium model is a must need. Over

he past few decades, various stochastic Nash equilibrium models

ave been proposed depending on the decision-making processes.

o be more specific, consider a stochastic Nash equilibrium prob-

em where players need to make decisions prior to the realization

f uncertainty and they do so by minimizing their expected disutil-

ty, that is, each player i , i = 1 , . . . , m, sets out its optimal decision
∗ Corresponding author. 
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y solving an optimization problem 

in 

y i ∈ Y i 
E P [ f i (y i , y −i , ξ )] , 

here Y i ⊂ IR 

n i denotes the set of feasible decisions by player i , y −i 

tands for the decision vectors of its rivals, ξ is a k -dimensional

andom vector defined on probability space (�, F , P ) with sup-

ort set � representing the underlying uncertainty (e.g., market

emand, supply reliability), f i ( · ) is real-valued continuous function

efined on IR 

n × IR 

k with n = 

∑ m 

i =1 n i , and the mathematical ex-

ectation E [ ·] is taken with respect to the probability distribution

f ξ . 

Stochastic Nash equilibrium models described as the above are

biquitous in operations literature ( Cachon & Netessine, 2004 ). For

nstance, if manufacturing firms compete simultaneously on ca-

acity investment and production, Haurie, Zaccour, and Smeers

1990) show that each firm chooses its optimal decision by solv-

ng a two-stage stochastic optimization problem. If firms compete

equentially on capacity investment and production (i.e., capacity
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investment before the realization of demand uncertainty and pro-

duction after the realization of demand uncertainty), this capacity

and production problem becomes a two-stage stochastic equilib-

rium programs with equilibrium constraints (SEPEC); the relevant

discussions can be found in DeMiguel and Xu (2009) for a two-

stage multiple-leader stochastic Stackelberg Nash–Cournot model

and Henerion and Römisch (2007) for the two-stage SEPEC models

to study competition in electricity markets. 

We argue that a stochastic Nash equilibrium problem is far

trickier than the above discussion when the decision maker does

not have complete information on the distributions of random

variables; for example, some firms have less information on the

distribution of market demand than the other firms in the afore-

mentioned capacity investment and production problems. The op-

erations literature suggests a reasonable option to choose an opti-

mal decision on the basis of extreme values of random variables in

order to mitigate the risks while the decision maker does not have

any information other than the range of random variables. This

sort of decision making framework is known as robust optimization .

In the past two decades, robust optimization has been well stud-

ied in theories, algorithms and applications, see the monograph

by Ben-Tal, Ghaoui, and Nemirovski (2009) and the survey by

Bertsimas, Browny, and Caramanis (2011) for the recent develop-

ment on robust optimization. In particular, Aghassi and Bertsimas

(2006) make the first attempt to investigate robust games. They

consider a distribution-free model of incomplete-information finite

games, both with and without private information, in which the

players use a robust optimization approach to contend with pay-

off uncertainty, see also Jiang, Netessine, and Savin (2011) , Kardes,

Ordonez, and Hall (2011) and references therein. 

The above discussion motivates us to consider an alternative

and possibly less conservative Nash equilibrium concept by fol-

lowing the idea of distributionally robust optimization (DRO for

short) to consider that the players in a game are lacking in com-

plete information on the true probability distribution of underly-

ing uncertainty but they can use available information such as his-

torical data, sample information, or subjective judgments to con-

struct a set of distributions which contains or approximates the

true distribution. The optimal decision is consequently chosen on

the basis of the worst distribution to hedge against the risk arising

from ambiguity of the true probability distribution. Over the past

decade, DRO approach has been intensively studied for a range

of stochastic programming models from one stage to multistage

and chance-constrained problems, see Esfahani and Kuhn (2015) ,

Bertsimas and Popescu (2002) , Wiesemann, Kuhn, and Sim (2014) ,

Hu and Hong (2012) , Jiang and Guan (2016) , Hanasusanto, Kuhn,

and Wiesemann (2016) , Kapsos, Christofides, and Rustem (2014) ,

Wiesemann, Kuhn, and Rustem (2013) , Xin, Goldberg, and Shapiro

(2013) and references therein. In contrast, research on distribution-

ally robust games and equilibrium problems is still in its infancy

with a few papers available to date. Qu and Goh (2012) seem to

be the first to consider a distributionally robust formulation of a

stochastic finite game where each player uses the worst probability

distribution rather than the worst scenario as in Aghassi and Bert-

simas (2006) to tackle incomplete information of extraneous un-

certainty. Sun and Xu (2017) present a stability analysis of distribu-

tionally robust Nash equilibrium when players gain more and more

information. Ahipasaogluy, Meskarianz, Magnantix, and Natarajan

(2015) study the DRO stochastic user equilibrium where the play-

ers only have the information of the first and second moments

of the random variables. Singh, Jouini, and Lisser (2016) consider

robust finite chance-constrained games and study the existence

of mixed-strategy Nash equilibrium. Along that direction, Loizou

(2015 , 2016 ) proposes a distributionally robust Nash equilibirum

model with each player’s objective being Conditional Value at Risk

(CVaR for short). In the case where the threshold of CVaR is zero,
is model coincides with Qu and Goh’s model. One of the main fo-

uses of Loizou’s work is to investigate cases where distributionally

obust games are equivalent to Nash games without private infor-

ation, that is, to reformulate the distributionally robust games as

eterministic Nash games when the ambiguity sets have some spe-

ial structures. 

The existing research on distributionally robust games in the lit-

rature focuses on finite games where each player plays a mixed

pure) strategy over finite action space, it is unclear how the es-

ablished results can be applied to continuous Nash games partic-

larly in terms of numerical methods for computing an equilib-

ium. Indeed, the numerical method for distributionally robust fi-

ite Nash games is still in infancy, with the main streamline being

ased on the dual reformulation when the ambiguity set has some

pecific structure, see Qu and Goh (2012) , Loizou (2015) for de-

ails. This paper aims to fill out the gap. We start by investigating

he existence of the equilibrium for distributionally robust Nash

DRNE for short) model, and algorithms for computing it, and then

ollowed by analyzing distributionally robust Stackelberg problems.

ince the dual formulation of DRNE can be atypically sophisticated,

specially the Stackelberg model, the prevailing dual formulation

echnique in the literature for DRO problem is no longer a power-

ul tool here. Instead, we focus on some special cases where either

he DRNE can be significantly simplified or they are related to risk

verse Nash equilibrium models. 

We consider a real-world case related to distributionally robust

tackelberg models. As a well-known fact documented in the oper-

tions and supply chain literature, the sector of consumer electron-

cs is subject to tight capacity constraints. When launching new

roducts, quantity produced is limited by existing workforce, fa-

ilities, and/or raw material availability. The production capacity

s often reached and limits the possible output quantity for seiz-

ng further market opportunities. Therefore, outsourcing is a key

trategy that firms use to overcome capacity limit when launching

ew products. By outsourcing, firms (henceforth buyers, to distin-

uish them from suppliers) can produce the amount of products

bove the installed capacity in house, while contracting out cer-

ain amount of production to suppliers who may need to expand

heir capacity, as well, for obtaining the buyers’ orders. While out-

ourcing reduces a buyer’s pressure on capacity expansion, it gives

ise to the phenomenon whereby the suppliers can directly com-

ete with the buyer by supplying the residual capacity to the prod-

ct market. Specifically, outsourcing opens a window of opportu-

ity for the suppliers to enter the product market. One prominent

xample of this hierarchical capacity competition across a supply

hain is HTC who began as a contract cell phone manufacturer and

ater entered the smartphone market with its own brand ( Yoffie,

lcacer, & Kim, 2012 ). To address this hierarchical capacity com-

etition problem in a supply chain, we therefore propose two dis-

ributionally robust Stackelberg models, distributionally robust fol-

ower model and distributionally robust leader model. The first

odel suits the case that the leader (i.e., the buyer in our case)

ominates the market with complete information on market uncer-

ainty, however, the followers (i.e., the suppliers in our case) only

ave partial information. The second model is suitable to the case

here reversely the followers have complete information on the

arket uncertainty. 

To sum up, the main contributions of our work are summarized

s follows. 

• We propose a distributionally robust formulation for stochas-

tic continuous Nash equilibrium problems, which extends the

recent work by Aghassi and Bertsimas (2006) , Qu and Goh

(2012) and Loizou (2015 , 2016) . We investigate the existence of

equilibrium and develop a numerical scheme for computing it.

Special cases are considered where the distributionally robust
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1 A set of probability measures A is said to be weakly compact if every se- 

quence { P N } ⊂ A contains a subsequence { P N ′ } and P ∈ A such that P N ′ converges 

to P weakly. 
Nash equilibrium model can be reformulated as ordinary deter-

ministic Nash equilibrium. 
• We propose two distributionally robust formulations for

stochastic Stackelberg games: a distributionally robust follower

model and a distributionally robust leader model. We demon-

strate that the former can be recast into a mathematical pro-

gram with equilibrium constraints (MPEC for short) model

whereas the latter can be reformulated as a standard distribu-

tionally robust optimization problem under some specific cir-

cumstances. 
• We use the proposed distributionally robust follower model to

analyze a hierarchical capacity competition problem and con-

duct a numerical study. The results underscore the importance

of informational completeness on uncertainty and some man-

agerial insights are derived. 

The rest of the paper is organized as follows. In Section 2 , we

ive an exact definition of the DRNE model and investigate ex-

stence of an equilibrium. An algorithmic framework is proposed

or solving the DRNE problem. In Section 3 , we discuss two special

ases where the ambiguity sets are defined through prior moments

nd linked to coherent risk measure. The former allows us to re-

ormulate the DRNE model into an ordinary deterministic Nash

quilibrium model while the latter relates the DRNE to standard

isk-averse Nash games. In Section 4 , we move on to discuss distri-

utionally robust Stackelberg model from two perspectives, a dis-

ributionally robust follower model and a distributionally robust

eader model. Finally, in Section 5 we apply the proposed models to

ierarchical capacity competition in a supply chain where a buyer

ot only invests in its own capacity to supply an uncertain market

ut also outsources a certain amount of market supply to multi-

le competing suppliers who invest in capacity for obtaining the

uyer’s orders. 

. Distributionally robust Nash equilibrium 

Stochastic Nash equilibrium (SNE for short) is an important

olution concept in game theory and has found many applica-

ions in engineering, economics, operations, and marketing, see Xu

nd Zhang (2013) , Ralph and Smeers (2015) , Ravat and Shanbhag

2011) and the references therein. An important assumption in the

tochastic Nash equilibrium models is that the true probability dis-

ribution of underlying uncertainty is known. However, in many

ractical circumstances, we may only have partial information such

s the range of uncertain parameters, historical data, or subjective

udgment of the probability distributions. Assuming each player

s risk averse against ambiguity of the true probability distribu-

ion, then the resulting Nash equilibrium may be different from

tochastic equilibrium. This motivates us to investigate the former

n terms of the models and numerical methods. 

To start with, an individual player i ’s decision-making problem

an be formulated as: 

in 

y i ∈ Y i 
max 
P∈P i 

E P [ f i (y i , y −i , ξ )] , (2.1)

here f i ( · ) is a continuous function from IR 

n × IR 

k to IR, n =
 m 

i =1 n i , y i ∈ Y i ⊂ IR 

n i denotes player i ’s decision vector, and y −i rep-

esents the decision variables of its rivals. A key element in this

ormulation is the maximum operation w.r.t. P which means the

layer bases its optimal decision on the worst expected value of f i 
rom the set of distributions P i which is constructed from available

nformation. Assuming each player takes a decision based on (2.1) ,

hen we look into a situation where no player can get better off by

nilaterally changing its position. 
efinition 2.1. An m -tuple (y ∗1 , . . . , y 
∗
m 

) is called an equilibrium of

istributionally robust Nash equilibrium (DRNE) if 

 

∗
i ∈ arg min 

y i ∈ Y i 
max 
P∈P i 

E P [ f i (y i , y 
∗
−i , ξ )] , for i = 1 , . . . , m. (2.2)

This type of model is first studied by Qu and Goh (2012) for

 two-players finite game. In the case where P i , i = 1 , . . . , m, con-

ains a singe distribution, (2.2) collapses to stochastic Nash equi-

ibrium problem. On the other hand, when P i comprises the set

f all the probability measures (over the support of ξ induced by

), (2.2) reduces to the distribution-free robust model proposed

y Aghassi and Bertsimas (2006) . Note that the objective of each

layer in this model is the expected value of a random function. It

s possible to consider the case where the objective is a risk mea-

ure such as CVaR in Loizou (2015 , 2016) and more broadly distor-

ion risk measure which would cover any law invariant coherent

isk measure, see Pichler and Xu (2017 , Section 4). 

In what follows, we investigate the existence of equilibrium of

he DRNE model and numerical schemes for computing such an

quilibrium. 

ssumption 2.1. Let f i ( · ) be defined as in (2.2) . The following as-

ertions hold for i = 1 , . . . , m . 

(a) f i ( · ) is a continuous function and for each fixed (y −i , ξ ) ,

f i (·, y −i , ξ ) is convex over Y i . 

(b) Y := Y 1 × ��� × Y m 

is a compact set. 

(c) E P [ f i (y i , y −i , ξ )] is finite valued for any y ∈ Y and P ∈ P i . 

(d) P i is weakly compact. 1 

Assumption 2.1 ensures that each player’s objective function is

nite valued and it is convex w.r.t. its decision vector. Indeed,

nder Assumption 2.1 (a) and (b), E P [ f i (y i , y −i , ξ )] , i = 1 , . . . , m, is

ell defined and it is convex w.r.t. y i for each fixed y −i . Con-

itions (c) and (d) ensure that optimum of the inner maximiza-

ion problem can be achieved by some probabilities P ∈ P i . Under

ssumption 2.1 , we may reformulate the problem (2.2) as a single

ptimization problem. 

roposition 2.1. Let 

(x, y ) := 

m ∑ 

i =1 

max 
P∈P i 

E P [ f i (x i , y −i , ξ )] . 

nder Assumption 2.1 , y ∗ is an equilibrium of DRNE (2.2) if and only

f 

 

∗ ∈ arg min 

x ∈ Y 
φ(x, y ∗) . 

roof. The reformulation is well known for deterministic Nash

quilibrium, see for example Rosen (1965) . Here we provide a

roof as the DRNE involves minimax operations. The “if” part fol-

ows from the fact that if y ∗ is not an equilibrium, then there exists

ome 1 ≤ i 0 ≤ m and x̄ i 0 ∈ Y i 0 such that 

ax 
P∈P i 0 

E P [ f i 0 ( ̄x i 0 , y 
∗
−i 0 

, ξ )] < max 
P∈P i 0 

E P [ f i 0 (y ∗i 0 , y 
∗
−i 0 

, ξ )] . 

et x̄ := (y ∗1 , . . . , y 
∗
i 0 −1 

, ̄x i 0 , y 
∗
i 0 +1 

, . . . , y ∗m 

) , we have φ( ̄x , y ∗) <
(y ∗, y ∗) , a contradiction. The “only if” part is obvious as 

ax 
P∈P i 

E P [ f i (x i , y 
∗
−i , ξ )] ≥ max 

P∈P i 
E P [ f i (y ∗i , y 

∗
−i , ξ )] 

or i = 1 , . . . , m and summing up w.r.t. i on both sides of the in-

quality shows y ∗ is a global minimizer. �

Based on Proposition 2.1 , we have the following existence re-

ults for DRNE (2.2) . 
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Algorithm 1: Conceptual algorithm for DRNE. 

Step 0: Let p 

0 
i 

∈ P i , y 
0 ∈ Y and P 

0 
i 

:= { p 

0 
i 
} , i = 1 , . . . , m ; 

set t := 0 . 

Step 1: For given P 

t 
i 

and y t , solve 

min 

y,σ1 , ... ,σm 

σ1 + · · · + σm 

s.t. y ∈ Y, 

E p t 
i 
[ f i (y i , y 

t 
−i 

, ξ )] ≤ σi , for p 

t 
i 
∈ P 

t 
i 
, i = 1 , . . . , m. 

Let ( ̄y t , σ t 
1 
, . . . , σ t 

m 

) denote the optimal solution. 

Step 2: If y t = ȳ t , go to Step 3 , otherwise, y t := ȳ t , go to 

Step 1 . 

Step 3: For i = 1 , . . . , m , solve maximization problem 

max 
P 

E P [ f i (y t 
i 
, y t −i 

, ξ )] 

s.t. P ∈ P i . 

Let p 

t 
i 

and v t 
i 

denote the optimal solution and the optimal 

value. If for i = 1 , . . . , m , v t 
i 
≤ σ t 

i 
, then stop. 

Step 4: Update P 

t+1 
i 

by 

P 

t+1 
i 

:= 

{
P 

t 
i 

if v t 
i 
≤ σ t 

i 
P 

t 
i 

⋃ { p 

t 
i 
} if v t 

i 
> σ t 

i 

, 

set y t+1 := y t and t := t + 1 , go to Step 1 . 
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2 We say c ∗ is an accumulation point of sequence { c n } if there is a subsequence 

{ c k } of { c n } converges to c ∗ . 
Theorem 2.1. Under Assumption 2.1 , DRNE (2.2) has an equilibrium. 

Proof. Under Assumption 2.1 , E P [ f i (·, y −i , ξ )] is continuous and

convex for every P ∈ P i and i = 1 , . . . , m . The supremum preserves

the convexity and, under weakly compactness of P i , the continu-

ity. Therefore φ( · , y ) is continuous and convex w.r.t. x on Y for any

fixed y ∈ Y . 

The existence of an optimal solution to min x ∈ Y φ( x , y ) follows

from compactness of Y under Assumption 2.1 (c). To complete the

proof, we are left to show the existence of y ∗ ∈ Y such that 

y ∗ ∈ arg min 

x ∈ Y 
φ(x, y ∗) . 

Let �( y ) be the set of optimal solutions to min x ∈ Y φ( x , y ) for each

fixed y ∈ Y . Then �( y ) ⊂ Y . By the convexity of φ( · , y ), �( y ) is a con-

vex set. Moreover, it is easy to show that �( y ) is closed, that is, for

y k → ȳ and x k ∈ �( y k ) with x k → x̄ , x̄ ∈ �( ̄y ) . Further, it follows by

Bank, Guddat, Klatte, Kummer, and Tammer (1982 , Theorem 4.2.1)

that �( · ) is upper semi-continuous on Y . By Kakutani ’s (1941) )

fixed point theorem, there exists y ∗ ∈ Y such that y ∗ ∈ �( y ∗). �

The next key step towards understanding the DRNE model and

applying it to practical problems is to develop an efficient numeri-

cal method for identifying an equilibrium of DRNE (2.2) . Obviously,

the DRNE model is mathematically more sophisticated than SNE

and therefore requires new methods different from the existing

numerical schemes. 

If the objective functions are convex w.r.t. each player’s decision

vector, we may consider an iterative scheme where at each itera-

tion we solve a single minimax optimization problem. 

Algorithm 1 is motivated by a similar algorithm proposed by Xu,

Liu, and Sun (2017) for solving a distributionally robust portfolio

problem. Steps 1 and 2 are designed to solve 

min 

x ∈ Y 
φt (x, y t ) := 

m ∑ 

i =1 

max 
P∈P t 

i 

E P [ f i (x i , y 
t 
−i , ξ )] , (2.3)

or equivalently to find an equilibrium of 

min 

y i ∈ Y i 
max 
P∈P t 

i 

E P [ f i (y i , y −i , ξ )] , for i = 1 , · · · , m. (2.4)
t the end of the Step 2, we obtain ȳ t which solves (2.4) . Note

hat the objective function of (2.3) is separable, therefore σ t 
i 

corre-

ponds to the optimal value of (2.4) . 

Step 3 is to examine whether ȳ t is an equilibrium of

RNE (2.2) . Observe that v t 
i 
≥ σ t 

i 
because P 

t 
i 

⊂ P i . In the case

here the equality holds for all i = 1 , . . . , m, we can replace

ax P∈P t 
i 

E P [ f i (y i , y −i , ξ )] with max P∈P i E P [ f i (y i , y −i , ξ )] for y = y t 

nd this means ȳ t solves DRNE (2.2) . 

From the discussions above, we conclude that if the algorithm

erminates in a finite number of iterations t , then y t (or ȳ t ) must

e an equilibrium to DRNE (2.2) . The theorem below addresses the

ase that Algorithm 1 does not stop in a finite number of iterations.

heorem 2.2. Let { y t } be generated by Algorithm 1 . Assume that

he conditions of Theorem 2.1 are satisfied. Then every accumulation

oint 2 of sequence { y t } is an equilibrium of DRNE (2.2) . 

roof. Let y ∗ be an accumulation point of sequence { y t }. By the

rocedures of Algorithm 1 , for each i = 1 , . . . , m, the sequence {P 

t 
i 
}

s monotonically increasing in the sense that P 

t 
i 

⊂ P 

t+1 
i 

. As P i , i =
 , . . . , m, is a compact set, there exists P 

∗
i 

⊂ P i such that 

lim 

→∞ 

P 

t 
i = P 

∗
i . 

Taking advantage of the analysis on case that Algorithm 1 stops

t finite steps, it is sufficient to show that 

ax 
P∈P i 

E P [ f i (y ∗i , y 
∗
−i , ξ )] = max 

P∈P ∗
i 

E P [ f i (y ∗i , y 
∗
−i , ξ )] , i = 1 , . . . , m. 

ince for each t and i = 1 , . . . , m, 

ax 
P∈P i 

E P [ f i (y t i , y 
t 
−i , ξ )] = max 

P∈P t+1 
i 

E P [ f i (y t i , y 
t 
−i , ξ )] . (2.5)

hen, we have 

ax 
P∈P i 

E P [ f i (y ∗i , y 
∗
−i , ξ )] = lim 

t→∞ 

max 
P∈P i 

E P [ f i (y t i , y 
t 
−i , ξ )] 

= lim 

t→∞ 

max 
P∈P t+1 

i 

E P [ f i (y t i , y 
t 
−i , ξ )] 

= lim 

t→∞ 

max 
P∈P t 

i 

E P [ f i (y t i , y 
t 
−i , ξ )] 

= max 
P∈P ∗

i 

E P [ f i (y ∗i , y 
∗
−i , ξ )] , 

here the first equality follows from Bonnans and Shapiro (20 0 0 ,

roposition 4.4) and the second equality follows (2.5) . The proof is

omplete. �

It might be helpful to note that Algorithm 1 only provides a

onceptual numerical framework for solving DNRE (2.2) under the

bstract form of the ambiguity sets P i , i = 1 , . . . , m . For instance,

tep 3 requires to solve an optimization problem w.r.t. probability

easure which is difficult if P i consists of continuous distributions.

n that case, further discretization might be needed, see Xu et al.

2017) where a discretion scheme is proposed for the case when

he ambiguity set is defined by generalized moment conditions.

ote also that when P i has a specific structure, it might be possible

o reformulate each player’s optimization problem as a semidefi-

ite programming problem (SDP for short) and then as a system of

arush–Kuhn–Tucker condition, see Qu and Goh (2012) and Loizou

2015 , 2016) for distributionally robust finite Nash games. 

At the end of this section, we provide a simple example to ex-

lain the difference between stochastic Nash equilibrium and dis-

ributionally robust Nash equilibrium. 

xample 2.1 (Boxed pigs) . A pig and a piglet are put in a box with

 lever at one end of the box and dispenses food at the other end.
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Table 1 

Boxed pigs. 

Small pig 

P W 

Big pig P ( p d (ξ ) − 6 , ξ − p d (ξ ) − 2 ) ( ξ − p s (ξ ) − 6 , p s (ξ ) ) 

W ( p d (ξ ) , ξ − p d (ξ ) − 2 ) (0, 0) 

Table 2 

SNE model with P 1 . 

Small pig 

P W 

Big pig P (2.0938, 1.1562) (0.4516, 5.7984) 

W (8.0938, 1.1562) (0, 0) 

Table 3 

DRNE model with { P 1 , P 2 }. 

Small pig 

P W 

Big pig P ( −0 . 302 , −0 . 948 ) ( −2 . 8495 , 3 . 5995 ) 

W ( 5 . 698 , −0 . 948 ) ( 0, 0 ) 
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(  
o the pig that presses the lever must run to the other end to eat,

nd by the time it gets there, the other pig has eaten most, but

ot all the food. The big pig is dominant and the piglet is subor-

inate. Therefore big pig is able to prevent piglet from getting any

ood when both are at the food. When a pig presses the lever, it

ill incur a disutility of α units (which can be interpreted as the

nergy to be consumed), and ξ units (a random variable taking in-

eger values) of food will be released at the dispenser. 

We assume that the pigs can reason like game theorists and

hey need to decide as to whether to press the lever or wait at

he dispenser. Since the big pig is a ‘dominant’ player, if it gets the

ispenser first (wait at the dispenser) or at the same time (both

ress the lever and then run to the dispenser) with the small pig,

t will get the following amount of the food 

p d (ξ ) := 

{
ξ , ξ ≤ 9 , 

9 + ln (ξ − 9) , ξ ≥ 10 , 

hereby the small pig gets the rest. If, instead, the small pig waits

t the dispenser first, it will get 

p s (ξ ) := 

{
ξ , ξ ≤ 4 , 

4 + ln (ξ − 4) , ξ ≥ 5 , 

nd the big pig gets the rest. Let α = 6 for the big pig and α = 2

or the small pig. Table 1 summarizes the payoffs for the strategies

ress (P) the panel and Wait (W) at the dispenser. 

Suppose that the random variable ξ may follow the two poten-

ial distributions P 1 (ξ = 4) = 

1 
4 and P 1 (ξ = 15) = 

3 
4 or P 2 (ξ = 4) =

3 
4 and P 2 (ξ = 15) = 

1 
4 . 

In what follows, we compare the equilibria when the pigs play

 stochastic equilibrium and robust equilibrium. In Table 2 , we dis-

lay the outcomes of the expected utilities when the pigs play a

tochastic game with P 1 . It is easy to see that there are two SNE:

W, P) and (P, W), which means one of the pigs will press the lever.

Suppose that the two pigs know that the true probability could

e P 1 or P 2 but there is an ambiguity of which one it is. In that

ase, they may take a robust strategy by considering the worst

robability distribution in its decision making. Table 3 displays four

ossible outcomes and the DRNE is (W, W), no one will press the

ever. 

The example shows that the SNE and DRNE models gener-

te complete different equilibrium outcomes. From our perspective
modelers), we may not know which type of game is played out in

ractice. However, if a player does not have complete information

n the true probability distribution, it is reasonable for us to as-

ume that the player would take a robust strategy. By comparing

ur modelling/analytical equilibrium results with practically equi-

ibrium outcomes, we may provide practitioners with some busi-

ess insights as to whether an SNE model or a DRNE model is bet-

er suited to the practice. In others words, our DRNE model may

rovide an alternative mathematical modelling paradigm for un-

erstanding and/or predicting market competition and giving the

egulator some guidance. 

To explain how Algorithm 1 works in this example, we highlight

he moves following the algorithmic procedures as follows. 

(i) Set P 

0 
1 

:= { P 1 } and P 

0 
2 

:= { P 1 } . Return an equilibrium ( W , P )

(or (P,W)) by going through Steps 1–2 (based on calculations

displayed in Table 2 ). 

(ii) Check the optimality of ( W , P ) (or (P,W)) in Step 3. Both of

the two pigs fail. 

(iii) Update P 

1 
1 

= { P 1 , P 2 } and P 

1 
2 

:= { P 1 , P 2 } . 
(iv) Go to Steps 1 and 2 and return with an equilibrium ( W , W )

(based on calculations in the Table 3 ). Check the optimality

in Step 3, and clearly it is satisfied. 

. Reformulation of DRNE 

The DRNE model and the numerical scheme considered in the

receding section have not taken into account the specific struc-

ure of the ambiguity set which reflects player’s perception of the

istribution of underlying uncertainty. In this section, we investi-

ate some special cases where (a) the ambiguity set is constructed

hrough prior moment information and (b) each player’s objective

s to minimize the tail risk measure such as entropic risk mea-

ure and conditional value at risk (CVaR for short). This will enable

s to simplify the mathematical structure of the DRNE model and

ropose simpler numerical methods to solve it. 

.1. DRNE with moment information 

In this subsection, we consider the case that the ambiguity

et is defined through moment condition of the random variable.

he underlying consideration of moment condition is that given

ome historical data, it is often easier to estimate the moments of

andom parameters than to derive their probability distributions.

ere, we focus on two kinds of ambiguity sets considered in the

ecent works ( Delage, Arroyo, & Ye, 2014; Postek, Ben-Tal, Hertog,

 Melenberg, 2015 ). By employing the new results in Delage et al.

2014) , Postek et al. (2015) , we can get an explicit solution to the

nner maximization of each player’s distributionally robust prob-

em (2.1) and then reformulate the distributionally robust Nash

quilibrium as a deterministic Nash game. Indeed, Loizou (2015 ,

016) first studies the equivalence between DRNE and standard

ash equilibrium. He shows that in finite action games, when each

layer’s objective is a linear function of the underlying random

ariables, the DRNE is equivalent to the standard Nash equilibrium

hen the first moment of the random variables is known. It is not

ifficult to extend Loizou’s results to continuous DRNE under the

ame setting and therefore our focus is on the nonlinear case. 

First, consider the case that 

 : = { P ∈ P(�) : P (ξ ∈ �) = 1 , E P [ ξ ] = μ, 

E P [ ψ(ξ )] ≤ 0 } , (3.1) 

here P(�) denotes the set of all probability measures (over the

upport �), μ is the mean value of random variable ξ , and ψ( · )

s a convex functions. Eq. (3.1) is first considered by Delage et al.

2014) and they study a two-stage mixed-integer stochastic linear
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programs. Ambiguity set (3.1) can capture well the information we

would have in hand in early steps of uncertainty assessment. The

following special case is first considered in Delage and Ye (2010) : 

P := 

{
P ∈ P(�) : 

E P [ ξ − μ] T 	−1 
E P [ ξ − μ] ≤ γ1 

0 
 E P [( ξ − μ)( ξ − μ) T ] 
 γ2 	

}
, 

where γ 1 and γ 2 are nonnegative constants and 	 is the covari-

ance of ξ . Based on the results in Delage et al. (2014) , we have the

following explicit expression of each player’s objective. 

Example 3.1. Consider the case where f i (y i , y −i , ·) is concave with

respect to ξ for each fixed y and P i is defined in the form of (3.1) .

It follows by Delage et al. (2014 , Proposition 1) 

max 
P∈P i 

E P [ f i (y i , y −i , ξ )] = f i (y i , y −i , μ) , 

where μ is the mean value of random variable ξ . Consequently, we

may reformulate the DRNE (2.2) as: 

y ∗i ∈ arg min 

y i ∈ Y i 
f i (y i , y 

∗
−i , μ) , for i = 1 , . . . , m. 

The latter is a deterministic Nash equilibrium problem so that

well-established numerical methods in the literature are ready to

be used. 

Another case allowing us to develop a simple reformulation as

in Example 3.1 is when the ambiguity set is defined as: 

P : = { P ∈ P(�) : E P [ ξ ] = μ, E P [ | ξi − μi | ] = d i , 

∀ i, ξi ⊥ ξ j , ∀ i 
 = j} , (3.2)

where � := [ a 1 , b 1 ] × ��� × [ a k , b k ] and ξ i ⊥ ξ j denotes the stochas-

tic independence of components ξ i and ξ j . Postek et al. (2015) de-

rive exact robust counterparts of expected feasibility of convex

constraints by employing some more earlier results ( Ben-Tal &

Hochman, 1972 ) when the ambiguity set is defined by (3.2) . We

use their results to provide the closed form of DRNE model. 

Example 3.2. Suppose that (a) for any given y ∈ Y , f i (y i , y −i , ·) is

concave with respect to ξ , (b) P i is defined in the form of (3.2) .

Then by Postek et al. (2015 , Section 2.3) 

max 
P∈P i 

E P [ f i (y i , y −i , ξ )] 

= 

˜ f i (y i , y −i ) := 

∑ 

κ∈{ 1 , 2 , 3 } k 
�k 

i =1 p 
i 
κi 

f (y i , y −i , λ
1 
κ1 

, . . . , λk 
κk 

) , (3.3)

where {1, 2, 3} k denotes the set of all enumerating over 3 k permu-

tations of outcomes a i , μi , b i of ξ i , 

λi 
1 = a i , λi 

2 = μi , λi 
3 = b i , for i = 1 , . . . , k 

and 

p i 1 = 

d i 
2(μi − a i ) 

, p i 2 = 1 − d i 
2(μi − a i ) 

− d i 
2(b i − μi ) 

, 

p i 3 = 

d i 
2(b i − μi ) 

. 

Subsequently, we may reformulate (2.2) as: 

y ∗i ∈ arg min 

y i ∈ Y i 
˜ f i (y i , y 

∗
−i ) , for i = 1 , . . . , m. (3.4)

Again, (3.4) is a standard Nash equilibrium. 

In the two examples, the specific structure of the prior mo-

ment conditions enables us to reformulate the DRNE as a deter-

ministic Nash equilibrium problem. When the moment conditions

are presented in a more general form, we might not be able to

obtain a closed form for the inner maximization problem. For in-

stance, Wiesemann et al. (2014) recently consider a type of ambi-

guity sets: 
 : = { P ∈ P( IR 

m 1 × IR 

m 2 ) : E P [ A ξ + B ̃

 ξ ] 

= b , P { (ξ , ˜ ξ ) ∈ �i } ∈ [ p i , p i ] , i ∈ I } , 
here P represents a joint probability distribution of the random

ector ξ ∈ IR 

m 1 and some auxiliary random vectors ˜ ξ ∈ IR 

m 2 , A ∈
R 

k ×m 1 , B ∈ IR 

k ×m 2 , I = { 1 , . . . , I} 
i = { (ξ , ˜ ξ ) : C i ξ + D i ̃

 ξ 
K i c i } 
ith C i ∈ IR 

l i ×m 1 , D i ∈ IR 

l i ×m 1 , c i ∈ IR 

l i , K i being proper cone and

 

′′ 
K i y 
′ meaning y ′ − y ′′ ∈ K i . Through dual reformulation, they

onvert the resulting distributionally robust optimization problem

nto a tractable semidefinite programming problem. Accordingly,

e can easily plug their results ( Wiesemann et al., 2014 ) into our

RNE model. 

Suppose that (a) the confidence set �I is bounded and has

robability one, that is, p I = p I = 1 ; (b) the Slater condition holds;

c) the objective function f j ( y , ξ ) can be written as 

f j (y, ξ ) = max 
1 ≤l≤L 

g l (x, ξ ) 

ith g l (y, ξ ) = s l (ξ ) T y + t l (ξ ) ,s l (ξ ) = S l ξ + s l , S l ∈ IR 

n ×m 1 , s l ∈ IR 

n ,
 l (ξ ) = T T 

l 
ξ + t l , T l ∈ IR 

m 1 and t l ∈ IR; (d) for all i , i ′ ∈ I , either �i ⊂
i ′ , �i ′ ⊂ �i or �i ∩ �i ′ = ∅ . By Wiesemann et al. (2014 , Theorem

), player j ’s distributionally robust optimization problem can be
eformulated as 

min 
 i ,β,κ,λ,φ

b T β + 

∑ 

i ∈ I 
[ p i κi − p i λi ] 

.t. 

c T 
i 
φil + s T 

l 
(y i , y −i ) + t l ≤

∑ 

i ′ ∈A (i ) [ k i ′ − λi ′ ] 

C T 
i 
φil + A 

T β = S T 
l 
(y i , y −i ) + T l 

D 

T 
i 
φil + B 

T β = 0 

⎫ ⎬ 

⎭ 

i ∈ I , 1 ≤ l ≤ L, 

(3.5)

here β ∈ IR 

k , κ, λ ∈ IR 

I 
+ , φil ∈ K 

∗
i 
, i ∈ I , 1 ≤ l ≤ L and A (i ) = i ∪ { i ′ ∈

 , �i ⊆ �i ′ } . 
If �i is described by linear, conic-quadratic or semidefinite in-

qualities, then we are guaranteed by Wiesemann et al. (2014 , The-

rem 1) that (3.5) is a linear, conic-quadratic or semidefinite pro-

ramming problem. If we further use the Karush–Kuhn–Tucker

ondition to reformulate the Nash equilibrium, we may have a

ystem of equalities and inequalities. Note that in problem (3.5) ,

layer j ’s feasible solution set depends on the other players’ deci-

ion variables, and thus the resulting reformulation of DRNE is a

eneralized Nash equilibrium problem rather than a simple Nash

quilibrium problem as in the two examples. We refer readers to

n excellent survey paper by Facchinei and Kanzow (2007) for nu-

erical methods and underlying theory for generalized Nash equi-

ibrium. 

.2. Linking DRNE to risk-averse equilibrium models 

The DRNE model can also be related to stochastic equilibrium

odels where the objective of each player is a coherent risk mea-

ure. The latter has been investigated by a few papers, for example,

alph and Smeers (2015) develop a so-called stochastic endoge-

ous equilibrium framework for pricing risks of risk assets and

avat and Shanbhag (2011) study risk-averse Nash–Cournot games.

ingh et al. (2016) study the existence of equilibria of chance-

onstrained games. Loizou (2015) proposes a DRNE model where

ach player employs a distributionally robust CVaR as their objec-

ive. In what follows, we start to establish a link between the DRNE

odel and two risk-averse equilibrium models. 

Let Z denote the loss of an investment which is a random

ariable defined over space Z := L p (�, F , P ) and Z 

∗ its dual. A

eal valued function ρ : Z → IR + is called a coherent risk mea-

ure if it satisfies the axiom of risk measures including convex-

ty, monotonicity, translation invariance and positive homogeneity,
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ee Artzner, Delbaen, Eber, and Heath (1999) for details. It is well

nown that if ρ is a coherent risk measure, then ρ( Z ) can be writ-

en as 

(Z) = sup 

ζ∈ A 

E ζ [ Z] , 

here A = { ζ ∈ B : 〈 ζ , Z〉 ≤ ρ(Z) , ∀ Z ∈ Z } and 

 := 

{ 

ζ ∈ Z 

∗ : 

∫ 
�

ζ (ω) dP (ω) = 1 , ζ ≥ 0 

} 

, 

ee comprehensive discussions by Shapiro, Dentcheva, and

uszczynski (2009 , Chapter 6). 

Let us now return to consider a stochastic Nash equilibrium

here each player aims to minimize its risk 

in 

y i ∈ Y i 
ρi ( f i (y i , y −i , ξ )) , (3.6)

here f i (y i , y −i , ξ ) is player i ’s random objective function such as

alue of an asset or a portfolio loss. In the case when ρ i is a co-

erent risk measure, we can reformulate (3.6) as a DRNE based on

he discussions above 

in 

y i ∈ Y i 
sup 

ζ∈ A 

E ζ [ f i (y i , y −i , ξ )] . 

n what follows, we consider two particular coherent risk mea-

ures: coherent entropic risk measure and conditional value at risk

CVaR for short). Since both of them are closely related to tail dis-

ribution of the underlying random variable, they are also known

s tail risk measures. 

1. Stochastic Nash equilibrium with coherent entropic risk measure.

et Z ∈ Z be a random variable. The entropic risk measure of Z is

efined as 

 γ (Z) := 

1 

γ
ln E P [ e 

−γ Z ] , 

here γ is a positive constant. Note that e γ ( · ) is a convex risk

easure but not necessarily coherent ( Föllmer & Schied, 2004 ).

öllmer and Knispel (2011) develop a coherent version of the en-

ropic risk measure by considering the Moreau–Fenchel duality of

 γ ( · ) 

τ (Z) := inf 
γ > 0 

τ

γ
+ e γ (Z) , 

here τ > 0 is a parameter. An important feature of ρτ ( · ) is that 

τ (Z) = sup 

P∈P τ
E P [ −Z] , 

here P τ := { Q ∈ P(�) : D KL (Q, P ) ≤ τ } ,τ is a positive number

nd D KL (·, ·) denotes the Kullback–Leibler (KL for short) diver-

ence. In the literature on distributionally robust optimization, P

s known as a nominal distribution which may be constructed

hrough empirical data. KL divergence originates in the field of in-

ormation theory, and it has been widely used in the area of the

istributionally robust optimization, see Hu and Hong (2012) , Jiang

nd Guan (2016) , Liu and Xu (2014) for recent applications. 

Substituting the coherent risk measure ρτ ( · ) into (3.6) , we ob-

ain the following risk averse stochastic Nash equilibrium 

 i ∈ arg min 

y i ∈ Y i 
ρτi 

( f i (y i , y −i , ξ )) , for i = 1 , . . . , m 

nd its DRNE formulation 

 i ∈ arg min 

y i ∈ Y i 
sup 

P∈P i 
E P [ f i (y i , y −i , ξ )] , for i = 1 , . . . , m, (3.7) 

here P i := { Q ∈ P : D KL (Q, P i ) ≤ τi } , P i is player i ’s nominal dis-

ribution, τ i is player i ’s ambiguity parameter. Moreover, by using

öllmer and Knispel (2011 , Proposition 3.1), we have 

in 

y i ∈ Y i 
sup 

P∈P i 
E P [ f i (y i , y −i , ξ )] = min 

y i ∈ Y i ,γi > 0 

τi 

γi 

+ e γi 
(− f i (y i , y −i , ξ )) . 
y taking ( y i , γ i ) as the decision variable of player i , we may con-

ider the following Nash equilibrium: 

(y ∗i , γ
∗

i ) ∈ arg min 

y i ∈ Y i ,γi > 0 

τi 

γi 

+ e γi 
(− f i (y i , y 

∗
−i , ξ )) , for i = 1 , . . . , m. 

(3.8) 

n what follows, we show that solving DRNE (3.7) is equivalent to

olving (3.8) . From a computational perspective, the latter is more

referable because it is an ordinary deterministic Nash equilibrium

roblem. 

roposition 3.1. y ∗ is a Nash equilibrium of problem (3.7) if and only

f there exists a γ ∗ > 0 such that ( y ∗, γ ∗) solves (3.8) . 

roof. Following a similar argument to Proposition 2.1 , we can

how that ( y ∗, γ ∗) is a solution to (3.8) if and only if it solves the

ollowing optimization problem 

min 

 ∈ Y,γ > 0 

m ∑ 

i =1 

τi 

γi 

+ e γi 
(− f i (y i , y 

∗
−i , ξ )) . (3.9) 

et ( y ∗, γ ∗) be an optimal solution to problem (3.9) . Suppose that

 

∗ is not a Nash equilibrium of (3.7) , that is, there exists, ȳ ∈ Y such

hat 

m 

 

i =1 

ρτi 
(− f i ( ̄y i , y 

∗
−i , ξ )) < 

m ∑ 

i =1 

ρτi 
(− f i (y ∗i , y 

∗
−i , ξ )) . 

hen 

in 

γ > 0 

m ∑ 

i =1 

τi 

γi 

+ e γi 
(− f i ( ̄y i , y 

∗
−i , ξ )) 

= 

m ∑ 

i =1 

min 

γi > 0 

τi 

γi 

+ e γi 
(− f i ( ̄y i , y 

∗
−i , ξ )) 

< 

m ∑ 

i =1 

min 

γi > 0 

τi 

γi 

+ e γi 
(− f i (y ∗i , y 

∗
−i , ξ )) 

= 

m ∑ 

i =1 

τi 

γ ∗
i 

+ e γ ∗
i 
(− f i (y ∗i , y 

∗
−i , ξ )) , 

hich yields a contradiction to the optimality of ( y ∗, γ ∗). Con-

ersely, if y ∗ solves (3.7) , that is, for any ȳ ∈ Y, 

m 

 

i =1 

ρτi 
(− f i ( ̄y i , y 

∗
−i , ξ )) ≥

m ∑ 

i =1 

ρτi 
(− f i (y ∗i , y 

∗
−i , ξ )) , 

hen by Föllmer and Knispel (2011 , Proposition 3.1), there exists a

ositive γ ∗ such that 

m 

 

i =1 

min 

γi > 0 

τi 

γi 

+ e γi 
(− f i ( ̄y i , y 

∗
−i , ξ )) 

≥
m ∑ 

i =1 

min 

γi > 0 

τi 

γi 

+ e γi 
(− f i (y ∗i , y 

∗
−i , ξ )) 

= 

m ∑ 

i =1 

τi 

γ ∗
i 

+ e γ ∗
i 
(− f i (y ∗i , y 

∗
−i , ξ )) , 

hich means that ( y ∗, γ ∗) is an optimal solution to problem

3.9) . �

2. Stochastic Nash equilibrium with conditional value at risk

CVaR). Conditional value at risk, sometimes called expected short-

all has received a great deal of attention as a measure of risk

 Rockafellar & Uryasev, 20 0 0; Zhang, Xu, & Wu, 20 09 ). In a finan-

ial context, it has a number of advantages over the commonly

sed value at risk (VaR) and has been proposed as the primary

ool for banking capital regulation in the draft Basel III standard. 
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For a given random variable Z ∈ Z and confidence level α ∈ (0,

1), CVaR is defined as 

CVaR α(Z ) := 

1 

1 − α

∫ 
{ ξ : Z(ξ ) ≥VaR α (Z) } 

Z P (dξ ) , 

where VaR α(Z) := inf { t : F (t) ≥ α} and F ( · ) is the cumulative dis-

tribution function of Z . 

Assuming that each player is risk averse by minimizing the

CVaR risk measure, then we arrive at a stochastic Nash equilibrium

model with CVaR risk measure 

y i ∈ arg min 

y i ∈ Y i 
CVaR αi 

( f i (y i , y −i , ξ )) , for i = 1 , . . . , m. (3.10)

By the dual representation (Shapiro et al., 2009, Chapter 6),

(3.10) can be recast into a DRNE 

y i ∈ arg min 

y i ∈ Y i 
sup 

P∈P i 
E P [ f i (y i , y −i , ξ )] , for i = 1 , . . . , m, (3.11)

where 

P i := 

{ 

P ∈ P : g P (ξ ) ∈ [0 , 
1 

1 − αi 

] , ξ ∈ �
} 

, 

and g P ( · ) denotes the density function corresponding to P . More-

over, by Rockafellar and Uryasev (20 0 0 , Theorem 1), minimizing

CVaR can be achieved by minimizing a more tractable auxiliary

function without predetermining the corresponding VaR first, that

is, 

CVaR α(Z) = min 

η∈ IR 
η + 

1 

1 − α

∫ 
�
(Z − η) + P (dξ ) , 

where (t) + = max (0 , t) . Then we may reformulate the DRNE as: 

(y ∗i , η
∗
i ) ∈ arg min 

y i ∈ Y i ,ηi 

ψ i (y i , y 
∗
−i , ηi ) , for i = 1 , . . . , m, (3.12)

where 

ψ i (y i , y 
∗
−i , ηi ) := ηi + 

1 

1 − αi 

∫ 
ξ∈ �

( f i (y i , y 
∗
−i , ξ ) − ηi ) + P (dξ ) . 

Similar to Proposition 3.1 , we have the following result. 

Proposition 3.2. y ∗ solves DRNE (3.11) if and only if there exists an

η∗ such that ( y ∗, η∗) solves (3.12) . 

4. Distributionally robust Stackelberg models 

The DRNE model that we discussed in the preceding sections

are restricted to the case that players are in an equal competitive

status under Nash conjecture. In this section, we deviate from the

model by considering a hierarchical structure namely Stackelberg

leader-follower model to describe a situation where some play-

ers are in a more strategic position than others such as new en-

trants of a market or capacity expansion of a dominant player. Note

that research on stochastic Stackelberg model has been well docu-

mented, see for example De Wolf and Smeers (20 0 0) and DeMiguel

and Xu (2009) . Here, we consider a robust counterpart where in-

formation on the underlying uncertainty is incomplete. Specifically

we consider two models: (a) Stackelberg distributionally robust

follower model where the leader is risk neutral and/or has more

information about the underlying uncertainty whereas the follow-

ers have less information and hence are more risk averse, (b) Stack-

elberg distributionally robust leader model where leader is risk

averse by playing robust strategy and followers play a stochastic

game. 

4.1. Stackelberg robust followers model 

Let us start by considering a situation where the leader is inter-

ested in the equilibrium outcome of the followers and it has some

mechanism to influence the equilibrium to achieve its own goal. In
ractice, the leader could be a strategic market player who plans to

nter a new market or expand its existing capacity, it can also be a

egulator of a new market. We will come to concrete applications

n Section 5 . 

Let z denote the decision vector of the leader and h ( z , y ) its

tility function. The utility function depends on z and the equilib-

ium of the followers is denoted by y . The leader presumes that

he followers are risk averse due to incomplete information on the

istribution of the underlying uncertainty and hence they play a

istributionally robust game: 

in 

y i ∈ Y i 
max 
P∈P i 

E P [ f i (z, y i , y −i , ξ )] , for i = 1 , . . . , m. (4.1)

he dependence of f i on z means that the leader’s decision has an

mpact on the disutility of the followers. 

We consider the leader’s optimal decision making problem

hich is to find an optimal decision z which maximizes its utility

 ( z , y ) with anticipation that the followers will reach an equilib-

ium (4.1) , that is, 

ax 
z∈ Z,y 

h (z, y ) 

s.t. y ∈ S(z) , 
(4.2)

here S ( z ) denotes the set of Nash equilibria of (4.1) for each

iven z ∈ Z . In the case when S ( z ) is not a singleton, formulation

4.2) means that the leader’s optimal decision is based on the best

quilibrium in favor of the leader. We say this is an optimistic

odel. A pessimistic model can be formulated if we consider the

orst equilibrium of the followers: 

max 
z∈ Z 

min 

y 
h (z, y ) 

s.t. y ∈ S(z) . 

he two models coincide when the set S ( z ) reduces to a singleton,

ee similar discussions by Shapiro and Xu (2008 , Section 2) on a

tochastic Stackelberg model. 

In what follows, we discuss numerical schemes for solving

roblem (4.2) . Assuming 

ax 
P∈P i 

E P [ f i (z, y i , y −i , ξ )] 

s convex in y i . Then each player’s optimization problem can be

epresented by its first-order Karush–Kuhn–Tucker condition. The

ain challenge here is that the function is not necessarily contin-

ously differentiable. 

Recall that Clarke subdifferential of a locally Lipschitz continu-

us function φ( x ) at x , denoted by ∂φ( x ), is defined as follows: 

φ(x ) := conv 

{ 

lim 

x ′ ∈ D , x ′ → x 
∇φ(x ′ ) 

} 

, 

here D denotes the set of points near x at which φ is Fréchet dif-

erentiable, and ∇φ( x ) denotes the gradient of φ at x . For a convex

et C ⊆ IR 

n , the normal cone to x at x ∈ C is 

 C (x ) = 

{
ζ ∈ IR 

n : ζ T d ≤ 0 , ∀ d ∈ T C (x ) 
}
, 

here T C (x ) = lim inf 
t→ 0 , C� x ′ → x 

1 
t (C − x ′ ) and N C (x ) = ∅ when x 
∈ C; see

larke (1983) for details of the subdifferential and normal cone. 

Assume that for fixed (z, y −i , ξ ) , f i (z, y i , y −i , ξ ) is convex w.r.t.

 i and Y i is a convex set and denote 

 i (z, y i , y −i ) := max 
P∈P i 

E P [ f i (z, y i , y −i , ξ )] . 

hen, ϑ i (z, y i , y −i ) is convex in y i for each given z and y −i . Subse-

uently, the robust Nash equilibrium is equivalent to 

 ∈ ∂ y i ϑ i (z, y i , y −i ) + N Y (y i ) , for i = 1 , . . . , m, 

i 
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here N Y i 
(y i ) is the normal cone to Y i at y i ∈ Y i . Consequently,

4.2) can be equivalently written as 

in 

z,y 
h (z, y ) 

.t. z ∈ Z, 

0 ∈ ∂ y i ϑ i (z, y i , y −i ) + N Y i (y i ) , for i = 1 , . . . , m. 

(4.3) 

he equilibrium constraint is difficult to handle since

 y i ϑ i (z, y i , y −i ) is a set-valued mapping. However, when

 i (z, y i , y −i ) is continuously differentiable w.r.t. y i , (4.3) re-

uces to an ordinary MPEC which can be solved by available code

uch as NLPEC (in GAMS). 

xample 4.1 (KL divergence) . Suppose that follower i does not

ave complete information on the distribution of uncertainty ξ and

t constructs an estimation P i based on some historical information.

or safety, it takes the ambiguity set 

 i := { Q ∈ P : D KL (Q, P i ) ≤ τi } , 
here τ i > 0 is the ambiguity (or robust) parameter. By the analy-

is in the Section 3.2 , we may reformulate the follower’s Nash equi-

ibrium (4.1) as: 

 

∗
i ∈ arg min 

y i ∈ Y i 
ρτi 

( f i (z, y i , y 
∗
−i , ξ )) , for i = 1 , . . . , m. 

uppose that f i ( · , ξ ) is continuously differentiable for every ξ ∈ �.

hen by Proposition 3.1 , we may reformulate the distributionally

obust follower model as: 

in 

z,y,τ
h (z, y ) 

.t. z ∈ Z, 

0 ∈ ∇ y i ρτi 
(z, y i , y −i , γi ) + N Y i (y i ) , for i = 1 , . . . , m, 

∇ γi 
ρτi 

(z, y i , y −i , γi ) = 0 , for i = 1 , . . . , m, 

hich is a standard stochastic MPEC. 

xample 4.2 (Moment information) . Consider the case that fol-

owers only have some moment information and they con-

truct the ambiguity sets as in (3.1) . Suppose the conditions of

xample 3.1 hold, and then for any given leader’s decision z , the

ollower’s DRNE model is: 

 

∗
i ∈ arg min 

y i ∈ Y i 
f i (z, y i , y 

∗
−i , μ) , for i = 1 , . . . , m, 

here μ is the mean value of random variable ξ . If in addition,

 i ( · , μ), i = 1 , . . . , m, is continuously differentiable, we may refor-

ulate the distributionally robust follower model as: 

in 

z,y 
h (z, y ) 

.t. z ∈ Z, 

0 ∈ ∇ y i f i (z, y i , y −i , μ) + N Y i (y i ) , for i = 1 , . . . , m, 

hich is an MPEC. 

Similarly, if the followers construct the ambiguity sets in the

orm of (3.2) based on the moment information. Then under

he conditions of Example 3.2 and continuously differentiable as-

umption, we may reformulate the distributionally robust follower

odel as: 

in 

z,y 
h (z, y ) 

.t. z ∈ Z, 

0 ∈ ∇ y i 
˜ f i (z, y i , y −i ) + N Y i (y i ) , for i = 1 , . . . , m, 

here ˜ f (·) is defined in the form of (3.3) . Again, we reformulate

he distributionally robust follower problem as an MPEC. 

.2. Stackelberg robust leader model 

In the previous subsection, we consider robust follower model

n the framework of Stackelberg paradigm. We now turn to discuss
obust leader model under the same framework where the follow-

rs play a stochastic Nash game. This applies to practice such as

ntroduction of a new market where the regulator (the leader) con-

emplates outcome of competition of market players (followers). In

hat case, the leader usually has less information about the under-

ying extraneous uncertainty whereas the followers will have com-

lete information about the distribution of the uncertainty when

he game is played, that is, for each P ∈ P and leader’s variable

 ∈ Z , the follower’s problem can be formulated as a stochastic Nash

quilibrium: 

 

∗
i ∈ arg min 

y i ∈ Y i 
E P [ f i (z, y i , y 

∗
−i , ξ )] , for i = 1 , . . . , m. (4.4)

Assume that the leader (regulator) is able to construct a set of

robability distributions P based on incomplete information and

elieves the true probability distribution lies in the set. Then the

eader would contemplate all possible equilibrium from each of the

istributions and base his optimal decision on the worst equilib-

ium outcome to hedge the risks. Mathematically, the leader solves

he following optimization problem 

in 

z∈ Z 
max 
P∈P 

max 
y (z,P) ∈ S(z,P) 

h (z, y (z, P )) , (4.5) 

here S ( z , P ) denotes the set of Nash equilibrium of (4.4) . If in
ddition, for each z ∈ Z , f i (z, y i , y −i , ξ ) is convex w.r.t. (y i , y −i ) and
 i is a convex set. We can reformulate (4.5) as 

in 
z∈ Z 

max 
P∈P,y ∈ Y 

h (z, y ) 

s.t. 0 ∈ E P [ ∇ y i f i (z, y i , y −i , ξ )] + N Y i (y i ) , for i = 1 , . . . , m. 

(4.6) 

Problem (4.6) is a kind of robust formulation of mathematical

rogram with stochastic variational inequality constraint. However,

t differs from standard formulation of DRO model in that the inner

aximization problem takes not only the worst probability dis-

ribution from ambiguity set P but the worst equilibrium of the

ollowers. Moreover, the maximization in P and y cannot be sepa-

ated which means we are unable to derive a dual formulation of

he maximization w.r.t. P , a standard approach in DRO. However,

hen follower’s problem has some specific structure, then problem

4.6) can be converted into a standard DRO. The following propo-

ition states that. 

roposition 4.1. Suppose that (a) for fixed leader’s decision z ,

eader’s object h ( z , y ) is linear in y; (b) for each given leader’s decision

 and probability measure P ∈ P, there exists a unique stochastic Nash

quilibrium y (z, P ) = E P [ g(z, ξ )] , where g ( z , ξ ) is a measure function.

hen problem (4.5) can be reformulated as a standard DRO: 

in 

z∈ Z 
max 
P∈P 

E P [ h (z, g(z, ξ ))] . 

We omit the proof as it is straightforward. Here we give an ex-

mple to explain the claim. 

xample 4.3. Consider the case where the leader is a regulator

ho chooses its decision variable z ∈ Z to affect the follower’s plan.

ssume for simplicity that there are two followers who compete

o provide homogeneous goods or services to a market. Market de-

and is described by an inverse demand function 

p(q, z, ξ ) = a (z, ξ ) − b(z, ξ ) q, 

here q is the total supply to the market and ξ is a random vari-

ble representing uncertainty in demand. The dependence on z

eans that the regulator has an influence on the demand, i.e., tax

n goods or services. Let x 1 and x 2 denote the production by firms

 and 2. Assume that both firms need to make a decision on their

roduction level prior to the realization of demand uncertainty and



640 Y. Liu et al. / European Journal of Operational Research 265 (2018) 631–643 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

t  

fl
 

i  

v  

p  

w

T

π  

w  

v
 

c  

k  

w  

p  

i  

e  

s  

o  

l

x
 

w  

s  

(  

b

 

b  

l  

i  

d  

t

w  

f
 

a  

l  

s

π

w  

t  

a  

d  

s

 

s  

a

m

w  

n

 

p  
they can observe decisions from each other. Then firm 1’s decision

making problem is 

max 
x 1 

E P [(a (z, ξ ) − b(z, ξ )(x 1 + x 2 )) x 1 ] − c 1 x 1 

s.t. 0 ≤ x 1 ≤ u 1 , 

where c 1 x 1 is the production cost and u 1 is the capacity limit. Like-

wise, we can formulate firm 2’s decision problem 

max 
x 2 

E P [(a (z, ξ ) − b(z, ξ )(x 1 + x 2 )) x 2 ] − c 2 x 2 

s.t. 0 ≤ x 2 ≤ u 2 . 

Assume for the simplicity of discussion that u 1 and u 2 are suffi-

ciently large such that at any equilibrium neither firm will reach its

capacity limit. Suppose also that for any z and P ∈ P, E [ b(z, ξ )] > 0

(a sufficient condition is that b ( z , ξ ) > 0, ∀ z ∈ Z , ξ ∈ �) and c 1 ,

c 2 > 0. Then by Szidarovszky and Yakowitz (1977 , Theorem 1),

there exists a unique Nash equilibrium: {
E P [ a (z, ξ )] + c 2 − 2 c 1 

E P [3 b(z, ξ )] 
, 

E P [ a (z, ξ )] + c 1 − 2 c 2 
E P [3 b(z, ξ )] 

}
. 

Suppose that the leader’s utility is a linear function f ( z , y ) in the

follower’s response y and b(z, ξ ) = b(z) is not dependent on ξ , and

then the leader’s problem can be reformulated as: 

min 

z∈ Z 
max 
P∈P 

E P 

[
h (z, y ) := h 

(
z, 

(
a (z, ξ ) + c 2 − 2 c 1 

3 b(z) 
, 

a (z, ξ ) + c 1 − 2 c 2 
3 b(z) 

))]
, 

which is a standard DRO problem. 

5. Hierarchical capacity competition problem 

Supply chain and outsourcing practices are ubiquitous in to-

day’s competitive global business environment. In the capacity in-

vestment context, we have seen that for entering a new, uncer-

tain market, a firms may not only invests in its own capacity but

also outsources a certain amount of production to other firms who

need to expand their capacity, as well, for obtaining the orders. A

notable case in semiconductor manufacturing is that the global gi-

ant Samsung always expands its capacity and outsources to other

competing manufacturers in China, Japan and Taiwan at the same

time. In consumer electronics sector, the similar strategy is also

found in Apple’s new product launches such as the next genera-

tions of iPhone and iPad. 

This distinctive business practice of simultaneous capacity in-

vestment and outsourcing in high-tech sectors motivates us to

study a supply chain model of hierarchical capacity competition

where a buying firm ( buyer ; e.g., Samsung) not only invests in

its own capacity to supply a new, uncertain market but also out-

sources a certain amount of market supply to multiply compete

with supplying firms ( suppliers , i = 1 , . . . , m ; e.g., semiconductor

manufacturers in China, Japan and Taiwan) who invest in their ca-

pacity for the buyer’s orders (that can be thought of as a spot mar-

ket). 

We suppose that the buyer and the suppliers follow the fol-

lowing rules: the buyer and suppliers sign a forward contract with

fixed qualities and strike price a 0 p b , where 0 < a 0 < 1 is parameter

and p b is buyer’s unit price determined by the market. The sup-

pliers must fulfill the contract with the buyer and sell the resid-

ual production directly to the market. Likewise, the supplier’s mar-

ket price p s 
i 

is determined by market, which is often lower than

buyer’s market price. The buyer’s demand of end-product to con-

sumers satisfies the following stochastic linear inverse demand

function: 
p b (x, y, z, ξ ) = a b − r b 

( 

x + 

m ∑ 

i =1 

y i 

) 

− r s b 

m ∑ 

i 

(z i − y i ) + ξ , 

here a b is the upper bound for customers’ willingness to pay for

he buyer’s product, ξ is a random variable which characterizes the

uctuation of the price, r b is buyer’s inverse demand sensitivity, r s 
b

s suppliers’s inverse demand sensitivity, x is the buyer’s supply

ia its own capacity, y i is the buyer’s supply via the supplier i ’s

roduction, and z i is the total capacity of supplier i . For simplicity,

e denote Y = 

∑ m 

i =1 y i and Z = 

∑ m 

i =1 z i . Then 

p b (x, y, z, ξ ) = a b − r b (x + Y ) − r s b (Z − Y ) + ξ . 

he buyer’s ex ante profit can be written as 

b (x, y, z, ξ ) = [ p b (x, y, z, ξ ) − c b ](x + Y ) − v b x − a 0 p b (x, y, z, ξ ) Y,

here c b is the buyer’s marginal cost of end-product production,

 b is the buyer’s marginal investment cost of capacity. 

We suppose that the buyer knows how the suppliers will

hoose their decisions (see the discussion below) but does not

now which demand scenario will occur in future at the time

hen is made the decision. As being a dominant player over other

layers, we suppose that buyer has more information on ξ and it

s a risk taker. Then the buyer can do at best is to maximize the

xpected profit based on its knowledge on the market demand. For

implicity, we consider the case that the buyer has full information

f random ξ . Then buyer’s ex post decision problem can be formu-

ated as 

max 
 ≥0 ,y ≥0 ,z≥0 

E P [ πb (x, y, z, ξ )] 

s.t. z ∈ S(x, y ) , 
(5.1)

here S ( x , y ) denotes the set of suppliers’ optimal decision corre-

ponding to the given buyer’s decision ( x , y ). Similar to problem

4.2) , model (5.1) may be interpreted as an optimistic view of the

uyer if S ( x , y ) is not singleton. 

Next, we analyze the suppliers’ optimal decision. Given the

uyer’s capacity x and order quality y , the i th supplier chooses its

evel of capacity investment, z i , to maximize its profit from selling

ts production to the buyer and market. Suppose that supplier i ’s

emand of end-product to consumers satisfies the similar stochas-

ic linear inverse demand function: 

p s i (x, y, z, ξ ) = a s i − r b (x + Y ) − r s b (Z − Y ) + ξ , 

here a s 
i 

is the upper bound for customers’ willingness to pay

or the supplier i ’s product. We should keep in mind that a s 
i 
< a b

s supplier is the small player which means its value of brand is

ower than buyer’s. For the given buyer’s decision ( x , y ) and other

uppliers decision Z −i , the i th supplier’s ex post profit is: 

s 
i (z i , ξ ) = [ a 0 p b (x, y, z, ξ ) − r i ] y i 

+ [ p s i (x, y, z, ξ ) − c i ](z i − y i ) − v i z i , 

here r i is the supplier i ’s marginal cost of component produc-

ion, c i is the supplier i ’s marginal cost of end-product production,

nd v i is its marginal investment cost of capacity. Note that r i is

ifferent from r b so the quality difference between the buyer and

uppliers’ end products is considered. 

For the given buyer’s decision ( x , y ) and other suppliers’ deci-

ion Z −i , supplier i ’s ex ante decision problem can be formulated

s 

ax 
z i 

E P [ π s 
i 
(z i , ξ )] 

s.t. z i ≥ y i , 

here the constraints mean that the supplier’s capacity must be

o less than the order quality on the signed contract. 

Different from the buyer, the suppliers may only have some

artial information on ξ and as a dominated players, they tend
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Fig. 1. Capacity investment w.r.t ambiguity parameter. (For interpretation of the 

references to color in this figure, the reader is referred to the web version of this 

article.) 

Fig. 2. Profit w.r.t ambiguity parameter. (For interpretation of the references to 

color in this figure, the reader is referred to the web version of this article.) 

s  

t  

t  

i  

v  

r
 

i  

σ
 

l  

e  

r  

d  

g  

s  

s  

t  

h  

o  

b  

b  

i  

t  

r  

a  

w

o be risk averse. Thus we may model them by DRNE, that is, by

iewing the buyer’s decision ( x , y ) as given, the suppliers compete

y playing a distributionally robust Nash–Cournot game: 

ax 
z i ≥y i 

inf 
P∈P i 

E P [ π
s 
i (z i , ξ )] , 

here P i is the ambiguity set perceived by supplier i based on its

nformation on the uncertainty. Obviously, for given ( x , y ) and Z −i ,
s 
i 
(·, ξ ) is a concave function. By Theorem 2.1 , there is a robust

ash equilibrium, hence, S ( x , y ) 
 = ∅ . 
In what follows, we discuss conditions for the uniqueness of

quilibrium because the uniqueness is of interest from both com-

utational and economic perspectives. We proceed the analysis by

nvoking Rosen’s earlier result, namely Rosen (1965 , Theorem 2)

or the uniqueness of a deterministic Nash equilibrium problem.

efine 

(z, υ) = 

m ∑ 

i =1 

υi inf 
P∈P i 

E P [ π
s 
i (z i , ξ )] , 

here υ = (υ1 , . . . , υm 

) ≥ 0 . According to Rosen (1965 , Theorem

), if σ (z, υ) is diagonally strictly concave for some r > 0 (see

osen, 1965 , Defintion 1), then there exists a unique Nash equi-

ibrium. In this context, a sufficient condition for σ (z, υ) to be di-

gonally strictly concave is that the Jacobian of function 

(z, υ) := 

⎛ 

⎝ 

υ1 ∇ z 1 inf P∈P i E P [ π
s 
1 (z 1 , ξ )] 

. . . 
υm 

∇ z m inf P∈P i E P [ π
s 
m 

(z m 

, ξ )] 

⎞ 

⎠ 

s a negative definite matrix. To this end, we need to dis-

uss sufficient conditions for continuous differentiability of P i ,

nf P∈P i E P [ π
s 
i 
(z i , ξ )] in z i . This is beyond the focus of this paper, we

efer interested readers to Shapiro et al. (2009 , Chapater 6), where

he authors discussed differentiability of coherent risk measures. 

However, we might consider simpler case as we discussed in

ection 3.1 that if the ambiguity set is defined through moment

onditions such as (3.1) (or (3.2) ), then we can obtain a closed

orm for inf P∈P i E P [ π
s 
i 
(z i , ξ )] . Since π s 

i 
(·) is linear in ξ , if P i , i =

 , . . . , m, is in the form of (3.1) , then 

(z, υ) := 

⎛ 

⎜ ⎝ 

υ1 ∇ z 1 π
s 
1 (z 1 , μ) 

. . . 

υm 

∇ z m π
s 
m 

(z m 

, μ) 

⎞ 

⎟ ⎠ 

, 

here μ denotes the mean of ξ . For υ = (1 , . . . , 1) , 

�(z, υ) := 

⎛ 

⎜ ⎜ ⎜ ⎝ 

−2 r s 
b 

−r s 
b 

· · · −r s 
b 

−r s 
b 

−2 r s 
b 

· · · −r s 
b 

. . . 
. . . 

. . . 
. . . 

−r s 
b 

−r s 
b 

· · · −2 r s 
b 

⎞ 

⎟ ⎟ ⎟ ⎠ 

. 

ince r s 
b 

> 0 , it is easy to verify the negative definiteness of

�(z, υ) by the principal minors. Consequently, the uniqueness

ollows. 

.1. Numerical study 

We consider the case that there is a buyer, b , and two suppliers,

 ∈ {1, 2}, who both employ the KL divergence to be risk averse: 

 := { Q ∈ P : D KL (Q, P 0 ) ≤ τ } , 
here P 0 is the nominal distribution. By the analysis of

xample 4.1 , we may reformulate the buyer’s model as an MPEC

roblem and then we call the solver NLPEC under GAMS installed

n a PC with Windows XP operating system to solve the MPEC. We

eport the numerical results for comparing the robust model with
tochastic model by varying the ambiguity parameter τ from 0.05

o 0.8. In the stochastic model, the suppliers also have full informa-

ion of the uncertainty ξ as does the buyer. We set the parameters

nvolved in the model (5.1) : a b = 0 . 8 , r b = 1 , r s 
b 

= 0 . 7 , c b = 0 . 001 ,

 b = 0 . 0015 , a 0 = 0 . 8 , a s 
1 

= 0 . 5 , a s 
2 

= 0 . 65 , c 1 = 0 . 003 , c 2 = 0 . 003 ,

 1 = 0 . 002 , r 2 = 0 . 002 , v 1 = 1 . 1 c 1 , v 2 = 1 . 1 c 2 , and the nominal P 0
s normally distributed with mean μ = 0 and standard deviation

= 0 . 1 . 

Figs. 1 and 2 illustrate the numerical results of the robust fol-

ower model (5.1) with a fixed sample size 30 in the sample av-

rage approximation method and by increasing the ambiguity pa-

ameter τ (where τ = 0 is corresponding to the SP model). To re-

uce the impact of the samples on the results, we generate 30

roups of the sample and then take the average of the optimal

olutions and optimal values. Fig. 1 shows that buyer’s profit (red

olid line) has a tendency of increasing in the ambiguity parame-

er τ . On the contrary, the suppliers’s profit (blue dash–dot line)

as a tendency of decreasing in the ambiguity parameter τ . More-

ver, the total profit of a supply chain (the green dash line) is sta-

le with the value around 0.15. Fig. 2 depicts the variation trend of

uyer’s (red solid line) and suppliers’ (blue dash–dot line) capacity

nvestments. It shows that the capacity investments have similar

rends with the profits in Fig. 1 . By increasing the ambiguity pa-

ameter τ , the market is more uncertain to the suppliers and they

re thus reluctant to invest in capacity. At the same time, the buyer

ill invest more in capacity. 
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To summarize, our findings suggest that the suppliers’ capacity

investments and profits are increasing with the degree of informa-

tional completeness on demand uncertainty, but the buyer’s capac-

ity investment and profit are decreasing with the degree of infor-

mational completeness on demand uncertainty. In Fig. 1 , we can

observe that the total supply chain profit remains unchanged over

the value range of ambiguity parameter we consider. This is sim-

ply because the degree of information completeness on demand

uncertainty primarily plays the role of how different supply-chain

parties (buyer versus suppliers) appropriate the total profit they

co-create, but does not impact the total profit generated by the en-

tire supply chain. These observations point out an effective strat-

egy for the buyer in a supply chain involving hierarchical capacity

competition, consistent with the real-world practice: release less

information on product demand to the suppliers so it can capture

more supply chain profits by simultaneously investing heavily in

the own capacity and outsourcing a sizable amount to the suppli-

ers for utilizing most of their capacity. If the suppliers have more

information on product demand, this strategy of simultaneous ca-

pacity investment and outsourcing is less effective since the buyer

is harder to fully utilize the suppliers’ capacity through outsourcing

while they can also invest heavily in capacity to counteract with

the buyer’s strategic deployment. This numerical study shows the

promise of the proposed methods contributing to a sizable body

of operations and supply chain literature that many well-received

insights are derived from stochastic Nash equilibrium schemes and

they may be altered when decision makers have no complete in-

formation on underlying uncertainties, as demonstrated here. 

6. Concluding remarks 

Motivated by recent research on robust game theory and

distributinally robust finite game ( Aghassi & Bertsimas, 2006;

Ahipasaogluy et al., 2015; Loizou, 2015; 2016; Qu & Goh, 2012;

Singh et al., 2016 ), we study several distributionally robust equilib-

rium models. We start with a distributionally robust Nash equilib-

rium (DRNE) model. Different from the existing studies, we focus

on the general DRNE game rather than the finite DRNE games. We

investigate the existence of equilibrium for the DRNE model, pro-

pose a numerical scheme for its computation, and specify some

cases where the DRNE models can be reformulated as ordinary

deterministic Nash equilibrium models. We then extend the dis-

cussion on DRNE to two distributionally robust Stackelberg mod-

els: a distributionally robust follower model and a distributionally

robust leader model. Based on the discussion on DRNE, we refor-

mulate the distributionally robust follower model as a mathemat-

ical program with equilibrium constraints and the distributionally

robust leader model as a standard distributionally robust optimiza-

tion problem under some moderate conditions. To demonstrate the

applicability of our theoretical and numerical approaches, we em-

ploy the distributionally robust follower model to analyze the hier-

archical capacity competition problem in a supply chain which, to

the best of our knowledge, has not been systematically studied in

the operations and supply chain literature. 

It might be possible to take this work further in the following

directions. First, it might be interesting to extend our model to the

case where each player’s objective is a distortion risk measure and

explore existence of an equilibrium and computational schemes for

calculating an equilibrium. Second, as we can see from this paper,

the structure of the ambiguity set has a big impact on numerical

solvability of our models. In the literature of DRO, a number of

statistical methods have been proposed for construction of ambi-

guity set depending on the availability of information. It might be

helpful to look into how our models and numerical schemes are

played out when the ambiguity set of each player is constructed

through Wasserstein metric. Moreover, in practice, the ambiguity
et might be constructed through samples and other statistical in-

ormation, and it will therefore be interesting to investigate how

he change of information would affect the equilibrium. This kind

f research has been carried out for DROs in the sense of stability

nalysis, see recent papers by Zhang, Xu, and Zhang (2016) and Sun

nd Xu (2017) . It will be both theoretically and numerically inter-

sting to establish qualitative and quantitative stability results for

he robust equilibrium problems. Finally this paper touches briefly

tackelberg robust leader model where the leaders play a robust

ame whereas followers play a stochastic Nash game. We believe

his kind of model is practically interesting but unfortunately here

e don’t have much space to explore the model and numerical

cheme further. 
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