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Abstract. In the literature, error bound conditions have been widely used to study the linear
convergence rates of various first-order algorithms. Most of the literature focuses on how to ensure
these error bound conditions, usually posing numerous assumptions or special structures on the model
under discussion. In this paper, we focus on the alternating direction method of multipliers (ADMM)
and show that the known error bound conditions for studying the ADMM’s linear convergence rate
can indeed be further weakened if the error bound is studied over the specific iterative sequence
it generates. An error bound condition based on ADMM’s iterations is thus proposed, and linear
convergence under this condition is proved. Furthermore, taking advantage of a specific feature
of ADMM’s iterative scheme by which part of the perturbation is automatically zero, we propose
the so-called partial error bound condition, which is weaker than known error bound conditions
in the literature, and we derive the linear convergence rate of ADMM. We further show that this
partial error bound condition is useful for interpreting the difference if the two primal variables are
updated in different orders when implementing the ADMM. This has been empirically observed in
the literature, yet no theory is known.
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1. Introduction. In this paper we study error bound conditions to ensure the
linear convergence rate of the alternating direction method of multipliers (ADMM).
The ADMM was originally proposed [5, 19] for solving some nonlinear elliptic equa-
tions, and it has recently found a broad spectrum of applications in various fields. To
recall the ADMM, we focus on the convex minimization model with linear constraints
and an objective function that is the sum of two functions without coupled variables:

(1.1)
min

x∈X ,y∈Y
f(x) + g(y)

s.t. Ax+By = b,

where f : Rn1 → R and g : Rn2 → R are both convex (not necessarily smooth)
functions; A ∈ Rm×n1 and B ∈ Rm×n2 are given matrices; X ⊂ Rn1 and Y ⊂ Rn2 are
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convex sets; and b ∈ Rm. The iterative scheme of ADMM for (1.1) reads as
(1.2)

xk+1 = arg min
x∈X

{
f(x)− (λk)T (Ax+Byk − b) +

β

2
‖Ax+Byk − b‖2

}
,

yk+1 = arg min
y∈Y

{
g(y)− (λk)T (Axk+1 +By − b) +

β

2
‖Axk+1 +By − b‖2

}
,

λk+1 = λk − β(Axk+1 +Byk+1 − b),
where λ is the Lagrange multiplier and β > 0 is a penalty parameter. The subprob-
lems arising in ADMM’s iterations may be much easier to solve than the original
problem (1.1), and indeed they may have closed-form solutions when f and g are
special enough. This feature makes the implementation of ADMM extremely easy
for some applications arising in areas such as compressive sensing, image processing,
statistical learning, sparse and low-rank optimization problems, etc., and it explains
the popularity of ADMM in various areas. We refer to [4, 13, 18] for some review
papers on ADMM.

Under some mild conditions such as the nonemptiness of the solution set of prob-
lem (1.1), the convergence of ADMM has been well studied in the literature, e.g.,
[11, 12, 16, 17, 19, 20, 30, 38]. Because of applications recently found in various
areas, research on the convergence analysis of the ADMM has regained attention,
and more efforts have been devoted to convergence-rate analysis. In [32, 33, 41], the
worst-case O(1/k) convergence rate measured by the iteration complexity has been
established for ADMM in both the ergodic and nonergodic senses, where k is the it-
eration counter. Such a convergence rate is sublinear. Consequently, some results for
the linear convergence rate of ADMM have been established either for special cases
of the generic model (1.1) or for scenarios where more assumptions are imposed on
the model (1.1). For example, it is shown in [3, Theorem 6.4] that the local linear
convergence rate of ADMM can be guaranteed for special linear and quadratic cases
of (1.1) if it is assumed that both minimization subproblems in (1.2) have unique
optimal solutions, and if some strict complementarity conditions hold. Moreover, if
f and/or g is strongly convex, and one of them is differentiable with a Lipschitz con-
tinuous gradient, and if the generated iterative sequence is assumed to be bounded,
together with some full-rank conditions of the coefficient matrices, then the global
linear convergence rate of ADMM is proved in [8, 42].

Error bound conditions turn out to play an important role in studying the linear
convergence rate of the ADMM. To elucidate error bound conditions, we first mention
the Karush–Kuhn–Tucker (KKT) system of the problem (1.1):

(1.3)


0 ∈ ∂f(x)−ATλ+NX (x),

0 ∈ ∂g(y)−BTλ+NY(y),

0 = Ax+By − b,

where ∂f(x) denotes the subgradient of convex function f at x and NC(c) := {ξ :
〈ξ, ζ− c〉 ≤ 0 ∀ζ ∈ C} denotes the normal cone at c to a given convex set C. Let S∗ be
the solution set of the KKT system (1.3) and assume it is nonempty. Furthermore,
let r : Rn1 × Rn2 × Rm → R+ be a residual error function satisfying r(x, y, λ) = 0 iff
(x, y, λ) ∈ S∗. We say that the KKT system (1.3) admits a local error bound around
a given point (x∗, y∗, λ∗) ∈ S∗ with the residual error function r(x, y, λ) if there exists
a neighborhood

Bε(x∗, y∗, λ∗) := {(x, y, λ) : ‖(x, y, λ)− (x∗, y∗, λ∗)‖ ≤ ε}
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PARTIAL ERROR BOUND AND LINEAR CONVERGENCE OF ADMM 2097

of the point (x∗, y∗, λ∗) and a constant κ > 0 such that

(1.4) [EBr] dist((x, y, λ), S∗) ≤ κ · r(x, y, λ) ∀(x, y, λ) ∈ Bε(x∗, y∗, λ∗).

Throughout, we define dist(c, C) := inf{‖c−c′‖
∣∣ c′ ∈ C} for a given subset C and vector

c in the same space, and ‖·‖ is the 2-norm unless otherwise specified. If this estimate is
valid for every (x, y, λ) ∈ Rn1×Rn2×Rm, rather than merely (x, y, λ) ∈ Bε(x∗, y∗, λ∗),
we say that the KKT system (1.3) admits a global error bound.

Error bound conditions of the KKT system (1.3) with various choices of the
residual error function r(x, y, λ) have inspired some work that has studied the linear
convergence rate of the ADMM (see, e.g., [28, 29, 54]). According to (1.3), it is natural
to define a mapping φ : Rn1 × Rn2 × Rm ⇒ Rn1 × Rn2 × Rm as

(1.5) φ(x, y, λ) =

∂f(x)−ATλ+NX (x)
∂g(y)−BTλ+NY(y)

Ax+By − b


and then a residual error function as r(x, y, λ) = dist(0, φ(x, y, λ)). We call φ, as
defined by (1.5), the KKT mapping for obvious reasons, and the KKT system (1.3)
can be written as 0 ∈ φ(x, y, λ). With φ(x, y, λ) given in (1.5), let us define S :
Rn1 × Rn2 × Rm ⇒ Rn1 × Rn2 × Rm as

(1.6) S(p) := {(x, y, λ) | p ∈ φ(x, y, λ)}

with p = (p1, p2, p3) ∈ Rn1 × Rn2 × Rm. Obviously, S(0) = S∗. Recall that we are
interested in finding 0 ∈ φ(x, y, λ), i.e., (x, y, λ) ∈ S(0) = {(x, y, λ) | 0 ∈ φ(x, y, λ)}.
Hence, p in (1.6) plays the role of a perturbation parameter and (1.6) can be regarded
as a perturbed system of the KKT system (1.3). This is also why we purposely use
the same letter S to define the mapping in (1.6) in addition to the notation S∗ for
the solution set of the KKT system (1.3).

Let us use the notation w = (x, y, λ) for a more compact presentation. Now, using
dist(0, φ(w)) as the residual error function, the KKT system (1.3) is said to admit a
local error bound around a feasible point w̄ = (x̄, ȳ, λ̄) if there exists a neighborhood
Bε(w̄) of w̄ and some constant κ > 0 such that

(1.7) [FEB] dist(w, S(0)) ≤ κ · dist(0, φ(w)) ∀w ∈ Bε(w̄).

Indeed, in terms of variational analysis, the existence of an error bound around the
reference point w̄ with the residual error function r(w) = dist(0, φ(w)) is exactly the
metric subregularity of the KKT mapping φ(w) at (w̄, 0). The set-valued mapping
φ(w) is called metrically subregular around (w̄, 0) if there exists a neighborhood Bε(w̄)
of w̄ and κ ≥ 0 such that

dist
(
w, φ−1 (0)

)
≤ κ · dist (0, φ (w)) ∀w ∈ Bε(w̄).

Equivalently, φ(w) is metrically subregular around (w̄, 0) if there exists a neighbor-
hood Bε(w̄) of w̄ and κ ≥ 0 such that

S (p) ∩ Bε(w̄) ⊂ S (0) + κ ‖p‖ · B1(0) ∀p,(1.8)

i.e., the set-valued mapping S(p) is calm around (0, w̄). We refer to [9, 46] for more
details on the concepts of metric subregularity, calmness, and their relationship. Note
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2098 Y. LIU, X. YUAN, S. ZENG, AND J. ZHANG

that calmness was first introduced as the pseudo-upper-Lipschitz continuity in [55],
taking into account that it is weaker than both the upper-Lipschitz continuity of
Robinson [43, 44] and the pseudo-Lipschitz continuity of Aubin [2]. The set-valued
mapping S(p) is called upper-Lipschitz continuous around (0, w̄) if there exists a
neighborhood Bε(0) of 0 and κ ≥ 0 such that

S (p) ⊂ S (p′) + κ ‖p− p′‖ · B1(0) ∀p, p′ ∈ Bε(0)(1.9)

and is called pseudo-Lipschitz continuous around (0, w̄) if there exist neighborhoods
Bε(w̄) of w̄ and Bε(0) of 0, and κ ≥ 0 such that

S (p) ∩ Bε(w̄) ⊂ S (p′) + κ ‖p− p′‖ · B1(0) ∀p, p′ ∈ Bε(0).(1.10)

Moreover, S(p) in (1.6) considers the canonical perturbation p of φ(w). From now on,
we call (1.7) a full error bound (FEB) condition since p fully perturbs φ in (1.6).

In the literature, other error bound conditions have been defined as well for study-
ing the linear convergence rate of the ADMM and its variants. For instance, based on
the so-called natural map (see [15, p. 83]) in terms of the Moreau–Yosida proximal
mapping, the following mapping is used in [29]:

(1.11) R1(w) =

x− Proxf+δX (x+ATλ)
y − Proxg+δY (y +BTλ)

Ax+By − b

 ,

where δ is the indicator function of a convex set and Proxh is the proximal mapping
associated with the function h, i.e.,

Proxh (a) := arg min
t∈Rn

{
h(t) +

1

2
‖t− a‖2

}
.

The mapping defined by (1.11) is also called the proximal KKT mapping. Then a
residual error function is defined as r(w) = dist(0, R1(w)) in [29]. Accordingly, the
KKT system (1.3) is said to admit a local proximal error bound around w̄ if there
exists a neighborhood Bε(w̄) of w̄ and some κ > 0 such that

(1.12) [Proximal EB− I] dist(w, S∗) ≤ κ · ‖R1(w)‖ ∀w ∈ Bε(w̄).

Note that (1.12) coincides with the metric subregularity of R1(w) at (w̄, 0). Under
the proximal error bound condition (1.12), the linear convergence rate of the ADMM
(1.2) (and its variant with a relaxation factor) is obtained in [29] for the special case
of the problem (1.1) where the objective function is quadratic. The conditions used
in [3], such as the uniqueness of optimal solutions to the subproblems, and strict
complementarity are not needed by the analysis in [29].

Later, an alternative form of (1.11) is considered in [54]:

(1.13) R2(w) =

x− ProjX (x− ∂f(x) +ATλ)
y − ProjY(y − ∂g(y) +BTλ)

Ax+By − b

 ,

where ProjC(ζ) := arg minξ∈C {‖ξ − ζ‖} is the canonical projection operator onto a
given convex set C. Accordingly, the residual error function is defined as r(w) =
dist(0, R2(w)), and the KKT system (1.3) is said to admit a local error bound around
w̄ if there exists a neighborhood Bε(w̄) of w̄ and some κ > 0 such that

(1.14) [Proximal EB− II] dist(w, S∗) ≤ κ · dist(0, R2(w)) ∀w ∈ Bε(w̄).
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Under the error bound condition (1.14), which also reads as the metric subregularity
of R2(w) at (w̄, 0), the linear convergence rate of the ADMM (1.2) and its linearized
variant is established in [54] for the special case of (1.1) where ∂f and ∂g are both
polyhedral multifunctions. Recall that a set-valued mapping is called a polyhedral
multifunction if its graph is the union of finitely many convex polyhedra. Note that
the projection operator onto a closed convex set C can be regarded as the proximal
operator associated with the indicator function over C. We also call (1.14) a local
proximal error bound of the KKT system (1.3).

In [1], the linear convergence of the Douglas–Rachford splitting method is studied
under the metric subregularity assumption of the involved operator, and this result
includes the linear convergence rate of the ADMM (1.2) for the model (1.1) as a special
case. As analyzed in [1], when ∂f and ∂g in (1.1) are both polyhedral multifunctions,
the required metric subregularity is satisfied and thus the linear convergence of ADMM
can be ensured.

As in [32], instead of the original ADMM scheme (1.2), our analysis is for the
slightly generalized proximal version of the ADMM (PADMM),
(1.15)

xk+1 = arg min
x∈X

{
f(x)−(λk)T (Ax+Byk−b)+β

2
‖Ax+Byk − b‖2+

1

2
‖x−xk‖2D

}
,

yk+1 = arg min
y∈Y

{
g(y)− (λk)T (Axk+1 +By − b) +

β

2
‖Axk+1 +By − b‖2

}
,

λk+1 = λk − β(Axk+1 +Byk+1 − b),

where D ∈ Rn1×n1 is a symmetric and positive semidefinite matrix. Here, we slightly
abuse the notation ‖x‖2D for the number xTDx even though D may be only positive
semidefinite. The penalty parameter β is fixed throughout our discussion. This scheme
includes the original ADMM scheme (1.2) and the linearized ADMM (or split inexact
Uzawa method in [56]) as special cases with D = 0 and D = (σIn1 − βATA) with
σ > β‖ATA‖, respectively. As analyzed in [47], the linearized ADMM (see, e.g.,
[37, 51, 53]) is highly relevant to the primal-dual hybrid gradient (PDHG) method
which is popularly used in many areas such as machine learning and image processing;
see, e.g., [6, 50], to mention a few. We also refer to, e.g., [31, 49], for some revisits
to the PDHG method from the perspective of the proximal point algorithm in [40].
Hence, we include this case in our discussion and consider the PADMM (1.15).

On the other hand, for our desired linear convergence of PADMM (1.15), pre-
viously introduced error bound conditions (1.7), (1.12), and (1.14) in the mentioned
literature are all proposed on the basis of the KKT system (1.3). Generally, they
are assumed only dependently on the model (1.1) but irrelevant to any specific algo-
rithm under discussion. We thus call them generic error bound conditions. Obviously,
they are somehow too “sufficient” for studying the convergence rate of a specific al-
gorithm. Indeed, most of the efforts, e.g., [3, 28, 29, 54], have been focused on how to
ensure these error bound conditions, usually by imposing more assumptions or special
structures on the model (1.1), so that the linear convergence rate of ADMM can be
guaranteed. In other words, the structures and features of a specific algorithm are
ignored when its linear convergence rate is studied via error bound conditions, and
thus directly using these generic error bound conditions indeed shrinks the range that
validates the linear convergence rate of ADMM.

In this paper, we are more interested in weakening error bound conditions (1.7),
(1.12), and (1.14) for the purpose of ensuring the linear convergence rate of the specific
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PADMM (1.15). We investigate certain error bound conditions that are specifically
based on the iterative scheme (1.15). Our only interest is to estimate the error bound
for the specific sequence {wk} generated by (1.15) to the solution set S∗ of the KKT
system (1.3), rather than the generic error bound conditions in the forms of (1.7),
(1.12), or (1.14).

In section 3, we propose an error bound condition based on the specific itera-
tive scheme (1.15) and prove that it suffices to ensure the linear convergence of the
PADMM (1.15). We also show that the generic FEB (1.7) is sufficient to ensure this
iteration based error bound condition.

In section 4, we clarify the equivalence between the FEB (1.7) and the proximal
EB-I (1.12) and proximal EB-II (1.14). Because of the equivalence, theoretically we
can choose from (1.7), (1.12), and (1.14). We further explain why we choose the FEB
(1.7) to conduct the convergence analysis for the PADMM (1.15) from a perturbation
analysis perspective.

With the purpose of studying the error bound condition based on PADMM iter-
ation, we find that a more meticulous analysis for the sequence generated by (1.15)
immediately provides an insight and helps to further weaken the mentioned error
bound conditions but still ensure the linear convergence rate of the PADMM (1.15).
More specifically, for the sequence {wk} generated by (1.15), the second part of the
KKT system (1.3), i.e., 0 ∈ ∂g(yk) − BTλk + NY(yk), holds for all iterations. In
the language of perturbation analysis, the sequence {wk} generated by the PADMM
(1.15) introduces no perturbation to the part 0 ∈ ∂g(y) − BTλ + NY(y) in (1.6).
This interesting observation suggests that there is no need to fully satisfy a general
error bound condition that is derived based on the KKT system (1.3), and a par-
tial error bound (PEB) condition without consideration of the perturbation to the
part ∂g(y) − BTλ + NY(y) is sufficient to study the linear convergence rate of the
PADMM (1.15). We will provide details in section 5. In particular, an example is
constructed to illustrate that the PEB condition is indeed weaker than the known full
counterparts.

A byproduct of our analysis, which has its own interest, especially in implementa-
tion perspectives, is that our theory for deriving a PEB condition based on PADMM
iteration can interpret the difference of efficiency caused by changing the order of
updating the primal variables x and y in the ADMM (1.2). It has been empirically
observed that the convergence speed may change if we swap the order of x and y in
the ADMM (1.2), despite there being no difference from the theoretical convergence-
proof point of view. No rigorous theory is currently known to explain this difference.
We will show by an example that swapping the order of x and y in (1.2) does make
a difference in satisfying the PEB condition for the ADMM (1.2). This theoretical
justification gives hints to users to decide a more appropriate order of updating the
primal variables for a specific application of the problem (1.1) so that the associated
PEB can be met more easily, and hence the linear convergence rate of ADMM can be
found. We focus on this analysis in section 6.

The discussion starts with some preliminaries in section 2 and ends with some
conclusions and possible future works in section 7.

2. Preliminaries. In this section, we state assumptions under which our fur-
ther analysis will be conducted, recall the variational inequality characterization of
the problem (1.1), and provide some known or obvious convergence results of the
PADMM (1.15).
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2.1. Assumptions. To characterize the solution set of the problem (1.1) by the
first-order optimality conditions, we need certain constraint qualifications such as the
strong conical hull intersection property (CHIP) for the sets X ×Y and F defined by

(2.1) F := {(x, y) | Ax+By = b}.

In particular, for any (x, y) feasible for the problem (1.1), there holds

NF∩X×Y(x, y) := NF (x, y) +NX (x)×NY(y).

The strong CHIP plays a similar role as the Abadie constraint qualification, which
is regarded as not restrictive. Throughout, to avoid triviality, the following nonemp-
tyness assumption is assumed.

Assumption 2.1. The optimal solution set of problem (1.1) is nonempty.

Under Assumption 2.1 and strong CHIP, (x∗, y∗) ∈ X × Y is an optimal solu-
tion point of the problem (1.1) iff there exists a Lagrange multiplier λ∗ ∈ Rm such
that (x∗, y∗, λ∗) solves the KKT system (1.3).

2.2. Variational inequality characterization of (1.1). As analyzed in [32],
the problem (1.1) can be characterized by the variational inequality: finding w∗ =
(x∗, y∗, λ∗) ∈ Ω := X × Y × Rm such that

(2.2) VI(Ω, F, θ) : θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0 ∀w ∈ Ω,

where

(2.3) u = (x, y), θ(u) = f(x) + g(y) and F (w) =

 −ATλ
−BTλ

Ax+By − b

 .

Note that the mapping F (w) defined by (2.3) is monotone as it is affine with a skew-
symmetric matrix. Since S∗ is assumed to be nonempty, the solution set of VI(Ω, F, θ),
denoted by Ω∗, is also nonempty.

2.3. Convergence of (1.15). Our main purpose is discussing error bound con-
ditions that can ensure the linear convergence rate of the PADMM (1.15) under the
by-default assumption that the convergence of (1.15) is given. As a prerequisite of
the analysis to be delineated, the convergence of (1.15) can be easily given by various
results in the literature. In this subsection, we briefly mention the convergence of
(1.15) and give a particular sufficient condition to ensure it.

With the given model (1.1) and the iterative scheme of the PADMM (1.15), let
us define the matrix H and its submatrix H0 as follows to simplify the notation in
our analysis:

(2.4) H =

D 0 0
0 βBTB 0
0 0 1

β I

 and H0 =

(
βBTB 0

0 1
β I

)
.

Moreover, let us make the following assumption.

Assumption 2.2. One of the following conditions is satisfied:
(1) D � 0, and both A and B are of full column rank; or
(2) D � 0, and B is of full column rank.
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Obviously, H � 0 and H0 � 0 for either of the cases in Assumption 2.2. In
particular, H � 0 if Case (2) of Assumption 2.2 holds. Hereafter, we also slightly abuse

the notation ‖w‖H for
√
wTHw even though H might only be positive semidefinite.

Moreover, there exists a constant LH > 0 such that

‖w‖H ≤ LH‖w‖ ∀w ∈ Rn1 × Rn2 × Rm.

To derive the convergence of (1.15), first notice that the iterative scheme (1.15)
can be written as

(2.5)


0 ∈ ∂f(xk+1)−ATλk+1 + βATB(yk − yk+1) +D(xk+1 − xk) +NX (xk+1),

0 ∈ ∂g(yk+1)−BTλk+1 +NY(yk+1),

0 = Axk+1 +Byk+1 − b+
1

β
(λk+1 − λk).

We recall some inequalities established in the literature (see., e.g., [14, 29, 33, 54]) for
deriving the convergence of the ADMM (1.2), the PADMM (1.15), and their variants.
Some of the proofs are omitted.

Lemma 2.1 (see [33, Lemma 3.1]). Let {wk = (xk, yk, λk)} be the sequence
generated by the PADMM (1.15); then we have

θ(w)− θ(wk+1) +
(
w − wk+1

)T {
F (w) + η(yk, yk+1) +H(wk+1 − wk)

}
≥ 0 ∀w ∈ Ω,

(2.6)

where

η(yk, yk+1) := β

ATBT
0

B(yk − yk+1).

The next proposition gives some important inequalities for the sequence {wk}
generated by the PADMM (1.15).

Proposition 2.2 (see [33, Theorem 4.1]). Let {wk = (xk, yk, λk)} be the se-
quence generated by the PADMM (1.15). For any point w∗ = (x∗, y∗, λ∗) in S∗, we
have

(2.7) ‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H − ‖wk+1 − wk‖2H ,

and consequently it holds that

(2.8)

∞∑
k=0

‖wk+1 − wk‖2H ≤ ∞.

Then, we show that Assumptions 2.1 and 2.2 and strong CHIP are sufficient to
ensure the convergence of the PADMM (1.15).

Theorem 2.3. Let {wk} be the sequence generated by the PADMM (1.15). If
Assumptions 2.1 and 2.2 and strong CHIP are all satisfied, then {wk} converges to a
solution point w∗ ∈ S∗.

Proof. We first consider case (1) of Assumptions 2.2. For this case, H � 0 but
both A and B are of full column rank. It follows from (2.7) that the sequence {vk =
(yk, λk)} is bounded. Moreover, (2.8) in Proposition 2.2 implies that ‖wk+1−wk‖H →
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0 and hence the boundedness of the sequences { 1
β (λk − λk+1)} and {B(yk − yk+1)},

by the definition of H in (2.4). We thus know the sequence {Axk+1 + Byk+1 − b} is
also bounded because of the identity

Axk+1 +Byk+1 − b =
1

β
(λk − λk+1),

which is obvious from the update scheme of the scheme (1.15). Therefore, the bound-
edness of {vk} ensures that the sequence {Axk} is bounded. Since A is assumed to
be of full column rank, {xk} is bounded. Overall, we prove that the sequence {wk}
is bounded. Let {wkj} be a subsequence of {wk} converging to w∗. Then for any
fixed w ∈ Ω, considering the inequality (2.6) for the subsequence {wkj} and taking
j → ∞, and using the fact ‖wkj+1 − wkj‖H → 0 implied by (2.8), we conclude that
w∗ ∈ S∗. Now we need to prove that wk → w∗ as k →∞. It follows from (2.7) that
‖wk −w∗‖H → 0, which implies that ‖vk − v∗‖ → 0 because B is of full column rank
and hence H0 � 0. We thus have yk → y∗ and λk → λ∗. Notice that

A(xk − x∗) +B(yk − y∗) = Axk +Byk − b =
1

β
(λk+1 − λk),

where the first equality follows from the optimality of (x∗, y∗), and the second equality
is a direct consequence of the definition of λk+1 in (1.15). Since ‖wk+1 − wk‖H → 0
implies λk+1 − λk → 0, we have A(xk − x∗) + B(yk − y∗) → 0. Because yk → y∗

and A is of full column rank, we immediately have xk → x∗, and hence wk → w∗ as
k →∞.

Now, we consider case (2) of Assumption 2.2. For this case, we have H � 0. Then,
by (2.7), we know that the sequence {wk} is bounded and let {wkj} be a subsequence
of {wk} converging to w∗. Similar to the discussion above, for any fixed w ∈ Ω,
considering the inequality (2.6) for the subsequence {wkj}, taking the limit over j,
and using the fact that ‖wkj+1 − wkj‖H → 0, we obtain w∗ ∈ S∗. Then, using (2.7),
we have ‖wk − w∗‖H → 0. Since H � 0 for this case, we immediately have wk → w∗

as k →∞ and the proof is complete.

Note that Assumptions 2.1 and 2.2, and strong CHIP are sufficient to ensure the
convergence of the PADMM (1.15); however, they are not necessary.

3. Iteration-based error bound condition. In this section, with the by-
default given convergence of the sequence {wk} generated by the PADMM (1.15)
to w∗ ∈ S∗, we focus on the discussion of its linear convergence rate. Note that it is
not necessary to assume Assumption 2.2 in the analysis.

As mentioned, in the literature, some generic error bound conditions depending
only on the model have been studied for the linear convergence rate of the ADMM
(1.2) and its variants, and in the literature, it is focused on how to ensure the prox-
imal EB-I and proximal EB-II conditions by posing assumptions or requiring special
structures in the model (1.1). These error bound conditions or related studies are
usually too restrictive, and they do not take into consideration the specific structures
and properties of the algorithm under discussion. Meanwhile, it seems beneficial to
estimate the error only for the specific iterative sequence, instead of arbitrary points
within a region, when the convergence rate of a particular algorithm is studied. We
hence study the linear convergence rate of the PADMM (1.15) under some error bound
condition that is based on the specific iterative scheme of (1.15). We shall show that
this PADMM-iteration-based consideration can indeed weaken the mentioned generic
error bound conditions.
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We first make some notation clear. Recall the definition of H in (2.4). We shall
use the notation

(3.1) distH(w, C) := inf{‖w − w′‖H
∣∣w′ ∈ C}

for a given subset C and vector w in the same space. As mentioned, H � 0 under
Assumption 2.2. When distH(·, S∗) and dist(·, S∗) are considered, it follows from
(3.1) that

(3.2) distH(w, S∗) ≤ LH · dist(w, S∗) ∀w ∈ Rn1 × Rn2 × Rm.

Moreover, notice that the variable x is intermediate and it is not involved in
the iteration of the original ADMM (1.2); see, e.g., [4]. When our analysis generally
conducted for the PADMM (1.15) is specified for the original ADMM (1.2), i.e.,
D = 0, we also need the notation v = (y, λ) to exclude the intermediate variable x
and S∗v := {(y∗, λ∗) | (x∗, y∗, λ∗) ∈ S∗ for some x∗}. Accordingly, H0 is needed to
present the analysis for (1.2) compactly and instead of distH(w, S∗), we use

(3.3) distH0(v, S∗v ) := inf{‖v − v′‖H0

∣∣ v′ ∈ S∗v}
when the original ADMM (1.2) is considered in our analysis. Also, we use the notation

(3.4) S∗λ := {λ∗ | (x∗, y∗, λ∗) ∈ S∗ for some (x∗, y∗)}

when the convergence of the sequence of Lagrange multiplier {λk} is highlighted.

3.1. PADMM-iteration-based error bound condition for the linear con-
vergence rate. We first present a PADMM-iteration-based error bound condition
and show that it suffices to guarantee the linear convergence rate of the sequence
generated by the PADMM (1.15). We refer to more literature, e.g., [48, 52], for some
preliminary studies of algorithm-based error bound conditions for other algorithms.

Definition 3.1 (PADMM-iteration-based error bound condition). Let {wk} be
the sequence generated by the PADMM (1.15). If there exists κ > 0 and ε > 0 such
that

(3.5) distH(wk+1, S∗) ≤ κ · ‖wk+1 − wk‖H when wk+1 ∈ Bε(w∗),

then {wk} is said to satisfy a PADMM-iteration-based error bound condition.

With (3.5), it is easy to prove the local linear convergence rate for the PADMM
(1.15). We need one more theorem for preparation.

Theorem 3.2. Let {wk} be the sequence generated by the PADMM (1.15) and it
converges to w∗. If Assumption 2.1 and strong CHIP are both satisfied, for any ε > 0,
there exists ε̃ > 0 such that

‖wk+1 − wk‖H < ε̃ =⇒ wk+1 ∈ Bε(w∗).

Proof. It follows from the convergence of {wk} that, for any ε > 0, there exists
an integer K > 0 such that

wk+1 ∈ Bε(w∗) ∀ k ≥ K.

Taking ε̃ := min0≤k<K{‖wk+1 − wk‖H} > 0, we have

‖wk+1 − wk‖H < ε̃ =⇒ k ≥ K =⇒ wk+1 ∈ Bε(w∗),

and the proof is complete.
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We first prove a local property for the sequence {dist2H(wk+1, S∗)}.
Theorem 3.3. Assume that Assumption 2.1 and strong CHIP are both satisfied.

If the sequence {wk} generated by the PADMM (1.15) converges to w∗ and it satisfies
the PADMM-iteration-based error bound condition (3.5), then there exists κ > 0 and
ε > 0 such that

dist2H(wk+1, S∗) ≤
(

1 +
1

κ2

)−1

· dist2H(wk, S∗) when ‖wk+1 − wk‖H < ε.

Proof. First, it follows from (2.7) that

dist2H(wk+1, S∗) ≤ dist2H(wk, S∗)− ‖wk+1 − wk‖2H ∀k = 1, 2, . . . .

By virtue of Theorem 3.2 and (3.5), there exists κ > 0 and ε > 0 such that

distH(wk+1, S∗) ≤ κ · ‖wk+1 − wk‖2H when ‖wk+1 − wk‖H < ε.

Subsequently, we have

dist2H(wk+1, S∗) ≤ dist2H(wk, S∗)− 1

κ2
dist2H(wk+1, S∗) when ‖wk+1 − wk‖H < ε,

and the proof is complete.

Moreover, we observe that the local property of the sequence {dist2H(wk+1, S∗)}
established in Theorem 3.3 is essentially global. Hence, there is no difference in
studying the local or global property for the sequence {dist2H(wk+1, S∗)} under the
PADMM-iteration-based error bound condition (3.5). The following theorem is in-
spired by [15, Proposition 6.1.2].

Theorem 3.4. Assume that Assumption 2.1 and strong CHIP are both satisfied.
If the sequence {wk} generated by the PADMM (1.15) converges to w∗ and it satisfies
the PADMM-iteration-based error bound condition (3.5), then there exists κ̃ > 0 such
that

(3.6) dist2H(wk+1, S∗) ≤
(

1 +
1

κ̃2

)−1

· dist2H(wk, S∗) ∀ k ≥ 0.

Proof. According to Theorem 3.3, there exists κ > 0 and ε > 0 such that

distH(wk+1, S∗) ≤ κ · ‖wk+1 − wk‖H when ‖wk+1 − wk‖H < ε.

Thus, we only need to consider indices k such that ‖wk+1 − wk‖H ≥ ε. According to
(2.7), there is a constant M > 0 such that ‖wk−w∗‖H ≤M ∀ k ≥ 0. We immediately
have

distH(wk+1, S∗) ≤ ‖wk+1 −w∗‖H ≤M/ε · ‖wk+1 −wk‖H when ‖wk+1 −wk‖H ≥ ε.

Letting κ̃ := max{κ,M/ε}, we obtain the result

distH(wk+1, S∗) ≤ κ̃ · ‖wk+1 − wk‖H ∀ k ≥ 0.

Together with (2.7), we have

dist2H(wk+1, S∗) ≤
(

1 +
1

κ̃2

)−1

· dist2H(wk, S∗) ∀ k ≥ 0,

and the proof is complete.
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Based on Theorem 3.4, the linear convergence rate of the sequence {λk} generated
by the PADMM (1.15) can be immediately derived. We summarize it in the following
theorem.

Theorem 3.5. Assume that Assumption 2.1 and strong CHIP are both satisfied.
If the sequence {wk} generated by the PADMM (1.15) converges to w∗ and it satisfies
the PADMM-iteration-based error bound condition (3.5), then there exists κ̃ > 0 such
that

dist(λk, S∗λ) ≤
(

1 +
1

κ̃2

)− k2
· distH(w0, S∗) ∀ k ≥ 0,

where S∗λ is defined by (3.4). That is, the sequence {λk} generated by the PADMM
(1.15) converges linearly.

If the convergence of PADMM (1.15) is guaranteed specifically by Assumption
2.2 as discussed in subsection 2.3, then accordingly we can further specify the linear
convergence rate of the PADMM (1.15) in the following two theorems. Note that the
linear convergence results established below are both global, according to Theorem 3.4.

Theorem 3.6 (global linear convergence rate of {vk}). Let assumptions in The-
orem 3.4 hold, and additionally if case (1) of Assumption 2.2 holds, then it follows
that

distH0
(vk, S∗v ) ≤

(
1 +

1

κ̃2

)− k2
· distH(w0, S∗) ∀ k ≥ 0.

That is, the sequence {vk} generated by the PADMM (1.15) converges linearly.

Theorem 3.7 (global linear convergence rate of {wk}). Let assumptions in
Theorem 3.4 hold, and additionally if case (2) of Assumption 2.2 holds, then it follows
that

distH(wk, S∗) ≤
(

1 +
1

κ̃2

)− k2
· distH(w0, S∗) ∀ k ≥ 0.

That is, the sequence {wk} generated by the PADMM (1.15) converges linearly.

For the special case where D = 0, the PADMM (1.15) reduces to the original
ADMM (1.2). Theorem 3.6 indicates the linear convergence rate of the ADMM (1.2)
in the sense of {vk} under case (1) of Assumption 2.2, which is consistent with the
analysis in the ADMM literature. Recall that the variable x is intermediate and it
is not involved in the iteration performed by (1.2); hence convergence results of the
ADMM (1.2) are measured only by the variables y and λ, and x does not appear.

3.2. FEB (1.7) is sufficient to ensure (3.5). In the last subsection, we have
proved the linear convergence rate of PADMM (1.15) under the PADMM-iteration-
based error bound condition (3.5). Generally this condition cannot be checked di-
rectly. But we shall show that the FEB (1.7) suffices to ensure (3.5); hence (3.5) is
theoretically weaker than (1.7).

Let us start with presenting a lemma which will be often used in the analysis
later. The proof is trivial by using the characterization of an iterate of the PADMM
(1.15) given in (2.5); it is thus omitted. We need one more matrix to simplify the
notation in the analysis:

(3.7) Ĥ :=

D −βATB 0
0 0 0
0 0 1

β I

 .
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Lemma 3.8. Let {wk} be the sequence generated by the PADMM (1.15), φ(·) be
defined by (1.5), and Ĥ as in (3.7). Then, we have

(3.8)

D(xk − xk+1)− βATB(yk − yk+1)
0

1
β (λk − λk+1)

 ∈ φ(xk+1, yk+1, λk+1),

or equivalently,

(3.9) Ĥ(wk − wk+1) ∈ φ(xk+1, yk+1, λk+1).

Based on (3.8), we immediately find that dist(0, φ(wk+1)) can be bounded by
‖wk+1 − wk‖H . This is shown in the following lemma.

Lemma 3.9. Let {wk} be the sequence generated by the PADMM (1.15) and φ(·)
be defined by (1.5). There exists L1 > 0 such that

(3.10) dist(0, φ(wk+1)) ≤ L1‖wk+1 − wk‖H .
Proof. It follows from (3.8) that

dist(0, φ(wk+1)) ≤

(
‖D(xk − xk+1)− βATB(yk − yk+1)‖2 +

∥∥∥∥ 1

β
(λk − λk+1)

∥∥∥∥2
) 1

2

≤ ‖D(xk − xk+1)− βATB(yk − yk+1)‖+

∥∥∥∥ 1

β
(λk − λk+1)

∥∥∥∥
≤ ‖D(xk+1 − xk)‖+ ρ(A)

√
β‖
√
βB(yk+1 − yk)‖

+
1√
β

∥∥∥∥ 1√
β

(λk+1 − λk)

∥∥∥∥
≤
(√

ρ(D) + ρ(A)
√
β +

1√
β

)
‖wk+1 − wk‖H ,

where ρ(D) ≥ 0 and ρ(A) ≥ 0 are the spectral radii of the matrices D and A,
respectively. Therefore, the assertion (3.10) is proved with L1 :=

√
ρ(D) +ρ(A)

√
β+

1√
β
> 0.

Now, it becomes clear that the FEB (1.7) gives the relationship between the terms
dist(wk+1, S∗) and dist(0, φ(wk+1)) and thus effectively bridges the inequalities (3.2)
and (3.10) and eventually ensures the PADMM-iteration-based error bound condition
(3.5). We give the full description in the following lemma. Our motivation for studying
the FEB (1.7) for the linear convergence rate of the PADMM (1.15) is indeed justified;
more details will be given in section 4.

Lemma 3.10. Let {wk} be the sequence generated by the PADMM (1.15) and it
converges to w∗. Then the FEB (1.7) around w∗ ensures the PADMM-iteration-based
error bound condition (3.5).

Proof. It follows from (3.10) in Lemma 3.9 and the FEB (1.7) that there exists
κ > 0 and ε > 0 such that

dist(wk+1, S(0)) ≤ κdist(0, φ(wk+1)) ≤ L1κ‖wk+1 − wk‖H when wk+1 ∈ Bε(w∗).
According to (3.2), we know that distH(·, S∗) ≤ LH · dist(·, S∗) holds for LH > 0.
Thus, we have

distH(wk+1, S∗) ≤ LH ·dist(wk+1, S(0)) ≤ LHL1κ‖wk+1−wk‖H when wk+1 ∈ Bε(w∗),
and the proof is complete.
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Remark 3.1. Recall the definitions of φ(·) in (1.5) and S(p) in (1.6) and also note
that the sequence {wk} generated by the PADMM (1.15) ensures (3.8). Hence, the
term Ĥ(wk−wk+1) in (3.9) can be regarded as a perturbation p of S(p). Moreover, it
follows from (1.8) that the set-valued map S(p) is calm around (0, w̄) iff there exists
κ > 0, σ > 0 and a neighborhood Bε(w̄) of w̄ such that

dist(w, S(0)) ≤ k‖p‖ ∀ w ∈ Bε(w̄) ∩ S(p), ‖p‖ < σ.

Then, according to Lemma 3.9, it is clear that the calmness of S(p), which is inde-
pendent of the iterative sequence {wk} generated by the PADMM (1.15), suffices to
ensure the PADMM-iteration-based error bound condition (3.5). Also, notice that
the calmness of S(p) at (0, w̄) is equivalent to the FEB (1.7) around w̄. Hence, it is
reasonable to study the FEB (1.7) to ensure (3.5) for the PADMM (1.15). We refer
to [52] for a more general study, in which a unified framework is proposed to develop
appropriate sufficient conditions for ensuring various error bound conditions that are
based on some algorithmic iterations.

Using Theorem 3.4 and Lemma 3.10, we immediately have the following theorem
and its proof is omitted.

Theorem 3.11. Let {wk} be the sequence generated by the PADMM (1.15) and
it converges to w∗. If Assumption 2.1 and strong CHIP are both satisfied, and the
FEB (1.7) is fulfilled around w∗, then there exists κ̃ such that

dist2H(wk+1, S∗) ≤
(

1 +
1

κ̃2

)−1

· dist2H(wk, S∗) ∀ k ≥ 0.

Then, we can elaborate on the global linear convergence rate of the sequence
generated by the PADMM (1.15) under different scenarios. We summarize the results
in the following theorem and skip the proof.

Theorem 3.12 (global linear convergence rate under FEB (1.7)). Let the assump-
tions of Theorem 3.11 hold. Then we have

dist(λk, S∗λ) ≤
(

1 +
1

κ̃2

)− k2
· distH(w0, S∗) ∀ k ≥ 0,

where S∗λ is defined by (3.4). That is, the sequence {λk} generated by the PADMM
(1.15) converges linearly. In addition, if Assumption 2.2 is assumed, then we have the
following assertions:

(1) If case (1) of Assumption 2.2 holds, it follows that

distH0
(vk, S∗v ) ≤

(
1 +

1

κ̃2

)− k2
· distH(w0, S∗) ∀ k ≥ 0.

That is, the sequence {vk} generated by the PADMM (1.15) converges lin-
early.

(2) If case (2) of Assumption 2.2 holds, it follows that

distH(wk, S∗) ≤
(

1 +
1

κ̃2

)− k2
· distH(w0, S∗) ∀ k ≥ 0.

That is, the sequence {wk} generated by the PADMM (1.15) converges lin-
early.
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In general, the FEB (1.7) may not hold (see the next section for such an example).
The following corollary suggests some interesting cases with practical interests where
the validation of the FEB (1.7) can be easily verified.

Corollary 3.13. In the model (1.1), suppose that both ∂f and ∂g are polyhedral
multifunctions, and X and Y are polyhedral sets. Then, the FEB (1.7) is fulfilled
around any point in S∗.

Proof. Note first F defined by (2.1) is a polyhedra. Since the graph of NX is a
finite union of polyhedral convex sets, NX is polyhedral. Hence, the sum of polyhedral
maps ∂f +NX is polyhedral. Similarly, ∂g +NY is polyhedral as well, and so is the
inverse map

S(p) := {(x, y, λ) : p ∈ φ(x, y, λ)}.

By [45, Proposition 1], S(·) is upper-Lipschitz. Hence, FEB (1.7) is fulfilled around
any KKT point.

4. More discussions on various error bound conditions. In the preceding
section, we have shown the linear convergence of PADMM (1.15) under the FEB (1.7).
In fact, though different in form, the FEB (1.7), the proximal EB-I (1.12) and the
proximal EB-II (1.14) are in essence equivalent (see the proofs in Appendix A). In
this section, we provide more details on why we prefer the FEB (1.7) to the proximal
EB-I (1.12) and proximal EB-II (1.14) for analyzing the linear convergence rate of
PADMM (1.15) despite their theoretical equivalence.

As briefly mentioned preceding Lemma 3.10, to meet the PADMM-iteration-based
error bound condition (3.5), we need to bound the term distH(wk+1, S∗) by ‖wk+1−
wk‖H . On the other hand, the inequalities in (3.2) and (3.10) give us

distH(wk+1, S∗) ≤ LH · dist(wk+1, S∗), dist(0, φ(wk+1)) ≤ L1‖wk+1 − wk‖H .

Hence, essentially we need to build up the link between the terms dist(wk+1, S∗) and
dist(0, φ(wk+1)). This is perfectly achieved by the FEB (1.7).

For the proximal EB-I (1.12), however, it facilitates bridging the terms dist(wk+1,
S∗) and ‖R1(wk+1)‖, or the terms dist(wk+1, S∗) and dist(0, R2(wk+1)) by the prox-
imal EB-II (1.14). In other words, neither (1.12) nor (1.14) can be directly used
for bridging the terms distH(wk+1, S∗) and ‖wk+1 −wk‖H and hence ensuring (3.5).
Additional and more complicated manipulations are needed if (1.12) or (1.14) is used.

Let us further explain the differences among these error bound conditions in
studying the linear convergence rate of the particular PADMM (1.15) from the per-
turbation perspective. As mentioned, the FEB (1.7) around a reference point w̄
is equivalent to the calmness of S(p) at (0, w̄). On the other hand, if we define
Sprox−I : Rn1 × Rn2 × Rm ⇒ Rn1 × Rn2 × Rm as

(4.1) Sprox−I(p) :=

(x, y, λ) |

p1 ∈ (∂f +NX )(x− p1)−ATλ
p2 ∈ (∂g +NY)(y − p2)−BTλ
p3 = Ax+By − b


with p = (p1, p2, p3) ∈ Rn1 × Rn2 × Rm, then we have Sprox−I(0) = S∗ and hence
the proximal EB-I (1.12) around a reference point w̄ is equivalent to the calmness of
Sprox−I(p) at (0, w̄). That is, there exists κ > 0, σ > 0 and a neighborhood Bε(w̄) of
w̄ such that

dist(w, Sprox−I(0)) ≤ k‖p‖ ∀ w ∈ Bε(w̄) ∩ Sprox−I(p), ‖p‖ < σ.
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Let us further define Sprox−II : Rn1 × Rn2 × Rm ⇒ Rn1 × Rn2 × Rm as

Sprox−II(p) :=

(x, y, λ) |

p1 ∈ ∂f(x)−ATλ+NX (x− p1)
p2 ∈ ∂g(y)−BTλ+NY(y − p2)
p3 = Ax+By − b


with p = (p1, p2, p3) ∈ Rn1 × Rn2 × Rm. It is easy to see that Sprox−II(0) = S∗ and
the proximal EB-II (1.14) around a reference point w̄ is equivalent to the calmness of
Sprox−II(p) at (0, w̄). That is, there exists κ > 0, σ > 0 and a neighborhood Bε(w̄) of
w̄ such that

dist(w, Sprox−II(0)) ≤ k‖p‖ ∀ w ∈ Bε(w̄) ∩ Sprox−II(p), ‖p‖ < σ.

According to [52], for the sequence {wk} generated by an algorithm, if Ĥ(wk+1−wk)
with an appropriate Ĥ is regarded as the perturbation of the corresponding optimality
system, then the calmness of the induced set-valued mapping straightforwardly implies
the desirable error bound that is tailored for the algorithm under investigation. When
the PADMM (1.15) is considered, as shown by (3.8) in Lemma 3.8, Ĥ(wk − wk+1)
corresponds to the canonical perturbation of the KKT system 0 ∈ φ(w). Hence, it
motivates us to consider the perturbed multifunction S(p) defined by (1.6), instead
of Sprox−I(p) or Sprox−II(p). That is, we prefer the FEB (1.7), rather than the
proximal EB-I (1.12) or proximal EB-II (1.14), for analyzing the linear convergence
of the PADMM (1.15).

In addition to the superiority of yielding an easier analysis for the linear conver-
gence rate of the problem (1.1), studying the calmness of S(p), rather than Sprox−I(p)
or Sprox−II(p), may lead to some interesting future work, as we shall mention in sec-
tion 7. Also, as we shall show soon in the next section, considering the perturbed
mapping S(p) in (1.6) enables us discern that the second part of the left-hand side
of (3.8) remains zero for each iteration of the PADMM (1.15). This insight inspires
us to study a PEB condition to ensure the linear convergence of the PADMM (1.15),
which seems to be novel in the literature.

5. Partial error bound for the linear convergence of PADMM (1.15).
We have established the linear convergence rate for the PADMM (1.15) under the
PADMM-iteration-based error bound condition (3.5) and shown that the FEB (1.7)
sufficiently ensures (3.5). In this section, we show that the FEB (1.7) can be further
weakened if the specific iterative scheme (1.15) is fully considered. As mentioned, this
is accomplished by the observation that there is no perturbation to the second part
of the perturbed mapping S(p) in (1.6). Hence, taking into consideration the specific
iterative scheme enables us to weaken the FEB (1.7) to guarantee (3.5) and hence the
linear convergence rate of the PADMM (1.15).

5.1. Partial error bound conditions and linear convergence. Recall the
KKT system (1.3) and the definition of the generic error bound condition (1.4). Using
the terminology initiated in [39], we can also define the so-called local PEB for (1.3).

Definition 5.1. Assume S is represented as the intersection of two closed sets,
i.e., S = C ∩ D. The KKT system (1.3) is said to admit a PEB on the set C around
w∗ ∈ S if there exists a nonnegative function r̄ : Rn1 × Rn2 × Rm → R+ satisfying
r̄(w) = 0 for w ∈ D, a neighborhood Bε(w∗) of the point w∗ and a constant κ > 0
such that

[PEBr̄ on C] dist(w, S) ≤ κ · r̄(w) ∀ w ∈ Bε(w∗) ∩ C.
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Obviously, from the definition, for any given closed set C, PEBr̄ on C is weaker
than EBr defined by (1.4). Taking a closer look at (2.5) and (3.8), we notice that the
optimality condition with respect to y, i.e., 0 ∈ ∂g(y)−BTλ +NY(y), is satisfied for
all iterates of (1.15). Let us define

Sg := {w | 0 ∈ ∂g(y)−BTλ+NY(y)}.

Then, this observation motivates us to consider a partially perturbed KKT mapping
SP : Rn1 × Rm ⇒ Rn1 × Rn2 × Rm as

SP (p) := {w ∈ Sg | p ∈ φP (x, y, λ)},

where φP : Rn1 × Rn2 × Rm ⇒ Rn1 × Rm is defined as

(5.1) φP (w) =

(
∂f(x)−ATλ+NX (x)

Ax+By − b

)
.

Hence, we define a PEB that is particularly based on the specific sequence {wk}
generated by the PADMM (1.15). Note that this definition may not be extended to
other algorithms evidently.

Definition 5.2 (partial error bound). Let {wk} be the sequence generated by
the PADMM (1.15) and it converges to w∗. The KKT system (1.3) is said to admit
a partial local error bound around w∗ if there exists a neighborhood Bε(w∗) of w∗ and
some κ > 0 such that

(5.2) [PEB] dist(w, SP (0)) ≤ κ · dist(0, φP (w)) ∀ w ∈ Sg ∩ Bε(w∗).

Apparently, it holds that SP (0) = S(0) = S∗, and the following relationship is
easy to obtain: the proximal EB-I (1.12) and proximal EB-II (1.14) ⇔ the FEB (1.7)
⇒ PEB (5.2). That is, the PEB (5.2) is the weakest one.

We next show that the PEB (5.2) suffices to imply (3.5) and hence to ensure the
linear convergence for the PADMM (1.15).

Lemma 5.3. Let {wk} be the sequence generated by the PADMM (1.15). If the
PEB (5.2) holds, then the PADMM-iteration-based error bound condition (3.5) holds
as well.

Proof. First, by virtue of (3.8) in Lemma 3.8, there always holds

0 ∈ ∂g(yk+1)−BTλk+1 +NY(yk+1),

which indicates that wk+1 ∈ Sg. Then by Lemma 3.9, (3.10), there is L1 > 0 such
that

dist(0, φP (wk+1)) ≤ L1‖wk+1 − wk‖H .
Furthermore, according to the PEB (5.2), it follows from wk+1 ∈ Sg that there is
κ > 0 and ε > 0 such that

dist(wk+1, S∗) = dist(wk+1, SP (0)) ≤ L1κ‖wk+1 − wk‖H when wk+1 ∈ Bε(w∗).

Then, it follows from (3.2) that distH(·, S∗) ≤ LH · dist(·, S∗) holds. Subsequently
the desired estimate follows

distH(wk+1, S∗) ≤ LH ·dist(wk+1, S∗) ≤ LHL1κ‖wk+1−wk‖H when wk+1 ∈ Bε(w∗),

and the proof is complete.
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Similar to the proof of Theorem 3.4, we can derive an important equality for the
sequence {dist2H(wk+1, S∗)} under (5.2).

Theorem 5.1. Let {wk} be the sequence generated by the PADMM (1.15) and it
converges to w∗. If Assumption 2.1 and strong CHIP are both satisfied, and the PEB
(5.2) is fulfilled around w∗, then there exists κ̃ such that

dist2H(wk+1, S∗) ≤
(

1 +
1

κ̃2

)−1

· dist2H(wk, S∗) ∀ k ≥ 0.

Similar to Theorem 3.12, we can further specify Theorem 5.1 as the global linear
convergence rate of the PADMM (1.15) under various scenarios. We present them in
the following theorem and skip the proof.

Theorem 5.2. Let {wk} be the sequence generated by the PADMM (1.15) and it
converges to w∗. If Assumption 2.1 and strong CHIP are both satisfied, and the PEB
(5.2) is fulfilled around w∗, then there exists κ̃ such that

dist(λk, S∗λ) ≤
(

1 +
1

κ̃2

)− k2
· distH(w0, S∗) ∀ k ≥ 0,

where S∗λ is defined by (3.4). That is, the sequence {λk} generated by the PADMM
(1.15) converges linearly. In addition, if Assumption 2.2 is assumed, then we have the
following assertions:

(1) If case (1) of Assumption 2.2 holds, it follows that

distH0(vk, S∗v ) ≤
(

1 +
1

κ̃2

)− k2
· distH(w0, S∗) ∀ k ≥ 0.(5.3)

That is, the sequence {vk} generated by the PADMM (1.15) converges lin-
early.

(2) If case (2) of Assumption 2.2 holds, it follows that

distH(wk, S∗) ≤
(

1 +
1

κ̃2

)− k2
· distH(w0, S∗) ∀ k ≥ 0.(5.4)

That is, the sequence {wk} generated by the PADMM (1.15) converges lin-
early.

5.2. Example. It is interesting to compare the FEB (1.7) and the PEB (5.2).
We next present an example which ensures the PEB (5.2) but fails to guarantee the
FEB (1.7) at its optimal solution point. Hence, together with the fact that the FEB
(1.7) is sufficient to guarantee the PEB (5.2), we show that the PEB (5.2) is weaker
than the FEB (1.7).

Example 5.3. Consider a special case of the model (1.1) as

(5.5)
min
x,y

1

2
x2 +

1

2
y2

1 +
1

4
y4

2

s.t. Ax+By = 0,

where

(5.6) A =

0
1
1

 , B =

1 0 1 1
0 1 0 1
0 0 0 0
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with x ∈ R, y = (y1, y2, y3, y4) ∈ R4. Let w = (x, y, λ) ∈ R8. The strong CHIP follows
trivially from the linearity. The KKT residual mapping in (1.5) can be specified as
φ : R× R4 × R3 → R× R4 × R3 given by

φ(w) =



x−
(
0 1 1

)λ1

λ2

λ3


y1

0
0
y3

4

−


1 0 0
0 1 0
1 0 0
1 1 0


λ1

λ2

λ3


0

1
1

x+

1 0 1 1
0 1 0 1
0 0 0 0

 y


.

It is easy to see that the optimal solution point is w∗ = (0, 0, 0, 0, 0, 0, 0, 0) and the
solution set S∗ = {w∗}. Hence, we have dist(w, S∗) = ‖w‖. Here, all error bound
conditions use l1 norm for this example.

For simplicity, let us take D = 0 in (1.15) and consider the original ADMM
scheme (1.2). It is easy to see that the exact expression of the iterative scheme (1.2)
for this example is explicitly written as

wk+1 =

(
λk3 − βyk2
1 + 2β

, 0,
βyk2 − λk3
1 + 2β

, 0, 0, 0, 0,
β2yk2 + (1 + β)λk3

1 + 2β

)
∀k ≥ 1.

Recall that the variable x is intermediate and we only need to focus on the nonzero y-
and λ-variables of the iteration, i.e., (yk+1

2 , λk+1
3 ). Accordingly, we define the matrix

T as

(5.7) T =

(
β

1+2β
−1

1+2β
β2

1+2β
1+β
1+2β

)
,

and the iteration is essentially executed by the recursion:

(yk+1
2 , λk+1

3 ) = T (yk2 , λ
k
3) ∀k ≥ 1.

By straightforward calculation, the eigenvalues of the matrix T in (5.7) are (1 +

2β±
√

1− 4β2)/(2+4β). Therefore, ρ(T ), the spectral radius of T , is strictly smaller
than 1 for any β > 0. Thus, we know that {wk} converges to w∗ = (0, 0, 0, 0, 0, 0, 0, 0)
linearly.

We next show by contradiction that the KKT system φ(x, y, λ) = 0 fails to admit
the FEB (1.7) around w∗. Let {δk} be a sequence such that δk ↘ 0 and define the
sequence {wk} by wk = (0, 0,−δk,−δk, δk, 0, 0, 0) ∀k ≥ 0. It is clear from the construc-
tion that wk → w∗ and dist(wk, S∗) = 3‖δk‖. On the other hand, dist(0, φ(wk)) =
‖φ(wk)‖ = ‖δ3

k‖ ∀k ≥ 0. This leads to dist(0, φ(wk)) = o(dist(wk, S∗)). Conse-
quently, the KKT system φ(x, y, λ) = 0 does not possess the FEB (1.7) around w∗.

For analyzing the PEB (5.2) around w∗, in this example, we specify the partial
KKT residual mapping φP : R× R4 × R3 → R× R3 defined by (5.1):

φP (w) =


x−

(
0 1 1

)λ1

λ2

λ3

0
1
1

x+

1 0 1 1
0 1 0 1
0 0 0 0

 y

 .
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Let us further define

Sy :=

(x, y, λ) | 0 =


y1

0
0
y3

4

−


1 0 0
0 1 0
1 0 0
1 1 0


λ1

λ2

λ3


 ,

which can be simplified as

Sy := {(x, y, λ) | y1 − λ1 = 0, λ2 = 0, λ1 = 0, y3
4 − λ1 − λ2 = 0}.

Therefore, for any sequence {wk} ⊆ Sy∩B 1
2
(w∗) and ‖wk‖ → 0, the following equality

holds:

dist(0, φP (wk)) = ‖φP (wk)‖ =|xk − λk2 − λk3 |+ |yk1 + yk3 + yk4 |+ |xk + yk2 + yk4 |+ |xk|
= |xk|+ |xk − λk3 |+ |yk3 |+ |xk + yk2 |.

It is clear that

|y2| ≤ |x+ y2|+ |x|

and

|λ3| ≤ |x− λ3|+ |x|.

Consequently, for the sequence {wk} ⊆ Sy ∩ B 1
2
(w∗), we have the following estimate:

dist(wk, S∗) = ‖wk‖ =|xk|+ |yk1 |+ |yk2 |+ |yk3 |+ |yk4 |+ |λk1 |+ |λk2 |+ |λk3 |
≤ |xk|+ |xk + yk2 |+ |xk|+ |yk3 |+ |xk − λk3 |+ |xk|
≤ 3(|xk|+ |xk − λk3 |+ |yk3 |+ |xk + yk2 |)
= 3 dist(0, φP (wk)).

Therefore, the KKT system φ(x, y, λ) = 0 admits the PEB (5.2) around w∗.

Remark 5.4. Example 5.3 with a few variables is sufficient to prove the advantage
of considering the PEB (5.2) for studying the linear convergence rate of the ADMM
(1.15). It is analogous to constructing convex polynomial optimization problems in
higher dimension so that only the PEB (5.2) holds while the FEB (1.7) does not.

Note that the matrix B given in (5.6) is not of full column rank; hence Assump-
tion 2.2 is not satisfied and this reflects that Assumption 2.2 is sufficient, instead of
necessary, to ensure the convergence of the PADMM (1.15). Moreover, it is verified
that the FEB (1.7) fails and thus it is invalid to explain the linear convergence rate of
the application of the ADMM (1.2) to this specific example. Instead, the PEB (5.2)
is satisfied for this example and hence the linear convergence rate of the ADMM is
theoretically explained.

6. Difference of updating the primal variables in ADMM (1.2). Despite
the main purpose of studying the linear convergence rate of the PADMM (1.15) under
weaker error bound conditions, an interesting byproduct of this paper is a theoretical
explanation for the changes that occur when the primal variables are updated in a
different order. For simplicity, let us focus on the original ADMM (1.2) in this section.
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6.1. Another form of ADMM. If we swap the order of the primal variables
x and y in (1.2), another form of the ADMM is obtained:

(6.1)


yk+1 = arg min

y∈Y

{
g(y)− 〈λk, Axk +By − b〉+

β

2
‖Axk +By − b‖2

}
,

xk+1 = arg min
x∈X

{
f(x)− 〈λk, Ax+Byk+1 − b〉+

β

2
‖Ax+Byk+1 − b‖2

}
,

λk+1 = λk − β(Axk+1 +Byk+1 − b).

Obviously, the iterative scheme (6.1) can be written as

(6.2)


0 ∈ ∂g(yk+1)−BTλk+1 + βBTA(xk − xk+1) +NY(yk+1),

0 ∈ ∂f(xk+1)−ATλk+1 +NX (xk+1),

0 = Axk+1 +Byk+1 − b+
1

β
(λk+1 − λk).

The convergence of (6.1) certainly holds given the convergence of (1.2). But
these two schemes differ in the intermediate variables and the order of updating the
primal variables: x and y. Numerically, it does make a difference whether x or y
is placed as the first variable to be updated. An immediate explanation is that if
the x-subproblem is significantly more complicated than the y-subproblem, it seems
smarter to update y first so as to avoid the possible transmission of error caused
by solving the x-subproblem inexactly. Such situations arise in the case where, e.g.,
one subproblem is in a higher dimension or of a more complicated nature than the
other one. Representative examples are the so-called sparse and low-rank optimization
models which at each iteration require one to solve a subproblem involving the singular
value decomposition of a large matrix and thus inner iterations with accumulative
errors are inevitable, and the other subproblem which usually has the closed-form
solution and hence no inner iteration is needed. For such problems, it is highly
suggested to update the easier subproblem first and this makes a significant difference
in the eventual numerical performance; see, e.g., [36, 53]. Meanwhile, it seems no
theory is known to explain this difference caused by different orders of updating the
primal variables. We next show that the two schemes may admit different convergence
rates in sense of different PEB assumptions and thus provide a theoretical explanation
for this issue.

6.2. Partial error bound condition for (6.1). We need the matrix to simplify
the notation in the analysis:

(6.3) H̃ :=

 0 0 0
−βBTA 0 0

0 0 1
β I

 .

Similar to Lemma 3.8, we present the following lemma, which follows directly from
the characterization of an iterate of (6.1) given in (6.2).

Lemma 6.1. Let {wk} be the sequence generated by (6.1) and φ(·) be defined by
(1.5) and H̃ in (6.3). Then, we have

(6.4)

 0
−βBTA(xk − xk+1)

1
β (λk − λk+1)

 ∈ φ(xk+1, yk+1, λk+1).

or equivalently,
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H̃(wk − wk+1) ∈ φ(xk+1, yk+1, λk+1).

Taking a closer look at (6.2) and (6.4), we notice that the optimality condition
with respect to x, i.e., 0 ∈ ∂f(x)−ATλ+NX (x), is satisfied for all iterates of (6.1).
Following our discussion in the preceding section, by letting

Sf := {(x, y, λ) | 0 ∈ ∂f(x)−ATλ+NX (x)},

we can define a PEB for the ADMM scheme (6.1) as follows.

Definition 6.2 (partial error bound-yx). Let {wk} be the sequence generated by
(6.1) and it converges to w∗. The KKT system (1.3) is said to admit a local PEB-yx
around w∗ if there exists a neighborhood Bε(w∗) of w∗ and κ > 0 such that

(6.5) [PEB− yx] dist(w, S∗) ≤ κ · dist(0, φ̄P (w)) ∀ w ∈ Sf ∩ Bε(w∗),

where φ̄P : Rn1 × Rn2 × Rm ⇒ Rn1 × Rm is defined as

φ̄P (w) =

(
∂g(y)−BTλ+NY(y)

Ax+By − b

)
.

We define the matrix Hxλ and its submatrix H0
xλ as follows to simplify the nota-

tion in our analysis:

Hxλ =

βATA 0 0
0 0 0
0 0 1

β I

 and H0
xλ =

(
βATA 0

0 1
β I

)
.

Also, we use the notation

(6.6) S∗xλ := {(x∗, λ∗) | (x∗, y∗, λ∗) ∈ S∗ for some y∗}

when the convergence of the sequence of {xk, λk} is highlighted. Consequently, we
can prove the global linear convergence rate of the scheme (6.1) if the PEB-yx (6.5)
is assumed. The details are omitted.

Proposition 6.3. Let the sequence {wk} be generated by (6.1) and it converges to
w∗. If Assumption 2.1 and strong CHIP are both satisfied, and the PEB-yx condition
(6.5) is fulfilled around w∗, then there exists κ̃ such that

dist2Hxλ(wk+1, S∗) ≤
(

1 +
1

κ̃2

)−1

· dist2Hxλ(wk, S∗) ∀ k ≥ 0.

Moreover, we have

dist(λk, S∗λ) ≤
(

1 +
1

κ̃2

)− k2
· distH(w0, S∗) ∀ k ≥ 0,

where S∗λ is defined by (3.4). That is, the sequence {λk} generated by (6.1) converges
linearly. In addition, if A is of full column rank, then H0

xλ � 0 and it follows that

distH0
xλ

(
(xk, λk), S∗xλ

)
≤
(

1 +
1

κ̃2

)− k2
· distH(w0, S∗) ∀ k ≥ 0,

where S∗xλ is defined by (6.6). That is, the sequence {(xk, λk)} generated by (6.1)
converges linearly.

D
ow

nl
oa

de
d 

07
/2

1/
18

 to
 1

29
.1

32
.2

09
.2

16
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARTIAL ERROR BOUND AND LINEAR CONVERGENCE OF ADMM 2117

6.3. Difference between PEB (5.2) and PEB-yx (6.5). By comparing
Corollary 5.1 and Proposition 6.3, a clear conclusion can be drawn from the dif-
ference in the PEB conditions (5.2) and (6.5). Let us reconsider Example 5.3 for an
illustration of the difference. In particular, we will show that Example 5.3 does not
admit PEB-yx around the optimal solution. The PEB (5.2), on the other hand, is
satisfied according to the analysis for Example 5.3 in section 5.2.

As previously mentioned, we can easily write down the explicit recursion for the
application of the ADMM scheme (6.1) to Example 5.3, and the convergence is clearly
implied. We omit the details for succinctness. We further show the difference in the
two PEB conditions (5.2) and (6.5) in this example. Therefore, the convergence rates
of (1.2) and (6.1) may be different according to the proposed PEB theory. To this end,
the associated partial KKT residual mapping φ̄P : R×R4×R3→R×R4 reads as

φ̄P (x, y, λ) =




y1

0
0
y3

4

−


1 0 0
0 1 0
1 0 0
1 1 0


λ1

λ2

λ3


0

1
1

x+

1 0 1 1
0 1 0 1
0 0 0 0

 y


.

Let {δk} be a sequence such that δk ↘ 0 and define the sequence {wk} by wk =
(0, 0,−δk,−δk, δk, 0, 0, 0), where k = 0, 1, . . .. It is clear from the construction that
wk → w∗, {wk} ⊆ Sx and dist(wk, S) = 3‖δk‖, where

Sx :=

{
(x, y, λ) | 0 = x−

(
0 1 1

)λ1

λ2

λ3

}.
On the other hand, dist(0, φ̄P (wk)) = ‖φ̄P (wk)‖ = ‖δ3

k‖ for k = 0, 1, . . .. This leads to
dist(0, φ̄P (wk)) = o(dist(wk, S∗)). Consequently, the PEB-yx is not fulfilled around
w∗. That is, the ADMM (1.2) with the updating order of x− y admits the PEB and
it converges linearly, but the PEB-yx (6.5) is not satisfied and there is no guarantee
to the linear convergence rate for the ADMM (6.1) with the updating order of y − x.

6.4. More discussions. It was shown in preceding subsections that the orders
of x − y and y − x make difference for the PADMM in sense of satisfying the PEB
(5.2) and PEB-yx (6.5). This difference in the sense of PEB conditions may result in
significant difference in the convergence rate of the PADMM. It is thus interesting to
discuss which order should be used for updating the variables for a given particular
application of the model (1.1). In this subsection, we show that one of these two PEB
conditions may be weaker than the other one and thus further justify their theoretical
difference. In particular, we prove that the PEB condition corresponding to one of
the orders can ensure the other one under some additional assumptions. We first need
to recall some well-known results in variational analysis literature.

Proposition 6.4 (see [7, Proposition 2.4.3], Clarke exact penalty principle). Let
f be Lipschitz of rank K on a set U . Let x belong to a set C ⊂ U and suppose
that f attains a minimum over C at x. Then for any K̂ ≥ K, the function g(y) =
f(y) + K̂ ·dist(y, C) attains a minimum over U at x. If K̂ > K and C is closed, then
any other point minimizing g over U must also lie in C.

D
ow

nl
oa

de
d 

07
/2

1/
18

 to
 1

29
.1

32
.2

09
.2

16
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2118 Y. LIU, X. YUAN, S. ZENG, AND J. ZHANG

Lemma 6.5 ([46, Exercise 9.37]). Given A set-valued map T : Rn ⇒ Rm, and
(x̄, p̄) ∈ gphT , if T is pseudo-Lipschitz around (x̄, p̄), then there exists a neighborhood
Bε(x̄) of x̄ such that function h(x) := dist(p̄, T (x)) is Lipschitz on Bε(x̄).

Now, we show that under certain conditions, the PEB (5.2) implies the PEB-yx
(6.5).

Theorem 6.6. For any point w∗ ∈ S∗, if the multifunction φP (w) defined by
(5.1) is pseudo-Lipschitz around (w∗, 0) and φg(w) := ∂g(y)− BTλ +NY(y) is met-
rically subregular at (w∗, 0), then the PEB-yx (6.5) holds at w∗ if the PEB (5.2) is
fulfilled around w∗.

Proof. When the PEB (5.2) holds at w∗, there exist a neighborhood Bε1(w∗) of
w∗ and some κ1 > 0 such that

dist(w, S∗) ≤ κ1 · dist(0, φP (w)) ∀ w ∈ Sg ∩ Bε1(w∗).

Since φP (w) is pseudo-Lipschitz around (w∗, 0), by Lemma 6.5, there exists ε2 > 0 to
ensure that h1(w) := dist(0, φP (w)) is Lipschitz continuous on Bε2(w∗). Because S is
a convex subset, h2(w) := dist(w, S∗) is Lipschitz continuous on Bε2(w∗), and so is
h(w) := κ · dist(0, φP (w))− dist(w, S∗). Furthermore, we notice that w∗ is a solution
point of the following optimization problem:

min
w

κ1 · dist(0, φP (w))− dist(w, S∗)

s.t. w ∈ Sg ∩ Bε̃(w∗),

where ε̃ = min{ε1, ε2}. Then, it follows from Proposition 6.4 that there exists L > 0
such that the function

h̃(w) := κ1 · dist(0, φP (w))− dist(w, S∗) + L · dist(w, Sg)

attains a minimum over Bε̃(w∗) at w∗. Therefore, we have

(6.7) dist(w, S∗) ≤ max{κ1, L} · (dist(0, φP (w)) + dist(w, Sg)) ∀ w ∈ Bε̃(w∗).

By the metric subregularity of φg(w) at (w∗, 0), there exist ε3 > 0 and κ3 > 0 such
that

(6.8) dist(w, Sg) ≤ κ3 · dist(0, φg(w)) ∀ w ∈ Bε3(w∗).

Combining (6.7) and (6.8), we obtain

dist(w, S∗) ≤ κ · (dist(0, φP (w)) + dist(0, φg(w)))

≤
√

2κ · dist(0, φ(w)) ∀ w ∈ Bε(w∗),

where κ = max{κ1, L} ·max{1, κ3} and ε = min{ε̃, ε3}. We conclude that FEB (1.7),
and hence PEB-yx (6.5), is fulfilled around w∗.

Hence, for a specific application of the model (1.1), we prefer to choose the order
of updating the variables that the corresponding PEB condition can be satisfied more
likely and thus the linear convergence may be guaranteed.
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7. Conclusions and future work. We studied error bound conditions to en-
sure the linear convergence rate for the ADMM in a convex programming context.
Different from the existing literature that requires stronger assumptions or special
structures on the model under discussion to ensure certain error bound conditions,
we weakened these error bound conditions by considering the structures and proper-
ties of the specific algorithm under discussion. That is, algorithmic-based error bound
conditions should be considered, and they can be weaker than general-purpose error
bound conditions. We give both full and partial error bound conditions in accordance
with the ADMM’s special iterative scheme to derive its linear convergence rate; the
idea of a PEB is inspired by an observation on the partially perturbed system (3.8).
Furthermore, we construct an example to show that the PEB condition is weaker
than the generic counterparts. The main analysis also inspires byproducts. First,
a theoretical interpretation is given to explain the difference if the two primal vari-
ables are updated by different orders in ADMM’s iteration. Second, the equivalence
among various error bound conditions widely used in the literature is established.
Our new philosophy of weakening existing error bound conditions in accordance with
the specific structure of an algorithm may inspire similar research in other contexts.
Moreover, we use the concepts of calmness/metric subregularity in our analysis, and
the main PEB result is inspired by a perturbation perspective. We believe more de-
liberately drawing on the experience of these well-developed techniques in variational
analysis and perturbation analysis will lead to more interesting and deeper results for
the convergence analysis of other popular algorithms.

The linear convergence rates of ADMM schemes and other first-order methods
via various error bound conditions have been studied in other contexts as well. For
example, in [35], an extended version of the ADMM scheme (1.2) with a sufficiently
small step size for updating the dual variable λ is considered for a similar but more
complicated case of (1.1) where there are more than two blocks of functions in the
objective; a variant of the PADMM is studied in [28] under the calmness condition of
Sprox−I defined by (4.1). In this paper, we concentrate on a relatively simpler convex
scenario where only the two-block separable convex minimization model (1.1) and the
proximal version of ADMM (1.15) are considered, so that our idea can be exposed
more clearly with simpler notation. Technically, we believe it is possible to extend our
analysis to various more complex scenarios such as models with nonconvex function
components in their objectives, and more sophisticated variants of the ADMM for
two-block or even multiple-block models. Let us just mention one specific extension:
it is trivial to extend our analysis to a more general version of the PADMM (1.15)
considered in [12, 14]:

xk+1 = arg min
x∈X

{
f(x)−(λk)T (Ax+Byk − b)+β

2
‖Ax+Byk−b‖2+

1

2
‖x−xk‖2D

}
,

yk+1 = arg min
y∈Y

{
g(y)− (λk)T (Axk+1 +By − b) +

β

2
‖αAxk+1

−(1− α)(Byk − b) +By − b‖2
}
,

λk+1 = λk − β(αAxk+1 − (1− α)(Byk − b) +Byk+1 − b),

where α ∈ (0, 2) is a relaxation factor. We skip the tedious analysis for this more
complex extension and present our analysis in the simplest context.

The authors of a recent paper [10] investigated some unconstrained separable
convex optimization problems and illustrated that subregularity of the gradient-like
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mapping is equivalent to the subregularity of its subdifferential. Therefore, they em-
ployed the quadratic growth condition to characterize the error bound condition and
establish the linear convergence rate for the proximal gradient method. In the liter-
ature, much interesting work provides characterizations and criteria for error bound
properties in terms of various derivative-like objects in either the primal space (via
directional derivatives, slopes, etc.) or the dual space (via subdifferentials, normal
cones). Notice that for a given w̄, the FEB (1.7) around w̄ is equivalent to the
metric subregularity of the KKT mapping φ at (w̄, 0) and the calmness of S(p) at
(0, w̄). The proximal EB-I (1.12) and proximal EB-II (1.14) around w̄, on the other
hand, are equivalent to the calmness of Sprox−I(p) and Sprox−II(p), respectively, at
(0, w̄). It is known that computing the exact formula of those derivative-like objects
is much simpler in absence of any proximal operators. This perspective motivates
us to call on the existing extensive literature of the verifiable first- and second-order
sufficient conditions for the metric subregularity of φ or the calmness of S(p); see,
e.g., [21, 22, 23, 24, 25, 26, 27, 34]. Therefore, for the particular constrained model
(1.1), we may consider investigating verifiable sufficient conditions for the metric sub-
regularity/calmness, and hence the linear convergence rates for various ADMM-type
algorithms and other schemes. In particular, it is interesting to note that for the prob-
lem data with underlying polyhedral structures, the second-order sufficient condition
is nearly necessary; see, e.g., [22]. This is our future work.

Appendix A. Equivalence of several error bound conditions. We show
that the mentioned error bound conditions (1.7), (1.12), and (1.14) are all equivalent.
First, we prove that (1.7) holds if (1.12) or (1.14) holds.

Proposition A.1. If the KKT system (1.3) admits either the proximal EB-I
(1.12) or proximal EB-II (1.14) around a KKT point w̄, it also admits the FEB
(1.7) around w̄.

Proof. Given w, for any u ∈ ∂f(x)−ATλ+NX (x), it holds that

x = Proxf+δX (x+ATλ+ u)

and
x = ProjX (x− ξ +ATλ+ u) for some ξ ∈ ∂f(x).

Since it holds that

0 ∈ NX (x) + x− (x− ∂f(x) +ATλ+ u),

we have

‖x−Proxf+δX (x+ATλ)‖=‖Proxf+δX (x+ATλ+ u)−Proxf+δX (x+ATλ)‖≤‖u‖,

and thus

dist(0, x− ProjX (x− ∂f(x) +ATλ))

≤ ‖x− ProjX (x− ξ +ATλ)‖
= ‖ProjX (x− ξ +ATλ+ u)− ProjX (x− ξ +ATλ)‖ ≤ ‖u‖.

Since u is arbitrarily chosen, we have the relations

‖x− Proxf+δX (x+ATλ)‖ ≤ dist(0, ∂f(x)−ATλ+NX (x))
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and

dist(0, x− ProjX (x− ∂f(x) +ATλ)) ≤ dist(0, ∂f(x)−ATλ+NX (x)).

Similarly, we can establish the same results for dist(0, ∂g(y) − BTλ +NY(y)). That
is, we have

‖y − Proxg+δY (y +BTλ)‖ ≤ dist(0, ∂g(y)−BTλ+NY(y))

and

dist(0, y − ProjY(y − ∂g(y) +BTλ)) ≤ dist(0, ∂g(y)−BTλ+NY(y)).

Using these inequalities, it is easy to see that

‖R1(w)‖ ≤ dist(0, φ(w)), dist(0, R2(w)) ≤ dist(0, φ(w)),

and the proof is complete.

Notice the equality Proxth = (I + t∂h)−1. It is easy to show that (1.7) implies
either (1.12) or (1.14) as well. We summarize this result in the following proposition.

Proposition A.2. If the KKT system (1.3) admits the FEB (1.7) around a KKT
point w̄, it admits the proximal EB-I (1.12) and proximal EB-II (1.14) around w̄ as
well.

Proof. First, by virtue of

x+ATλ− Proxf+δX (x+ATλ) ∈
(
∂f +NX

) (
Proxf+δX (x+ATλ)

)
,

y +BTλ− Proxg+δY (y +BTλ) ∈
(
∂g +NY

) (
Proxg+δY (y +BTλ)

)
,

we conclude that

(A.1) dist
(
0, φ

(
Proxf+δX (x+ATλ),Proxg+δY (y +BTλ), λ

))
≤ ‖R1(w)‖.

Therefore, for any w ∈ Bε(w̄), we have

dist(w, S(0)) ≤ c1(‖x− Proxf+δX (x+ATλ)‖+ ‖y − Proxg+δY (y +BTλ)‖)
+ dist

((
Proxf+δX (x+ATλ),Proxg+δY (y +BTλ), λ

)
, S(0)

)
≤ c1(‖x− Proxf+δX (x+ATλ)‖+ ‖y − Proxg+δY (y +BTλ)‖)

+ κ · dist
(
0, φ

(
Proxf+δX (x+ATλ),Proxg+δY (y +BTλ), λ

))
,

≤ (2c1 + κ) · ‖R1(w)‖,

where the second inequality follows from the FEB (1.7), and the third inequality is
a direct consequence of (A.1). Thus we get the proximal EB-I (1.12) around w̄. We
can obtain the proximal EB-II (1.14) similarly. The proof is complete.

With Propositions A.1 and A.2, the equivalence between the FEB (1.7) and the
proximal EB-I (1.12) or proximal EB-II (1.14) is established.
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