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DIRECTIONAL QUASI-/PSEUDO-NORMALITY AS SUFFICIENT
CONDITIONS FOR METRIC SUBREGULARITY∗
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Abstract. In this paper we study sufficient conditions for metric subregularity of a set-valued
map which is the sum of a single-valued continuous map and a locally closed subset. First we derive
a sufficient condition for metric subregularity which is weaker than the so-called first-order sufficient
condition for metric subregularity (FOSCMS) by adding an extra sequential condition. Then we
introduce directional versions of quasi-normality and pseudo-normality which are stronger than the
new weak sufficient condition for metric subregularity but weaker than classical quasi-normality
and pseudo-normality. Moreover we introduce a nonsmooth version of the second-order sufficient
condition for metric subregularity and show that it is a sufficient condition for the new sufficient
condition for metric subregularity to hold. An example is used to illustrate that directional pseudo-
normality can be weaker than FOSCMS. For the class of set-valued maps where the single-valued
mapping is affine and the abstract set is the union of finitely many convex polyhedral sets, we show
that pseudo-normality and hence directional pseudo-normality holds automatically at each point of
the graph. Finally we apply our results to complementarity and Karush–Kuhn–Tucker systems.
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1. Introduction. In this paper, we study stability analysis of the system of the
form

(1) P (x) ∈ Λ,

where X , Y are finite-dimensional Hilbert spaces, P : X → Y is continuous near
the point of interest and Λ is a subset of Y which is closed near the point of in-
terest. Throughout the paper, unless otherwise specified, we assume that Y is an
m-dimensional Hilbert space with inner product 〈·, ·〉 equipped with the orthogonal
basis E = {e1, . . . , em}. Without loss of generality, throughout this paper for any
y ∈ Y we denote 〈y, ei〉 by yi, i = 1, . . . ,m.

Since the set Λ is not required to be convex, the system represented by P (x) ∈ Λ
is very general and many systems can be formulated in this form. In particular,
various variational inequalities/complementarity systems can be reformulated in this
form. For example, consider the cone complementarity system defined as

K 3 Φ(x) ⊥ Ψ(x) ∈ K,
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2626 KUANG BAI, JANE J. YE, AND JIN ZHANG

where K is a convex cone in Y , Φ,Ψ : X → Y , and y ⊥ z means that 〈y, z〉 = 0.
Then the cone complementarity system can be reformulated in the form (1) by defining
P (x) := (Φ(x),Ψ(x)) and the complementarity set

Λ := {(y, z) ∈ Y × Y |K 3 y ⊥ z ∈ K}.

Note that although K is convex, the complementarity set is not convex.
Denote by G(x) := P (x)− Λ a set-valued map induced by the system P (x) ∈ Λ.

An important stability issue to study is the metric subregularity. We say that the
set-valued map G is metrically subregular at (x̄, 0) ∈ gphG, where

gphG := {(x, y)|y ∈ G(x)}

is the graph of G, if there exist κ ≥ 0 and a neighborhood U of x̄ such that

d(x,G−1(0)) ≤ κd(P (x),Λ) ∀x ∈ U,

where d(x,C) denotes the distance between a point x and a set C and G−1(y) :=
{x|y ∈ G(x)} denotes the inverse of G at y.

The concept of metric subregularity was introduced by Ioffe [24] using the termi-
nology “regularity at a point.” The terminology “metric subregularity” was suggested
by Dontchev and Rockafellar in [4, Definition 3.1]. This property is also referred to
as an error bound property since it enables us to estimate the distance from a point
x near x̄ to the set of solutions to the system (1) by its residue d(P (x),Λ), which is
much easier to deal with; see, e.g., [8, 51, 50, 52, 6, 39] and the references therein for
related results and applications. Metric subregularity is a weaker condition than the
more familiar property of metric regularity, which requires the existence of κ ≥ 0 and
U , V , neighborhoods of x̄, 0, respectively, such that

d(x,G−1(y)) ≤ κd(P (x),Λ) ∀x ∈ U, y ∈ V,

and strong metric subregularity (see, e.g., [5]), which requires the existence of κ ≥ 0
and U , a neighborhood of x̄ such that

‖x− x̄‖ ≤ κd(P (x),Λ) ∀x ∈ U.

It is well known (see, e.g., [4, Theorem 3.2]) that the metric subregularity of a
set-valued map is equivalent to the calmness of its inverse map, which means that
there exist κ ≥ 0 and neighborhoods U of x̄ and V of 0 such that

G−1(y) ∩ U ⊆ G−1(0) + κ‖y‖B ∀y ∈ V,

where ‖·‖ and B denote the norm and the closed unit ball in Y , respectively. The con-
cept of calmness was first introduced by J. J. Ye and X. Y. Ye in [55, Definition 2.8]
under a different name, “pseudo-upper-Lipschitz continuity,” and the terminology
of “calmness” was coined by Rockafellar and Wets in [46]. Note that the calmness
property is part of the property required in the notion of pseudo-Lipschitz continuity
introduced by Klatte [30]. As suggested by the name “pseudo-upper-Lipschitz conti-
nuity,” the concept of calmness is weaker than both the pseudo-Lipschitz continuity
(or Aubin continuity) introduced by Aubin [1] and the upper-Lipschitz continuity in-
troduced by Robinson [42, 43, 44]. Analogous to the fact that a set-valued map is
metrically subregular if and only if its inverse map is calm, it is well known that the
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DIRECTIONAL QUASI-/PSEUDO-NORMALITY 2627

metric regularity of a set-valued map is equivalent to the pseudo-Lipschitz continuity
of its inverse map (see [35, Theorem 1.49]).

Metric subregularity/calmness plays an important role in optimization. It serves
as a constraint qualification and a sufficient condition for exact penalty; see, e.g., [3,
24, 23, 25, 31, 48, 53, 55]. As pointed out in [26], metric subregularity/calmness is also
an important tool in the subdifferential calculus of nonsmooth analysis. More recently,
it has been discovered that it serves as a sufficient condition for linear convergence of
certain numerical algorithms [32, 49] and quadratic convergence of the Newton-type
method [7].

Although the metric subregularity/calmness/error bound condition is very im-
portant, it is by no means easy to verify. For a long time, there have been only
two major checkable sufficient conditions: one is derived by Robinson’s multifunction
theory and the other is by Mordukhovich’s criteria. By Robinson’s multifunction the-
ory [44], if the linear constraint qualification (linear CQ) holds, i.e., P (x) is affine
and Λ is the union of finitely many polyhedral convex sets, then the set-valued map
G(x) = P (x) − Λ must be a polyhedral multivalued function and so is its inverse
map G−1. Hence the set-valued map G−1 must be upper Lipschitz and hence calm.
Recall that in optimization we call a multiplier abnormal if it is a multiplier corre-
sponding to an optimality system where the objective function vanishes. Assuming P
is continuously differentiable (C1), if the no nonzero abnormal multiplier constraint
qualification (NNAMCQ) holds, i.e., there is no nonzero abnormal multiplier ζ such
that

(2) 0 = ∇P (x̄)∗ζ, ζ ∈ NΛ(P (x̄)),

where NΛ(·) is the limiting normal cone, ∇P denotes the Fréchet derivative of P , and
∗ denotes the adjoint, then Mordukhovich’s criteria for metric regularity (see, e.g.,
[46, Theorem 9.40]) holds and so does metric subregularity. These two criteria are
relatively strong since they are actually sufficient conditions for stronger stability con-
cepts. And therefore there are many situations where these sufficient conditions do not
hold but the systems are still metrically subregular. In general metric subregularity is
weaker than NNAMCQ but for the case of a differentiable convex inequality system,
which is (1) with P convex and differentiable and Λ a nonnegative orthant, Li [33] has
shown that all the following conditions are equivalent: metric subregularity, Abadie’s
constraint qualification, the Slater condition, and the Mangasarian–Fromovitz con-
straint qualification (MFCQ) (which is equivalent to NNAMCQ in this case).

Over the last fifteen years or so, some results for characterizing metric subreg-
ularity/calmness for general set-valued maps have been obtained; see, e.g., [19, 20,
21, 22, 59]. Recently the concept of a directional limiting normal cone which is in
general a smaller set than the limiting normal cone was introduced [16, 10]. Based
on the result for general set-valued maps in [10], Gfrerer and Klatte [14, Corollary 1]
showed that metric subregularity holds for system (1) at x̄ under the first-order suffi-
cient condition for metric subregularity (FOSCMS): assuming P (x) is C1, if for each
nonzero direction u satisfying ∇P (x̄)u ∈ TΛ(P (x̄)) there is no nonzero ζ such that

0 = ∇P (x̄)∗ζ, ζ ∈ NΛ(P (x̄);∇P (x̄)u),

where TΛ(·) and NΛ(y; d) are the tangent cone and the limiting normal cone at y in
direction d (see Definition 2.2). Moreover, if P (x) is strictly differentiable and twice
directionally differentiable and Λ is the union of finitely many polyhedral convex sets,
it was shown in [11, Theorem 4.3] that metric subregularity holds at (x̄, 0) under the
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2628 KUANG BAI, JANE J. YE, AND JIN ZHANG

following second-order sufficient condition for metric subregularity (SOSCMS): for
each nonzero direction u satisfying ∇P (x̄)u ∈ TΛ(P (x̄)), there exists no ζ 6= 0 such
that {

0 = ∇P (x̄)∗ζ, ζ ∈ NΛ(P (x̄);∇P (x̄)u),
〈ζ, P ′′(x̄;u)〉 ≥ 0,

where P ′′(x̄;u) denotes the second-order derivative of P (x) at x̄ in the direction u.
Some sufficient conditions for the metric subregularity/calmness/error bound condi-
tion for special complementarity systems based on the FOSCMS have been obtained
in [15, 58].

Another direction in the effort of weakening the NNAMCQ is to add some extra
conditions to (2). In the case where P is continuously differentiable at x̄, we say that
quasi-normality and pseudo-normality hold at x̄ if there exists no ζ 6= 0 such that (2)
holds and

∃(xk, sk, ζk)→ (x̄, P (x̄), ζ) s.t. ζk ∈ NΛ(sk) and ζi(Pi(x
k)− ski ) > 0 if ζi 6= 0,

∃(xk, sk, ζk)→ (x̄, P (x̄), ζ) s.t. ζk ∈ NΛ(sk) and 〈ζ, P (xk)− sk〉 > 0,

respectively. It is obvious that pseudo-normality implies quasi-normality. For a sys-
tem with equality and inequality constraints where all constraint functions are C1+,
which means that the gradients are locally Lipschitz, Minchenko and Tarakanov [34,
Theorem 2.1] showed that quasi-normality implies the existence of a local error bound
or equivalently metric subregularity/calmness at x̄. In [56, Theorem 5], this result
is extended to systems with continuously differentiable equality constraint functions
and subdifferentially regular inequality constraint functions and a regular constraint
set. Quasi-normality/pseudo-normality for the general system in the form (1) was
introduced by Guo, Ye, and Zhang [17, Definition 4.2] and proved to be a sufficient
condition for error bound/metric subregularity/calmness in [17, Theorem 5.2] under
the Lipschitz continuity of P and the closeness of the set Λ only.

The main purpose of this paper is to combine the two approaches of weakening the
NNAMCQ, i.e., to replace the limiting normal cone by the directional normal cone as
in FOSCMS and SOSCMS and to add extra conditions as in quasi-/pseudo-normality
and prove that our weaker sufficient conditions are still sufficient for verifying metric
subregularity/calmness.

Our assumptions are very general. We only assume the continuity of the mapping
P (x). Indeed, it is natural to study the case where P (x) is only continuous, since
it will widen the range of applications of formation (1). For example, consider the
recovery of an unknown vector x ∈ Rn (such as a signal or an image) from noisy data
b ∈ Rm by minimizing with respect to x a regularized cost function

F (x, b) = f(x, b) + µg(x),(3)

where typically f : Rn × Rm → R is a data-fidelity term and g : Rn → R is a
nonsmooth regularization term, with µ > 0 a parameter. One usual choice for the
data-fidelity term is

f(x, b) =

m∑
i=1

|aTi x− bi|ρ

with ai ∈ Rn and ρ in the range (0,∞]; see, e.g., [38, 40, 41]. Apparently when ρ
takes a value in the interval (1, 2), the optimality condition of minimizing function (3)
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DIRECTIONAL QUASI-/PSEUDO-NORMALITY 2629

with respect to x can be described by 0 ∈ ∇xf(x, b) + ∂g(x), where ∂g(x) denotes a
certain subdifferential of g at x, which can be reformulated as P (x) ∈ Λ, where P (x)
is continuous. Therefore, thanks to the equivalence between calmness of different
reformulations established in [15, Proposition 3], our results can be used to study the
calmness of the optimality condition system of minimizing (3) without imposing an
unnecessarily stronger condition.

We organize our paper as follows. Section 2 gives the preliminaries and pre-
liminary results. In section 3, we propose the weak sufficient condition for metric
subregularity and show that it is sufficient for metric subregularity. In section 4, we
propose the concepts of directional quasi-/pseudo-normality and show that they are
stronger than the new sufficient condition for metric subregularity. Moreover, in this
section it is shown that the SOSCMS implies pseudo-normality. In section 5 we apply
our results to complementarity systems and Karush–Kuhn–Tucker (KKT) systems.

2. Preliminaries and preliminary results. In this section, we gather some
preliminaries on variational analysis and nonsmooth analysis that will be used in the
following sections. We only give concise definitions and results that will be needed
in this paper. For more detailed information on the subject, the reader is referred to
Mordukhovich [35], and Rockafellar and Wets [46].

First, we give the definition of tangent cones and normal cones.

Definition 2.1 (tangent cones and normal cones; see, e.g., [46, Definition 6.1]).
Given a set Ω ⊆ Y and a point ȳ ∈ Ω, the tangent cone to Ω at ȳ is defined as

TΩ(ȳ) := {d ∈ Y |∃tk ↓ 0, dk → d s.t. ȳ + tkdk ∈ Ω ∀k} .

The derivable cone to Ω at ȳ is defined as

T iΩ(ȳ) := {d ∈ Y |∀tk ↓ 0,∃dk → d s.t. ȳ + tkdk ∈ Ω ∀k} .

A set Ω is said to be geometrically derivable if the tangent cone coincides with the
derivable cone at each point of Ω, or equivalently if limt↓0 t

−1d(ȳ + tu,Ω) = 0.
The regular normal cone and the limiting normal cone to Ω at ȳ are defined as

N̂Ω(ȳ) :=

ζ ∈ Y

∣∣∣∣∣ lim sup

y
Ω−→ȳ

〈ζ, y − ȳ〉
‖y − ȳ‖

≤ 0


and

NΩ(ȳ) :=
{
ζ ∈ Y

∣∣∣∃ yk Ω−→ ȳ, ζk→ζ such that ζk ∈ N̂Ω(yk) ∀k
}
,

respectively, where yk
Ω−→ ȳ means yk → ȳ and for each k, yk ∈ Ω.

Recently a directional version of limiting normal cones was introduced in [16,
Definition 2.3] and extended to general Banach spaces in [10].

Definition 2.2 (directional normal cones; see [10, Definition 2]). Given a point
ȳ ∈ Y and a direction d ∈ Y , the limiting normal cone to Ω at ȳ in direction d is
defined by

NΩ(ȳ; d) :=
{
ζ ∈ Y

∣∣∣∃ tk ↓ 0, dk → d, ζk → ζ s.t. ζk ∈ N̂Ω(ȳ + tkdk) ∀k
}
.

From the definition, it is obvious that NΩ(ȳ; d) = ∅ if d 6∈ TΩ(ȳ) and NΩ(ȳ; d) ⊆
NΩ(ȳ).
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2630 KUANG BAI, JANE J. YE, AND JIN ZHANG

Proposition 2.1 (see [58, Proposition 3.3]). Let Ω := Ω1 × · · · × Ωl, where
Ωi ⊆ Rni are closed for i = 1, . . . , l and n = n1 + · · · + nl. Consider a point ȳ =
(ȳ1, . . . , ȳl) ∈ Ω and a direction d = (d1, . . . , dl) ∈ Rn. Then

TΩ(ȳ) ⊆ TΩ1
(ȳ1)× · · · × TΩl

(ȳl),

NΩ(ȳ; d) ⊆ NΩ1
(ȳ1; d1)× · · · ×NΩl

(ȳl; dl).

The equality holds if all except at most one of Ωi for i = 1, . . . , l are directionally
regular at yi in the sense of [58, Definition 3.3].

We give the definition of some subdifferentials below.

Definition 2.3 (subdifferentials; see, e.g., [35]). Let f : X → [−∞,+∞] and x̄
is a point where f is finite. Then

• the Fréchet (regular) subdifferential of f at x̄ is the set

∂̂f(x̄) :=

{
ξ ∈X

∣∣∣∣ lim inf
h→0

f(x̄+ h)− f(x̄)− 〈ξ, h〉
‖h‖

≥ 0

}
,

• the limiting (Mordukhovich or basic) subdifferential of f at x̄ is the set

∂f(x̄) :=
{
ξ ∈X

∣∣∣∃xk → x̄, f(xk)→ f(x̄), and ξk → ξ with ξk ∈ ∂̂f(xk)
}
.

Recently, based on the concept of the directional limiting normal cone, the fol-
lowing directional version of the limiting subdifferential was introduced in [2].

Definition 2.4 (directional subdifferentials; see [2]). Let f : X → [−∞,+∞]
and x̄ be a point where f is finite. Then the limiting subdifferential of f at x̄ in
direction (u, ζ) ∈X × R is defined as

∂f(x̄; (u, ζ)) :=
{
ξ ∈X

∣∣∣∃tk ↓ 0, uk → u, ζk → ζ, ξk → ξ,

f(x̄) + tkζ
k = f(x̄+ tku

k), ξk ∈ ∂̂f(x̄+ tku
k)
}
.

Remark 2.1. Let f be continuously differentiable at x̄. Then ∂f(x̄; (u, ζ)) 6= ∅ if
and only if ζ = ∇f(x̄)u, in which case

∂f(x̄; (u, ζ)) = ∂f(x̄) = {∇f(x̄)}.

Definition 2.5 (graphical derivatives; see, e.g., [5]). For a set-valued map G :
X ⇒ Y and a pair (x, y) with y ∈ G(x), the graphical derivative of G at x for y is
the set-valued map DG(x|y) : X ⇒ Y whose graph is the tangent cone to gphG at
(x, y):

v ∈ DG(x|y)(u)⇔ (u, v) ∈ TgphG(x, y).

Thus, v ∈ DG(x|y)(u) if and only if there exist sequences uk → u, vk → v, and τk ↓ 0
such that y + τkvk ∈ G(x+ τkuk) for all k.

For a single-valued mapping P : X → Y , its graphical derivative at x for y =
P (x) is

(4) DP (x)(u) :=

{
ξ

∣∣∣∣∃tk ↓ 0, uk → u s.t. lim
k→+∞

P (x+ tkuk)− P (x)

tk
= ξ

}
.
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DIRECTIONAL QUASI-/PSEUDO-NORMALITY 2631

Moreover if P (x) is Hadamard directionally differentiable at x, then its graphical
derivative is equal to the directional derivative: for any u ∈X ,

DP (x)(u) = P ′(x;u) := lim
t↓0, u′→u

P (x+ tu′)− P (x)

t
.

The following sum rule extends the sum rule in [5, Proposition 4A.2] by allowing
P (x) to be only continuous.

Proposition 2.2. Let G(x) := −P (x) + Λ and P (x̄) ∈ Λ, where P (x) : X → Y
is a continuous singled-valued map.

Then either

(5) DG(x̄|0)(u) ⊆ −DP (x̄)(u) + TΛ(P (x̄))

or there exists ζ 6= 0 such that

ζ ∈ DP (x̄)(0) ∩ TΛ(P (x̄)).

If either P (x) is Hadamard directionally differentiable at x̄ or Λ is geometrically deriv-
able, then (5) holds as an equality.

Proof. By definition, v ∈ DG(x̄|0)(u) if and only if (u, v) ∈ TgphG(x̄, 0). It follows
from the definition of the tangent cone that there exist sequences (uk, vk) → (u, v)
and τk ↓ 0 such that (x̄, 0) + τk(uk, vk) ∈ gphG, which means that there exists sk ∈ Λ
such that τkvk = −P (x̄+ τkuk) + sk.

Case (i) ({P (x̄+τkuk)−P (x̄)
τk

} is bounded). Then without loss of generality we may

assume that limk→+∞
P (x̄+τkuk)−P (x̄)

τk
= ξ. Therefore we have

v = lim
k→+∞

vk = − lim
k→+∞

P (x̄+ τkuk)− P (x̄)

τk
+ lim
k→+∞

sk − P (x̄)

τk
.

Since sk ∈ Λ, we have

lim
k→+∞

sk − P (x̄)

τk
∈ TΛ(P (x̄)).

Hence v ∈ −DP (x̄)(u) + TΛ(P (x̄)).

Case (ii) ({P (x̄+τkuk)−P (x̄)
τk

} is unbounded). Without loss of generality, assume
that

lim
k→+∞

‖P (x̄+ τkuk)− P (x̄)‖
τk

=∞.

Define tk := ‖P (x̄+ τkuk)− P (x̄)‖.
Since {

P (x̄+ τkuk)− P (x̄)

tk

}
=

{
P (x̄+ τkuk)− P (x̄)

‖P (x̄+ τkuk)− P (x̄)‖

}
is bounded, we may without loss of generality assume limk→+∞{P (x̄+τkuk)−P (x̄)

tk
} = ζ.

By definition of DP (x̄)(0) and the fact that limk→∞
τk
tk

= 0, we have

0 6= ζ = lim
k→+∞

P (x̄+ τkuk)− P (x̄)

tk
= lim
k→+∞

P (x̄+ tk( τktk uk))− P (x̄)

tk
∈ DP (x̄)(0).
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Since vk → v and limk→∞
τk
tk

= 0, we have

0 = lim
k→∞

τk
tk
vk = − lim

k→+∞

P (x̄+ τkuk)− P (x̄)

tk
+ lim
k→+∞

sk − P (x̄)

tk

= −ζ + lim
k→+∞

sk − P (x̄)

tk
.

Therefore ζ = limk→+∞
sk−P (x̄)

tk
, which implies that ζ ∈ TΛ(P (x̄)).

Conversely, let v ∈ −DP (x̄)(u) + TΛ(P (x̄)). Then there exist ξ ∈ DP (x̄)(u) and
ζ ∈ TΛ(P (x̄)) such that v = −ξ + ζ.

If P (x) is Hadamard directionally differentiable at x̄, then the limit

ξ = lim
t↓0, u′→u

P (x̄+ tu′)− P (x̄)

t

exists and there exist sequences τk ↓ 0, sk
Λ−→ P (x̄) such that

ζ = lim
k→+∞

sk − P (x̄)

τk
.

Define

vk = −P (x̄+ τkuk)− P (x̄)

τk
+
sk − P (x̄)

τk
=
−P (x̄+ τkuk) + sk

τk
.

Then limk→∞ vk = v and τkvk ∈ −P (x̄+ τkuk) + Λ for all k. Hence v ∈ DG(x̄|0)(u).
Now suppose that Λ is geometrically derivable. let τk ↓ 0, uk → u be sequences

such that

ξ = lim
k↓∞

P (x̄+ τkuk)− P (x̄)

τk
.

Since Λ is geometrically derivable, there exists sk ∈ Λ such that

ζ = lim
k→+∞

sk − P (x̄)

τk
.

Define

vk = −P (x̄+ τkuk)− P (x̄)

τk
+
sk − P (x̄)

τk
=
−P (x̄+ τkuk) + sk

τk
.

Then limk→∞ vk = v and τkvk ∈ G(x̄+ τkuk) for all k. Hence v ∈ DG(x̄|0)(u).

Definition 2.6 (coderivatives and directional coderivatives; see [2] and [35, Def-
inition 1.32]). For a set-valued map G : X ⇒ Y and a point (x̄, ȳ) ∈ gphG :=
{(x, y) ∈ X × Y |y ∈ G(x)}, the Fréchet coderivative (precoderivative) of G at (x̄, ȳ)

is a multifunction D̂∗G(x̄, ȳ) : Y ⇒ X defined as

D̂∗G(x̄, ȳ)(ζ) :=
{
η ∈X

∣∣∣(η,−ζ) ∈ N̂gphG(x̄, ȳ)
}

;

the limiting (Mordukhovich) coderivative of G at (x̄, ȳ) is a multifunction D∗G(x̄, ȳ) :
Y ⇒ X defined as

D∗G(x̄, ȳ)(ζ) := {η ∈X |(η,−ζ) ∈ NgphG(x̄, ȳ)} .
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The symbol D∗G(x̄) is used when G is single valued. The limiting coderivative of G
at (x̄, ȳ) in direction (u, ξ) ∈X × Y is defined as

D∗G(x̄, ȳ; (u, ξ))(ζ) := {η ∈X |(η,−ζ) ∈ NgphG(x̄, ȳ; (u, ξ))} .

Similarly the symbol D∗G(x̄; (u, ξ)) is used when G is single valued.

Remark 2.2. In the special case when P : X → Y is a single-valued map which
is Lipschitz continuous at x̄, by [35, Theorem 3.28], the coderivative is related to the
limiting subdifferential in the following way:

D∗P (x̄)(ζ) = ∂〈P, ζ〉(x̄) for all ζ ∈ Y .

By [2, Proposition 5.1], if P is Lipschitz near x̄ in direction u, then D∗P (x̄; (u, ξ))(ζ) 6=
∅ if and only if ξ ∈ DP (x̄)(u), in which case

D∗P (x̄; (u, ξ))(ζ) = ∂〈P, ζ〉(x̄; (u, 〈ξ, ζ〉)).

Let P : X → Y be C1. By [2, Remark 2.1], one has DP (x̄)(u) = ∇P (x̄)u and
thus D∗P (x̄; (u, ξ))(ζ) 6= ∅ if and only if ξ = ∇P (x̄)u, in which case

D∗P (x̄; (u, ξ))(ζ) = D∗P (x̄)(ζ) = ∇P (x̄)∗ζ.

To state our main results, given P : X → Y and Λ ⊆ Y , we define the extended
linearization cone as

(6) L̃(x) := {(u, ξ) ∈X × Y |ξ ∈ DP (x)(u) ∩ TΛ(P (x))} .

It is easy to see that the projection of L̃(x) onto the space X is the linearization
cone defined by L(x) := {u ∈ X |∃ξ such that ξ ∈ DP (x)(u) ∩ TΛ(P (x))}. When P
is differentiable at x, DP (x)(u) = ∇P (x)u and hence in this case

L̃(x) = {(u,∇P (x)u) : 0 ∈ −∇P (x)u+ TΛ(P (x))}.

Proposition 2.3. Let P : X → Y be continuous and Λ ⊆ Y . Then

(7) L̃(x̄) = {(0, 0)} =⇒ DG(x̄|0)−1(0) = {0}.

Proof. By virtue of Proposition 2.2, when L̃(x̄) = {(0, 0)}, one must have

DG(x̄|0)(u) ⊆ −DP (x̄)(u) + TΛ(P (x̄)).

Suppose that u ∈ DG(x̄|0)−1(0). Then equivalently, 0 ∈ DG(x̄|0)(u). Hence 0 ∈
−DP (x̄)(u) + TΛ(P (x̄)) or equivalently DP (x)(u) ∩ TΛ(P (x)) 6= ∅. Since L̃(x̄) =
{(0, 0)}, it means that ∀u 6= 0, DP (x)(u) ∩ TΛ(P (x)) = ∅. Hence we must have
u = 0.

Proposition 2.4. Let P : X → Y be continuous and Λ ⊆ Y be closed near
x̄ ∈X . If L̃(x̄) = {(0, 0)}, then G(x) = P (x)−Λ is strongly metrically subregular at
(x̄, 0).

Proof. By [5, Theorem 4C.1], G is strongly metrically subregular at (x̄, 0) if and
only if DG(x̄|0)−1(0) = {0}. The result then follows from applying Proposition 2.3.
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3. Weak sufficient condition for metric subregularity. In this section we
will derive a sufficient condition for metric subregularity of the system P (x) ∈ Λ,
where P (x) : X → Y is a continuous single-valued map and Λ ⊆ Y is locally closed.
Recall that no ζ satisfying condition (10) alone is the so-called first-order sufficient
condition for metric subregularity (FOSCMS), as established by Gfrerer and Klatte
in [14, Corollary 1] for the case where P is smooth and extended to the nonsmooth
but calmness case in [2, Proposition 2.2]. Our sufficient condition in Theorem 3.1
improves the FOSCMS in [2, Proposition 2.2] in two aspects. First, we allow P (x) to
be only continuous instead of being calm. Secondly, even in the case where P (x) is
calm, our condition is weaker in that the extra condition of the existence of sequences
(uk, vk, ζk)→ (u, 0, ζ) and tk ↓ 0 satisfying (11) and (12) is required.

We will derive our result based on the following sufficient conditions for metric
subregularity for general set-valued maps by Gfrerer in [12].

Lemma 3.1 (see [12, Corollary 1 and Remarks 1 and 2]). Let G : X ⇒ Y
be a closed set-valued map, and take a point (x̄, ȳ) ∈ gphG. Assume that for any
direction u ∈ X , there do not exist sequences tk ↓ 0, ‖(uk, vk)‖ = 1, ‖y∗k‖ = 1 with
‖uk‖ → 1, ‖u‖uk → u, vk → 0, x∗k → 0 satisfying

(x∗k,−y∗k) ∈ N̂gphG(x′k, y
′
k), x′k 6∈ G−1(ȳ),

and

lim
k→∞

〈y∗k, y′k − ȳ〉
‖y′k − ȳ‖

= 1,

where x′k := x̄ + tkuk 6= x̄, y′k := ȳ + tkvk 6= ȳ. Then G is metrically subregular at
(x̄, ȳ).

Note that as commented in [12, Remark 2], if the condition x′k 6∈ G−1(ȳ) is
omitted then the resulting sufficient condition is stronger but may be easier to verify.
However, in [37, Example 1], it was shown that sometimes these kinds of conditions
can not be omitted in order to show the metric subregularity.

Lemma 3.2. Let P be a single-valued map from X to Y and Λ be a subset of Y .
Define G(x) := P (x)−Λ, y = P (x)−s for some s ∈ Λ. Then (x∗,−y∗) ∈ N̂gphG(x, y)
implies that

x∗ ∈ D̂∗P (x)(y∗), y∗ ∈ N̂Λ(P (x)− y).

Proof. Since (x∗,−y∗) ∈ N̂gphG(x, y), by definition for any ε > 0,

(8) 〈x∗, x′ − x〉+ 〈−y∗, y′ − y〉 ≤ ε‖(x′ − x, y′ − y)‖

for any (x′, y′) ∈ gphG which is sufficiently close to (x, y). Let y′ := P (x)−s′, s′ ∈ Λ.
Then when s′ is close to s, y′ = P (x) − s′ is close to y = P (x) − s. Hence, fixing
x′ = x in (8) we obtain that for any ε > 0 and any s′ ∈ Λ sufficiently close to s,

〈−y∗, s− s′〉 ≤ ε‖s− s′‖ ⇔ 〈y∗, s′ − s〉 ≤ ε‖s− s′‖.

This means that y∗ ∈ N̂Λ(s) = N̂Λ(P (x)− y).
On the other hand, let x′ ∈ X and y′ := P (x′) − s. Then y′ ∈ G(x′) and when

(x′, P (x′)) is close to (x, P (x)), (x′, y′) is close to (x, y). Hence, by (8) we have

〈x∗, x′ − x〉+ 〈−y∗, P (x′)− P (x)〉 ≤ ε‖(x′ − x, P (x′)− P (x))‖

D
ow

nl
oa

de
d 

10
/2

8/
19

 to
 1

16
.6

.2
34

.1
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DIRECTIONAL QUASI-/PSEUDO-NORMALITY 2635

for any (x′, P (x′)) which is close to (x, P (x)). This means that

(x∗,−y∗) ∈ N̂gphP (x, P (x))

or equivalently x∗ ∈ D̂∗P (x)(y∗). The proof of the lemma is therefore complete.

Applying Lemmas 3.1 and 3.2, we obtain the following sufficient condition for
metric subregularity.

Proposition 3.1. Let P : X → Y be a single-valued map and Λ ⊆ Y be closed.
Let G(x) := P (x)−Λ and P (x̄) ∈ Λ. Assume that G(x) is a set-valued map which is
closed around x̄ and suppose that for any direction u ∈X , there do not exist sequences
tk ↓ 0, ‖(uk, vk)‖ = 1, ‖y∗k‖ = 1 with ‖uk‖ → 1, ‖u‖uk → u, vk → 0, x∗k → 0
satisfying

x∗k ∈ D̂∗P (x̄+ tkuk)(y∗k), y∗k ∈ N̂Λ(P (x̄+ tkuk)− tkvk), P (x̄+ tkuk) 6∈ Λ,

and

(9) lim
k→∞

〈y∗k, vk〉
‖vk‖

= 1.

Then G is metrically subregular at (x̄, 0).

Note that by [35, Theorem 1.38], when P is Fréchet differentiable but not neces-

sarily Lipschitz continuous, we have D̂∗P (x)(y∗) = {∇P (x)∗y∗}.
Theorem 3.1. Let P : X → Y be continuous and Λ ⊆ Y be closed at x̄ ∈ X .

Suppose that the weak sufficient condition for metric subregularity (WSCMS) holds

at x̄, i.e., for all (0, 0) 6= (u, ξ) ∈ L̃(x̄), there exists no unit vector ζ, sequences
(uk, vk, ζk)→ (u, 0, ζ) and tk ↓ 0 satisfying

0 ∈ D∗P (x̄; (u, ξ))(ζ), ζ ∈ NΛ(P (x̄); ξ),(10)

ζk ∈ N̂Λ(sk), sk = P (x̄+ tkuk)− tkvk, P (x̄+ tkuk) 6∈ Λ,(11)

lim
k→∞

〈
ζk,

vk
‖vk‖

〉
= 1.(12)

Then G(x) = P (x)− Λ is metrically subregular at (x̄, 0).

Proof. If L̃(x̄) = {(0, 0)}, then by Proposition 2.4, G is strongly metrically sub-
regular and hence metrically subregular at (x̄, 0). We now prove the result for the

L̃(x̄) 6= {(0, 0)} case by contradiction. To the contrary, suppose that P (x)− Λ is not
metrically subregular at (x̄, 0). By Proposition 3.1, there exist u ∈X and sequences
tk ↓ 0, ‖(uk, vk)‖ = 1, ‖y∗k‖ = 1 with ‖uk‖ → 1, ‖u‖uk → u, vk → 0, x∗k → 0 such
that

(13) (x∗k,−y∗k) ∈ N̂gphP (x̄+ tkuk, P (x̄+ tkuk)), y∗k ∈ N̂Λ(P (x̄+ tkuk)− tkvk),

and (9) holds.
Since we have ‖y∗k‖ = 1, ‖(uk, vk)‖ = 1, and vk → 0, passing to a subsequence

if necessary, we assume that limk→∞ y∗k = ζ, limk→∞ uk = u for certain ‖u‖ = 1. It
follows that ‖ζ‖ = 1.

Case (1) ({P (x̄+tkuk)−P (x̄)
tk

} is bounded). Then without loss of generality we may

assume that limk→+∞
P (x̄+tkuk)−P (x̄)

tk
= ξ. Thus, letting ξk := P (x̄+tkuk)−P (x̄)

tk
, we

have P (x̄+ tkuk) = P (x̄) + tkξk. Combining with (13) we get

(x∗k,−y∗k) ∈ N̂gphP ((x̄, P (x̄)) + tk(uk, ξk)), y∗k ∈ N̂Λ(P (x̄+ tkuk)− tkvk).
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Since (uk, ξk)→ (u, ξ) as k →∞, we have

(0,−ζ) ∈ NgphP ((x̄, P (x̄)); (u, ξ)), ζ ∈ NΛ(P (x̄); ξ).

Also, from the proof of Proposition 2.2, we see that ξ ∈ DP (x̄)(u) ∩ TΛ(P (x̄)) and
hence (u, ξ) ∈ L̃(x̄).

In summary for Case (1), we have obtained a nonzero vector ζ, a nonzero vector

(u, ξ) ∈ L̃(x̄), and sequences (uk, vk, y
∗
k)→ (u, 0, ζ) and tk ↓ 0 such that

0 ∈ D∗P (x̄; (u, ξ))(ζ), ζ ∈ NΛ(P (x̄); ξ),

y∗k ∈ N̂Λ(sk), sk = P (x̄+ tkuk)− tkvk,

lim
k→∞

〈
y∗k,

vk
‖vk‖

〉
= 1,

which contradicts the assumption in (WSCMS). Thus P (x)−Λ is metrically subregular
at (x̄, 0).

Case (2) ({P (x̄+tkuk)−P (x̄)
tk

} is unbounded). Without loss of generality, assume

that limk→+∞
‖P (x̄+tkuk)−P (x̄)‖

tk
=∞. Define

τk := ‖tkuk‖+ ‖P (x̄+ tkuk)− P (x̄)‖, u′k :=
tkuk
τk

,

ξk :=
P (x̄+ τku

′
k)− P (x̄)

τk
, v′k :=

tkvk
τk

.

Since tk/τk ≤ tk/‖P (x̄ + tkuk) − P (x̄)‖, we have tk/τk → 0 and hence v′k → 0
and u′k → 0. Since {ξk} is bounded, taking a subsequence if necessary, we have

ξ := lim
k→∞

ξk.

Then with tkuk = τku
′
k and P (x̄+ tkuk) = P (x̄) + τkξk, by (13) we get

(x∗k,−y∗k) ∈ N̂gphP ((x̄, P (x̄)) + τk(u′k, ξk)), y∗k ∈ N̂Λ(P (x̄+ τku
′
k)− τkv′k).

Since sk = P (x̄+ τku
′
k)− τkv′k, we know that

lim
k→∞

sk − P (x̄)

τk
= lim
k→∞

P (x̄+ τku
′
k)− τkv′k − P (x̄)

τk

= lim
k→∞

P (x̄+ τku
′
k)− P (x̄)

τk
= ξ.

Thus, ξ ∈ DP (x̄)(0) ∩ TΛ(P (x̄)), which means (0, ξ) ∈ L̃(x̄). With x∗k → 0, we have

0 ∈ D∗P (x̄; (0, ξ))(ζ), ζ ∈ NΛ(P (x̄); ξ).

By (9), we can easily obtain that

lim
k→∞

〈
y∗k,

v′k
‖v′k‖

〉
= lim
k→∞

〈
y∗k,

tkvk
‖tkvk‖

〉
= lim
k→∞

〈
y∗k,

vk
‖vk‖

〉
= 1.

In summary for Case (2), we obtain a nonzero vector ζ, a nonzero vector (0, ξ) ∈
L̃(x̄), and sequences (u′k, v

′
k, y
∗
k)→ (0, 0, ζ) and τk ↓ 0 such that

0 ∈ D∗P (x̄; (0, ξ))(ζ), ζ ∈ NΛ(P (x̄); ξ),

y∗k ∈ N̂Λ(sk), sk = P (x̄+ τku
′
k)− τkv′k,

lim
k→∞

〈
y∗k,

v′k
‖v′k‖

〉
= 1,
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which contradicts the assumption in (WSCMS). Thus P (x)−Λ is metrically subregular
at (x̄, 0).

As an immediate consequence, if we discard the sequential conditions (11) and
(12) in WSCMS, we derive from Theorem 3.1 the following sufficient condition for
metric subregularity in the form of FOSCMS. The result improves [2, Proposition 2.2]
in that P is only assumed to be continuous instead of being calm.

Corollary 3.1. Let P : X → Y be continuous and Λ ⊆ Y be closed at x̄ ∈
X . Suppose that FOSCMS holds at x̄, i.e., for all (u, ξ) such that ξ ∈ DP (x̄)(u) ∩
TΛ(P (x̄)),

0 ∈ D∗P (x̄; (u, ξ))(ζ), ζ ∈ NΛ(P (x̄); ξ) =⇒ ζ = 0.

Then G(x) = P (x)− Λ is metrically subregular at (x̄, 0).

4. Directional quasi-/pseudo-normality. As we mentioned in the introduc-
tion, quasi-/pseudo-normality are also sufficient for metric subregularity. In this sec-
tion we propose directional versions of quasi-/pseudo-normality and show that they
are slightly stronger than the WSCMS. Moreover we show that the SOSCMS implies
pseudo-normality. Our results are based on the following observations.

Proposition 4.1. Let P : X → Y , (uk, vk, ζk)→ (u, 0, ζ), tk ↓ 0 with ‖ζ‖ = 1,
and sk = P (x̄+ tku

k)− tkvk. Then the condition

(14) lim
k→∞

〈
ζk,

vk

‖vk‖

〉
= 1

implies

(15) ζi(Pi(x̄+ tku
k)− ski ) > 0 ∀i ∈ I := {i : ζi 6= 0},

which implies

(16) 〈ζ, P (x̄+ tku
k)− sk〉 > 0.

Proof. Suppose that (14) holds. Since∥∥∥∥ ζk

‖ζk‖
− vk

‖vk‖

∥∥∥∥2

=

〈
ζk

‖ζk‖
− vk

‖vk‖
,
ζk

‖ζk‖
− vk

‖vk‖

〉
=
‖ζk‖2

‖ζk‖2
− 2

〈
ζk

‖ζk‖
,
vk

‖vk‖

〉
+
‖vk‖2

‖vk‖2

= 2− 2

‖ζk‖

〈
ζk,

vk

‖vk‖

〉
,

limk→∞〈ζk, vk

‖vk‖ 〉 = 1 and limk→∞ ‖ζk‖ = ‖ζ‖ = 1, we have

lim
k→∞

∥∥∥∥ ζk

‖ζk‖
− vk

‖vk‖

∥∥∥∥ = 0.
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Consequently, limk→∞
vk

‖vk‖ = ζ
‖ζ‖ . Thus when k is large enough, for each i = 1, . . . ,m,

with ζi 6= 0, vki have the same sign as ζi. This means

ζiv
k
i > 0 ∀i ∈ I := {i : ζi 6= 0},

which implies (15). Since ζ 6= 0, (15) obviously implies (16).

We are now in a position to define the concept of directional quasi-/pseudo-
normality.

Definition 4.1 (directional quasi-/pseudo-normality). Let P : X → Y with
P (x̄) ∈ Λ.

(a) We say that directional quasi-normality holds at x̄ if for all

(0, 0) 6= (u, ξ) ∈ L̃(x̄) := {(u, ξ) ∈X × Y |ξ ∈ DP (x)(u) ∩ TΛ(P (x))},

there exists no ζ 6= 0 such that

(17) 0 ∈ D∗P (x̄; (u, ξ))(ζ), ζ ∈ NΛ(P (x̄); ξ),

and {
∃(uk, sk, ζk)→ (u, P (x̄), ζ) and tk ↓ 0

s.t. ζk ∈ N̂Λ(sk) and ζi(Pi(x̄+ tku
k)− ski ) > 0 if ζi 6= 0.

(b) We say that directional pseudo-normality holds at x̄ if for all (0, 0) 6= (u, ξ) ∈
L̃(x̄), there exists no ζ 6= 0 such that (17) holds and{

∃(uk, sk, ζk)→ (u, P (x̄), ζ) and tk ↓ 0

s.t. ζk ∈ N̂Λ(sk) and 〈ζ, P (x̄+ tku
k)− sk〉 > 0.

By virtue of Proposition 4.1, directional pseudo-normality is stronger than di-
rectional quasi-normality. And consequently from Theorem 3.1, they can provide
sufficient conditions for metric subregularity.

Corollary 4.1. Let P : X → Y , P (x̄) ∈ Λ, where P (x) is continuous at x̄
and Λ is closed near x̄. If either directional pseudo-normality or directional quasi-
normality holds at x̄, then the set-valued map G(x) = P (x)−Λ is metrically subregular
at (x̄, 0).

By definition, directional quasi-/pseudo-normality is weaker than quasi-/pseudo-
normality, and the following example shows that it is weaker than both quasi-normal-
ity and FOSCMS.

Example 4.1 (FOSCMS fails but directional pseudo-normality holds). Consider
the constraint system defined by P (x) = (x,−x2) ∈ Λ, where

Λ := {(x, y)|y ≤ 0 or y ≤ x}.

The point x̄ = 0 is feasible since (0, 0) ∈ Λ. We have

P (x̄) = (0, 0), ∇P (x̄) =

(
1
−2x̄

)
=

(
1
0

)
, TΛ(P (x̄)) = Λ,

and the linearized cone L(x̄) = {u ∈ R|0 ∈ −∇P (x̄)u+TΛ(P (x̄))} = R. Let ū := −1 ∈
L(x̄), ζ := (0, 1), and (xk, yk) = P (x̄)+ 1

k∇P (x̄)ū = (− 1
k , 0). Then ∇P (x̄)T ζ = 0 and
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for each k, ζ ∈ NΛ(xk, yk). Thus ∇P (x̄)T ζ = 0 and ζ ∈ NΛ(P (x̄);∇P (x̄)ū). Hence
the FOSCMS fails at x̄.

However, we can prove that directional pseudo-normality holds at x̄. We prove it
by contradiction. Assume that directional pseudo-normality fails at x̄. Then there ex-
ist 0 6= u ∈ L(x̄), 0 6= ζ ∈ NΛ(P (x̄);∇P (x̄)u), and a sequence {uk, sk, ζk} converging
to (u, P (x̄), ζ) and tk ↓ 0 such that

(18) ∇P (x̄)T ζ = 0,

2∑
i=1

ζi(Pi(x̄+ tku
k)− ski ) > 0, ζk ∈ N̂Λ(sk).

Solving ∇P (x̄)T ζ = 0, we obtain ζ1 = 0. Moreover since NΛ(P (x̄)) = {0} × R+ ∪
{(−r, r)|r ≥ 0}, we have ζ ∈ {0} × R++. Since ζk → ζ and ζk ∈ N̂Λ(sk), we must
have ζk ∈ {0} × R++ and sk ∈ {0} × R+. Thus we obtain

2∑
i=1

ζi(Pi(z
k)− ski ) = ζ2(P2(zk)− sk2) = λ(−(zk)2 − sk2) ≤ 0,

where zk := x̄+ tku
k. But this contradicts (18). Hence directional pseudo-normality

holds at x̄.

We now consider the case where Λ is the union of finitely many convex polyhedral
sets in Y , i.e., Λ :=

⋃p
i=1 Λi, where

Λi := {y ∈ Y |〈λij , y〉 ≤ bij , j = 1, . . . ,mi} , i = 1, . . . , p,

with λij ∈ Y , bij ∈ R for j = 1, . . . ,mi, are convex polyhedral sets. As noted in the
introduction, by Robinson’s multifunction theory [44], we know that when P is affine
and Λ is the union of finitely many convex polyhedral sets, the set-valued map G−1

is upper Lipschitz continuous and hence calm at each point of the graph. What is
more, we now show that the pseudo-normality always holds. To our knowledge, this
result has never been shown in the literature before.

The following results will be needed in the proof. For every s ∈ Λ, we denote by
p(s) := {i = 1, . . . , p|s ∈ Λi} the index set of the convex polyhedral sets containing s.
Then we have from [11] that

TΛ(s) =
⋃

i∈p(s)

TΛi(s), N̂Λ(s) =
⋂

i∈p(s)

N̂Λi(s).(19)

Proposition 4.2. Let P : X → Y . Suppose that P (x) is affine and Λ is the
union of finitely many convex polyhedral sets defined as above. Then for any feasible
point x̄ satisfying P (x̄) ∈ Λ, pseudo-normality holds.

Proof. We prove the proposition by contradiction. Assume that pseudo-normality
does not hold at x̄. Then there exists ζ 6= 0 such that

0 = ∇P (x̄)∗ζ, ζ ∈ NΛ(P (x̄)),
∃(xk, sk, ζk)→ (x̄, P (x̄), ζ)

s.t. ζk ∈ N̂Λ(sk), 〈ζ, P (xk)− sk〉 > 0.

As sk → P (x̄) when k → ∞ and sk ∈ Λ =
⋃p
i=1 Λi, by virtue of (19), taking a

subsequence if necessary, there exists i ∈ {1, . . . , p} such that for k sufficiently large,
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sk ∈ Λi, P (x̄) ∈ Λi, ζ
k ∈ NΛi

(sk). Define J(sk) := {j = 1, . . . ,mi|〈λij , sk〉 = bij}
and J(P (x̄)) := {j = 1, . . . ,mi|〈λij , P (x̄)〉 = bij}. Since ζk 6= 0, sk is not an interior
point of Λi and hence the index set J(sk) is not empty. Since sk → P (x̄), we have
J(sk) ⊆ J(P (x̄)) when k is sufficiently large. Hence without loss of generality, we can
find a nonempty set J ⊆ J(P (x̄)) such that J(sk) ≡ J for all k large enough. Define
C := {λij |j ∈ J}. Then we have ζk ∈ cone(C), where

cone(C) :=

{∑
j∈J

cjλij |cj ≥ 0 ∀j ∈ J
}

denotes the conic hull of C. It follows that ζ ∈ cone(C). Since when k large enough,
for each j ∈ J , 〈λij , P (x̄) − sk〉 = bij − bij = 0, we obtain 〈ζ, P (x̄) − sk〉 = 0. Thus
for sufficiently large k, we have

0 > 〈ζ, sk − P (xk)〉+ 〈ζ, P (x̄)− sk〉
= 〈ζ, P (x̄)− P (xk)〉
= 〈ζ,∇P (x̄)(x̄− xk)〉,

which contradicts the condition that 0 = ∇P (x̄)∗ζ. Thus pseudo-normality holds
at x̄.

For a single-valued mapping P : X → Y which is C1 at x̄ and u ∈ Y , we define
its second-order graphical derivative of P (x) at x̄ in direction u as

D2P (x̄)(u)

:=

{
l ∈ Y

∣∣∣∣∣∃tk ↓ 0, uk → u s.t. l = lim
k→∞

P (x̄+ tku
k)− P (x̄)− tk∇P (x̄)uk

1
2 t

2
k

}
.

In [11, Theorem 4.3], a second-order sufficient condition for metric subregularity
(SOSCMS) is presented for a split system in Banach spaces where one of the system
is metrically subregular. Specializing the result in [11, Theorem 4.3] to our system
(1), we may conclude that if P (x) is C1 and directionally second-order differentiable,
Λ is the union of finitely many convex polyhedral sets and SOSCMS as stated in
Theorem 4.1 holds, then the system is directionally pseudo-normal. In Theorem 4.1,
we extend this result to the case where P (x) is C1 and ∇P (x) is directionally calm at
x̄ in each nonzero direction u lying in the linearization cone, which means that there
exist positive numbers ε, δ, Lu such that

‖∇P (x̄+ tu′)−∇P (x̄)‖ ≤ Lu‖tu′‖ for all 0 < t < ε, ‖u′ − u‖ < δ.

Moreover, we show that SOSCMS implies directional pseudo-normality.

Theorem 4.1. Let P (x̄) ∈ Λ, where P (x) is C1, Λ is the union of finitely many
convex polyhedral sets in Y , and ∇P (x) is directionally calm at x̄ in each direction
0 6= u such that ∇P (x̄)u ∈ TΛ(P (x̄)). Suppose the SOSCMS holds at x̄, i.e., for all
0 6= u such that ∇P (x̄)u ∈ TΛ(P (x̄)), there exists no ζ 6= 0 such that{

∇P (x̄)∗ζ = 0, ζ ∈ NΛ(P (x̄);∇P (x̄)u),
∃l ∈ D2P (x̄)(u) s.t. 〈ζ, l〉 ≥ 0.

Then x̄ is directionally pseudo-normal at x̄.
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Proof. We prove that SOSCMS is stronger than directional pseudo-normality by
contradiction. Assume there exist 0 6= u such that ∇P (x̄)u ∈ TΛ(P (x̄)) and ζ 6= 0
such that 

∇P (x̄)∗ζ = 0, ζ ∈ NΛ(P (x̄);∇P (x̄)u),
∃(uk, sk, ζk)→ (u, P (x̄), ζ) and tk ↓ 0

s.t. ζk ∈ N̂Λ(sk),
∑m
i=1 ζi(Pi(x̄+ tku

k)− ski ) > 0.

Notice that 〈P (x), ej〉, where ej is in the orthogonal basis E , is a function on X .
By the mean value theorem, for each j and k, there exist 0 < ckj < tk such that

〈P (x̄+tku
k)−P (x̄), ej〉 = 〈∇P (x̄+ckju

k)(x̄+tku
k− x̄), ej〉 = 〈∇P (x̄+ckju

k)tku
k, ej〉.

Thus 〈
P (x̄+ tku

k)− P (x̄)− tk∇P (x̄)uk

1
2 t

2
k

, ej

〉
=

1

2tk

(
〈P (x̄+ tku

k)− P (x̄), ej〉
tk

− 〈∇P (x̄)uk, ej〉
)

=
2

tk

(
〈∇P (x̄+ ckju

k)uk, ej〉tk
tk

− 〈∇P (x̄)uk, ej〉

)

=
2

tk
(〈∇P (x̄+ ckju

k)uk, ej〉 − 〈∇P (x̄)uk, ej〉).

Since ∇P (x) is directionally calm at x̄ in direction u, there exists Lu > 0 such that
for each j and sufficiently large k,∥∥∥∥ 2

tk
(〈∇P (x̄+ ckju

k)uk, ej〉 − 〈∇P (x̄)uk, ej〉)
∥∥∥∥

≤
2Lu‖x̄+ ckju

k − x̄‖‖uk‖
tk

≤ 2Lutk‖uk‖2

tk
= 2Lu‖uk‖2.

This implies that the sequence {〈P (x̄+tku
k)−P (x̄)−tk∇P (x̄)uk

1
2 t

2
k

, ej〉} is bounded. Conse-

quently, the sequence {P (x̄+tku
k)−P (x̄)−tk∇P (x̄)uk

1
2 t

2
k

} is bounded. Taking a subsequence

if necessary, there exists l such that

l := lim
k→∞

P (x̄+ tku
k)− P (x̄)− tk∇P (x̄)uk

1
2 t

2
k

∈ D2P (x̄)(u).

It follows that

0 < 〈ζ, P (x̄+ tku
k)− sk〉

= 〈ζ, P (x̄+ tku
k)− P (x̄) + P (x̄)− sk〉

=

〈
ζ, tk∇P (x̄)uk +

t2k
2
l + o(t2k)

〉
+ 〈ζ, P (x̄)− sk〉.(20)
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By assumption, ∇P (x̄)∗ζ = 0, which means 〈ζ, tk∇P (x̄)uk〉 = 0. And since
sk → P (x̄) as k → ∞, taking a subsequence if necessary, there exists j ∈ {1, . . . , p}
such that for k sufficiently large, sk ∈ Λj , P (x̄) ∈ Λj , ζ

k ∈ NΛj
(sk). Since Λj is

convex polyhedral, similar to the discussion in the proof of Proposition 4.2, we have
〈ζ, P (x̄)− sk〉 = 0. Thus for k large enough, by (20) we have

0 <

〈
ζ, tk∇P (x̄)uk +

t2k
2
l + o(t2k)

〉
+ 〈ζ, P (x̄)− sk〉

≤ t2k
2
〈ζ, l + o(1)〉.

Then we obtain that ∃l ∈ D2P (x̄)(u) such that 〈ζ, l〉 ≥ 0. But this contradicts
the assumption of the SOSCMS. The contradiction proves that the SOSCMS implies
directional pseudo-normality.

Since directional calmness is obviously weaker than calmness, the following corol-
lary follows immediately from Theorem 4.1. We say that P (x) is C1,c at x̄ if P (x) is
C1 at x̄ and ∇P (x) is calm at x̄, i.e., there exist κ > 0 and a neighborhood U of x̄
such that ‖∇P (x)−∇P (x̄)‖ ≤ κ‖x− x̄‖ for all x ∈ U .

Corollary 4.2. Let P (x̄) ∈ Λ, where P is C1,c and Λ is the union of finitely
many convex polyhedral sets in Y . Suppose SOSCMS holds at x̄. Then x̄ is direc-
tionally pseudo-normal.

In summary, we have shown the following implications:

SOSCMS =⇒ directional pseudo-normality =⇒ directional quasi-normality

=⇒ WSCMS =⇒ metric subregularity.

5. Applications to complementarity and KKT systems. In this section we
apply our results to complementarity and KKT systems. When directional quasi-/
pseudo-normality are applied to these systems we derive expressions that are much
simpler and moreover can be directly compared with classical quasi-/pseudo-normal-
ity.

First we consider the complementarity system (CS) formulated as follows:

(CS) H(x) = 0, 0 ≤ Φ(x) ⊥ Ψ(x) ≥ 0,

where H(x) : Rn → Rd, Φ,Ψ : Rn → Rm. For simplicity of explanation, we omit
possible inequality and abstract constraints and moreover we assume that all functions
are continuously differentiable. The results can be extended to the general case in a
straightforward manner.

Define ΩEC := {(a, b) ∈ R+×R+|ab = 0}. For any set C and any positive integer
m we denote by Cm the m-Cartesian product of C. (CS) can be rewritten as

(H(x), (Φ1(x),Ψ1(x)), . . . , (Φm(x),Ψm(x))) ∈ {0}d × ΩmEC .

To derive the precise form of the directional quasi-/pseudo-normality, we review the
formulas for the regular normal cone, the limiting normal cone, the tangent cone, and
the directional limiting normal cone of the set ΩEC .

Lemma 5.1 (see [13, Lemma 4.1]). The Fréchet normal cone to ΩEC is

N̂ΩEC
(a, b) =

−(γ, ν)

∣∣∣∣∣∣
ν = 0 if 0 = a < b,
γ ≥ 0, ν ≥ 0 if a = b = 0,
γ = 0 if a > b = 0

 ,
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the limiting normal cone is

NΩEC
(a, b) =

{
N̂ΩEC

(a, b) if (a, b) 6= (0, 0),
{−(γ, ν)|either γ > 0, ν > 0 or γν = 0} if (a, b) = (0, 0)

}
,

and the tangent cone is

TΩEC
(a, b) =

(d1, d2)

∣∣∣∣∣∣
d1 = 0 if 0 = a < b,
(d1, d2) ∈ ΩEC if a = b = 0,
d2 = 0 if a > b = 0

 .

For all d = (d1, d2) ∈ TΩEC
(a, b), the directional limiting normal cone to ΩEC in

direction d is

NΩEC
((a, b); d) =

{
NΩEC

(a, b) if (a, b) 6= (0, 0),
NΩEC

(d1, d2) if (a, b) = (0, 0)

}
.

Let x̄ be a feasible point of the system (CS). We define the index sets

I00 := I00(x̄) := {i|Φi(x̄) = 0, Ψi(x̄) = 0},
I0+ := I0+(x̄) := {i|Φi(x̄) = 0, Ψi(x̄) > 0},
I+0 := I+0(x̄) := {i|Φi(x̄) > 0, Ψi(x̄) = 0},

and define the linearization cone as

L(x̄) :=

u ∈ Rn|

∣∣∣∣∣∣∣∣
0 = ∇Hi(x̄)u, i = 1, . . . , d,
0 = ∇Φi(x̄)u, i ∈ I0+,
0 = ∇Ψi(x̄)u, i ∈ I+0,
(∇Φi(x̄)u,∇Ψi(x̄)u) ∈ ΩEC , i ∈ I00

 .

Given u ∈ L(x̄) we define

I+0(u) := {i ∈ I00|∇Φi(x̄)u > 0 = ∇Ψi(x̄)u},
I0+(u) := {i ∈ I00|∇Φi(x̄)u = 0 < ∇Ψi(x̄)u},
I00(u) := {i ∈ I00|∇Φi(x̄)u = 0 = ∇Ψi(x̄)u}.

Let x̄ be a feasible point of (CS). By Definition 4.1 and Proposition 2.1, since the com-
plementarity set ΩEC is directionally regular, (CS) is directionally quasi- or pseudo-
normal if and only if for all directions 0 6= u ∈ L(x̄) there exists no (η, γ, ν) 6= 0 such
that

0 = ∇H(x̄)T η −∇Φ(x̄)T γ −∇Ψ(x̄)T ν,(21)

−(γi, νi) ∈ NΩEC
(Φi(x̄),Ψi(x̄);∇Φi(x̄)u,∇Ψi(x̄)u), i = 1, . . . ,m,(22)

∃(uk, hk, φk, ψk, ηk, γk, νk)→ (u,H(x̄),Φ(x̄),Ψ(x̄), η, γ, ν), tk ↓ 0

such that


ηk ∈ N{0}d(hk),−(γki , ν

k
i ) ∈ N̂ΩEC

(φki , ψ
k
i ), i = 1, . . . ,m,

if ηi 6= 0, ηi(Hi(x̄+ tku
k)− hki ) > 0,

if γi 6= 0, γi(Φi(x̄+ tku
k)− φki ) < 0,

if νi 6= 0, νi(Ψi(x̄+ tku
k)− ψki ) < 0,

(23)

or

ηT (H(x̄+ tku
k)− hk)− γT (Φ(x̄+ tku

k)− φk)− νT (Ψ(x̄+ tku
k)− ψk) > 0,

respectively.
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By the formula for the directional limiting normal cone in Lemma 5.1, (22) is
equivalent to (ii) in the following definition. Since ηk ∈ N{0}d(hk), we have hk = 0.
Suppose γi 6= 0. Then for sufficiently large k, γki 6= 0. Since −(γki , ν

k
i ) ∈ N̂ΩEC

(φki , ψ
k
i )

we must have φki = 0. Similarly if νi 6= 0, we must have ψki = 0. Based on these
discussions, directional quasi-normality for (CS) can be written in the following form
which is much more concise.

Definition 5.1. Let x̄ be a feasible solution of (CS). x̄ is said to be directionally
quasi- or pseudo-normal if for all directions 0 6= u ∈ L(x̄) there exists no (η, γ, ν) 6= 0
such that

(i) 0 = ∇H(x̄)T η −∇Φ(x̄)T γ −∇Ψ(x̄)T ν;
(ii) γi = 0, i ∈ I+0 ∪ I+0(u); νi = 0, i ∈ I0+ ∪ I0+(u); either γi >, νi > 0 or

γiνi = 0, i ∈ I00(u);
(iii) ∃uk → u and tk ↓ 0 such that if ηi 6= 0, ηiHi(x̄+ tku

k) > 0,
if γi 6= 0, γiΦi(x̄+ tku

k) < 0,
if νi 6= 0, νiΨi(x̄+ tku

k) < 0,

or
ηTH(x̄+ tku

k)− γTΦ(x̄+ tku
k)− νTΨ(x̄+ tku

k) > 0,

respectively.

Remark 5.1. In Definition 5.1, if we only require that there exists no (η, γ, ν) 6= 0
satisfying condition (i), then it reduces to the linearly independent constraint quali-
fication (MPEC-LICQ) (see [47]). If we only require that there exists no (η, γ, ν) 6= 0
satisfying condition (i) and change (ii) to

γi = 0, i ∈ I+0; νi = 0, i ∈ I0+, either γi ≥ 0, νi ≥ 0 or γiνi = 0, i ∈ I00,

then it reduces to MPEC-NNAMCQ [54, Definition 2.10]. If we omit (iii), then
it reduces to FOSCMS. If we take u to be any direction, then it reduces to the
MPEC quasi-/pseudo-normality first given in [29, Definition 3.2] and extended to
the Lipschitz continuous case in [57, Definition 5]. Since for the set ΩEC and any
0 6= d ∈ TΩEC

(0, 0), the directional normal cone NΩEC
((0, 0); d) is strictly smaller

than the limiting normal cone NΩEC
(0, 0), if there exists some u ∈ L(x̄) such that

(∇G(x̄)u,∇H(x̄)u) 6= (0, 0), then directional quasi-/pseudo-normality will be strictly
weaker than standard quasi-/pseudo-normality.

We now consider the following KKT system of an optimization problem with
equality and inequality constraints:

∇xL(x, µ, λ) = 0,

µ ≥ 0, g(x) ≤ 0, 〈g(x), µ〉 = 0,

h(x) = 0,

where f : Rp → R, g : Rp → Rm, h : Rp → Rn are twice continuously differentiable,
µ ∈ Rm, λ ∈ Rn, and L(x, µ, λ) := f(x) + µT g(x) + λTh(x) is the Lagrange function.
Denote the feasible set of the KKT system by FKKT . We say that the error bound
property holds at (x∗, µ∗, λ∗) ∈ FKKT if there exist α > 0 and U , a neighborhood of
(x∗, µ∗, λ∗), such that

(24) dFKKT
(x, µ, λ) ≤ αmax{‖∇xL(x, µ, λ)‖, ‖h(x)‖, ‖min{µ,−g(x)}‖}

∀(x, µ, λ) ∈ U.
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It is easy to see that this error bound property can be derived from the metric subreg-
ularity/calmness of the KKT system and hence directional quasi-/pseudo-normality
is a sufficient condition. Such an error bound property is crucial to the quadratic con-
vergence of the Newton-type method (see [7]). The classical sufficient conditions for
the error bound property are either MFCQ combined with the second-order sufficient
condition (SOSC) or requiring g, h to be affine and f to be quadratic (see, e.g., [45]).
These sufficient conditions were weakened in [9, 18] but still require SOSC. Recently,
weaker sufficient conditions have been proposed including the existence of noncritical
multipliers, a concept introduced by Izmailov for pure equality constraint in [27], ex-
tended by Izmailov and Solodov [28, Definition 2] to problems with inequalities, and
further extended to a general variational system by Mordukhovich and Sarabi [36,
Definition 3.1]. Note that as shown in [28, Proposition 3], the existence of noncritical
multipliers is equivalent to a stronger type of error bound property: existence of α > 0
and U , a neighborhood of (x∗, µ∗, λ∗), such that

‖x− x̄‖+ dM(x̄)(µ, λ) ≤ αmax{‖∇xL(x, µ, λ)‖, ‖h(x)‖, ‖min{µ,−g(x)}‖}
∀(x, µ, λ) ∈ U,

where M(x̄) := {(µ, λ) : 0 = ∇xL(x̄, µ, λ), µ ≥ 0, 〈g(x̄), µ〉 = 0} denotes the set of
multipliers. Obviously this is a stronger error bound property than the error bound
property (24).

The KKT system is a special case of (CS) with

H(x, µ, λ) := (∇xL(x, µ, λ), h(x)), Φ(x, µ, λ) := −g(x), Ψ(x, µ, λ) := µ.

Let (x̄, µ̄, λ̄) be a feasible point of the KKT system. We define the following index
sets:

I00 := I00(x̄, µ̄, λ̄) := {i|gi(x̄) = 0, µ̄i = 0},
I0+ := I0+(x̄, µ̄, λ̄) := {i|gi(x̄) = 0, µ̄i > 0},
I+0 := I+0(x̄, µ̄, λ̄) := {i|−gi(x̄) > 0, µ̄i = 0}.

The linearized cone for the KKT system is

L(x̄, µ̄, λ̄) :=u = (ux, uµ, uλ)

∣∣∣∣∣∣∣∣∣∣
0 = ∇2

xxL(x̄, ū, v̄)ux +∇g(x̄)Tuµ +∇h(x̄)Tuλ,
0 = ∇h(x̄)ux,
0 = ∇gi(x̄)ux, i ∈ I0+,
0 = uµi , i ∈ I+0,
uµi ≥ 0,∇gi(x̄)ux ≤ 0, and uµi ∇gi(x̄)ux = 0, i ∈ I00

 .

Given u ∈ L(x̄, µ̄, λ̄) we define the index sets

I+0(u) := {i ∈ I00| − ∇gi(x̄)ux > 0 = uµi },
I0+(u) := {i ∈ I00|∇gi(x̄)ux = 0 < uµi },
I00(u) := {i ∈ I00|∇gi(x̄)ux = 0 = uµi }.

Then by Definition 5.1, we propose the following definition of directional quasi-
normality for the KKT system.
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Definition 5.2. Let (x̄, µ̄, λ̄) be a feasible point of the KKT system. (x̄, µ̄, λ̄) is
said to be directionally quasi- or pseudo-normal if for all directions

0 6= ū := (ūx, ūµ, ūλ) ∈ L(x̄, µ̄, λ̄)

there exists no (ξ, ζ, η) 6= 0 such that
(i) 0 = ∇2

xxL(x̄, µ̄, λ̄)ξ +∇h(x̄)T η +∇g(x̄)T ζ;
(ii) ∇h(x̄)ξ = 0;
(iii) ζi = 0, i ∈ I+0 ∪ I+0(ū); ∇gi(x̄)ξ = 0, i ∈ I0+ ∪ I0+(ū); either ζi >

0, ∇gi(x̄)ξ > 0 or ζi∇gi(x̄)ξ = 0, i ∈ I00(ū);
(iv) ∃uk := (uxk, u

µ
k , u

λ
k)→ ū and tk ↓ 0 such that

if ξi 6= 0, ξi∇xLi((x̄, µ̄, λ̄) + tkuk) > 0,
if ηi 6= 0, ηihi(x̄+ tku

x
k) > 0,

if ζi 6= 0, ζigi(x̄+ tku
x
k) > 0,

if (∇g(x̄)ξ)i 6= 0, (∇g(x̄)ξ)i(ū
µ
i + tk(uµk)i) < 0;

or

ξT∇xL((x̄, µ̄, λ̄) + tkuk) + ηTh(x̄+ tku
x
k)− (∇g(x̄)ξ)T (ū+ tku

µ
k) > 0

respectively.

Remark 5.2. Let (x̄, µ̄, λ̄) be a feasible point to the KKT system. By [28, Defini-
tion 2], (µ̄, λ̄) ∈M(x̄) is a critical multiplier associated with x̄ if there exists (ξ, ζ, η)
with ξ 6= 0 satisfying that

0 = ∇2
xxL(x̄, µ̄, λ̄)ξ +∇h(x̄)T η +∇g(x̄)T ζ,

0 = ∇h(x̄)ξ,
0 = ∇gi(x̄)ξ, i ∈ I0+,
0 = ζi, i ∈ I+0,
ζi ≥ 0, ∇gi(x̄)ξ ≤ 0 and ζi∇gi(x̄)ξ = 0, i ∈ I00.

Note that from Definition 5.2, we can see that even if (µ̄, λ̄) is a critical multiplier
with x̄, it is still possible for directional quasi-normality to hold. In particular, let
(ξ, ζ, η) satisfy Definition 5.2 with ξ 6= 0. Suppose that for i ∈ I00(ū), it is not possible
to have ζi > 0, ∇gi(x̄)ξ > 0. Then (µ̄, λ̄) ∈ M(x̄) is a critical multiplier associated
with x̄.
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generalized equations, Math. Program., 158 (2016), pp. 35–75, https://doi.org/10.1007/
s10107-015-0914-1.

[15] H. Gfrerer and J. J. Ye, New constraint qualifications for mathematical programs with
equilibrium constraints via variational analysis, SIAM J. Optim., 27 (2017), pp. 842–865,
https://doi.org/10.1137/16M1088752.

[16] I. Ginchev and B. S. Mordukhovich, On directionally dependent subdifferentials, C. R. Bulg.
Acad. Sci., 64 (2011), pp. 497–508.

[17] L. Guo, J. J. Ye, and J. Zhang, Mathematical programs with geometric constraints in Banach
spaces: Enhanced optimality, exact penalty, and sensitivity, SIAM J. Optim., 23 (2013),
pp. 2295–2319, https://doi.org/10.1137/130910956.

[18] W. W. Hager and S. M. Gowda, Stability in the presence of degeneracy and error estimation,
Math. Program., 85 (1999), pp. 181–192, https://doi.org/10.1007/s101070050051.

[19] R. Henrion and A. Jourani, Subdifferential conditions for calmness of convex constraints,
SIAM J. Optim., 13 (2002), pp. 520–534, https://doi.org/10.1137/S1052623401386071.

[20] R. Henrion, A. Jourani, and J. V. Outrata, On the calmness of a class of multifunctions,
SIAM J. Optim., 13 (2002), pp. 603–618, https://doi.org/10.1137/S1052623401395553.

[21] R. Henrion and J. Outrata, A subdifferential condition for calmness of multifunctions, J.
Math. Anal. Appl., 258 (2001), pp. 110–130, https://doi.org/10.1006/jmaa.2000.7363.

[22] R. Henrion and J. V. Outrata, Calmness of constraint systems with applications, Math.
Program., 104 (2005), pp. 437–464, https://doi.org/10.1007/s10107-005-0623-2.

[23] A. D. Ioffe, Necessary and sufficient conditions for a local minimum. 1: A reduction theorem
and first order conditions, SIAM J. Control Optim., 17 (1979), pp. 245–250, https://doi.
org/10.1137/0317019.

[24] A. D. Ioffe, Regular points of Lipschitz functions, Trans. Amer. Math. Soc., 251 (1979),
pp. 61–69, https://doi.org/10.2307/1998683.

[25] A. D. Ioffe, Metric regularity and subdifferential calclulus, Russian Math. Surveys, 55 (2000),
pp. 501–558, https://doi.org/10.1070/RM2000v055n03ABEH000292.

[26] A. D. Ioffe and J. V. Outrata, On metric and calmness qualification conditions in sub-
differential calculus, Set-valued Anal., 16 (2008), pp. 199–227, https://doi.org/10.1007/
s11228-008-0076-x.

[27] A. F. Izmailov, On the analytical and numerical stability of critical Lagrange multipliers,
Comput. Math. Math. Phys., 45 (2005), pp. 966–982.

[28] A. F. Izmailov and M. V. Solodov, Stabilized SQP revisited, Math. Program., 133 (2012),
pp. 93–120, https://doi.org/10.1007/s10107-010-0413-3.

[29] C. Kanzow and A. Schwartz, Mathematical programs with equilibrium constraints: Enhanced
Fritz John-conditions, new constraint qualifications, and improved exact penalty results,

D
ow

nl
oa

de
d 

10
/2

8/
19

 to
 1

16
.6

.2
34

.1
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1007/978-0-387-87821-8
https://doi.org/10.1007/s11228-010-0133-0
https://doi.org/10.1007/s11228-010-0133-0
https://doi.org/10.1007/s10107-013-0676-6
https://doi.org/10.1007/s10107-013-0676-6
https://doi.org/10.1007/s10107-002-0364-4
https://doi.org/10.1007/s10107-002-0364-4
https://doi.org/10.1007/s11228-012-0220-5
https://doi.org/10.1007/s11228-012-0220-5
https://doi.org/10.1137/120891216
https://doi.org/10.1007/s11228-013-0266-z
https://doi.org/10.1137/130914449
https://doi.org/10.1007/s10107-015-0914-1
https://doi.org/10.1007/s10107-015-0914-1
https://doi.org/10.1137/16M1088752
https://doi.org/10.1137/130910956
https://doi.org/10.1007/s101070050051
https://doi.org/10.1137/S1052623401386071
https://doi.org/10.1137/S1052623401395553
https://doi.org/10.1006/jmaa.2000.7363
https://doi.org/10.1007/s10107-005-0623-2
https://doi.org/10.1137/0317019
https://doi.org/10.1137/0317019
https://doi.org/10.2307/1998683
https://doi.org/10.1070/RM2000v055n03ABEH000292
https://doi.org/10.1007/s11228-008-0076-x
https://doi.org/10.1007/s11228-008-0076-x
https://doi.org/10.1007/s10107-010-0413-3


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2648 KUANG BAI, JANE J. YE, AND JIN ZHANG

SIAM J. Optim., 20 (2010), pp. 2730–2753, https://doi.org/10.1137/090774975.
[30] D. Klatte, A note on quantitative stability results in nonlinear optimization, in Proceed-

ings of the 19. Jahrestagung Mathematische Optimierung, Seminarbericht 90, Humboldt-
Universität Berlin, Sektion Mathematik, 1987, pp. 77–86.

[31] D. Klatte and B. Kummer, Constrained minima and Lipschitzian penalties in metric spaces,
SIAM J. Optim., 13 (2002), pp. 619–633, https://doi.org/10.1137/S105262340139625X.

[32] D. Klatte and B. Kummer, Optimization methods and stability of inclusions in Banach spa-
ces, Math. program., 117 (2009), pp. 305–330, https://doi.org/10.1007/s10107-007-0174-9.

[33] W. Li, Abadie’s constraint qualification, metric regularity, and error bounds for differen-
tiable convex inequalities, SIAM J. Optim., 7 (1997), pp. 966–978, https://doi.org/10.
1137/S1052623495287927.

[34] L. Minchenko and A. Tarakanov, On error bounds for quasinormal programs, J. Optim.
Theory Appl., 148 (2011), pp. 571–579.

[35] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basic The-
ory, Grundlehren Math. Wiss. 330, Springer, Berlin, 2006, https://doi.org/10.1007/
3-540-31247-1.

[36] B. S. Mordukhovich and M. E. Sarabi, Critical multipliers in variational systems via second-
order generalized differentiation, Math. Program., 169 (2018), pp. 605–648, https://doi.
org/10.1007/s10107-017-1155-2.

[37] H. V. Ngai and P. N. Tinh, Metric subregularity of multifunctions: First and second order
infinitesimal characterizations, Math. Oper. Res., 40 (2015), pp. 703–724, https://doi.org/
10.1287/moor.2014.0691.

[38] M. Nikolova, Minimizers of cost-functions involving nonsmooth data-fidelity terms. Appli-
cation to the processing of outliers, SIAM J. Numer. Anal., 40 (2002), pp. 965–994,
https://doi.org/10.1137/S0036142901389165.

[39] J.-P. Penôt, Error bounds, calmness and their applications in nonsmooth analysis, in Non-
linear Analysis and Optimization II: Optimization, Contemp. Math. 514, A. Leizarowitz,
B. S. Mordukhovich, I. Shafrir, and A. J. Zaslavski, eds., American Mathematical Society,
Providence, RI, 2010, pp. 225–247, https://doi.org/10.1090/conm/514/10110.

[40] T. T. Pham and R. J. deFigueiredo, Maximum likelihood estimation of a class of non-
Gaussian densities with application to Ip deconvolution, IEEE Trans. Acoust. Speech Sig-
nal Process., 37 (1989), pp. 73–82, https://doi.org/10.1109/29.17502.

[41] J. R. Rice and J. S. White, Norms for smoothing and estimation, SIAM Rev., 6 (1964),
pp. 243–256, https://doi.org/10.1137/1006061.

[42] S. M. Robinson, Stability theory for systems of inequalities. Part I: Linear systems, SIAM J.
Numer. Anal., 12 (1975), pp. 754–769, https://doi.org/10.1137/0712056.

[43] S. M. Robinson, Stability theory for systems of inequalities. Part II: Differentiable nonlinear
systems, SIAM J. Numer. Anal., 13 (1976), pp. 497–513, https://doi.org/10.1137/0713043.

[44] S. M. Robinson, Some continuity properties of polyhedral multifunctions, Mathematical Pro-
gramming at Oberwolfach, Math. Program. Stud. 14, Springer, Berlin, 1981, pp. 206–214,
https://doi.org/10.1007/BFb0120929.

[45] S. M. Robinson, Generalized equations and their solutions, part II: Applications to nonlinear
programming, in Optimality and Stability in Mathematical Programming, Math. Program.
Stud. 19, Springer, Berlin, 1982, pp. 200–221, https://doi.org/10.1007/BFb0120989.

[46] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Grundlehren Math. Wiss. 317,
Springer, Berlin, 1998, https://doi.org/10.1007/978-3-642-02431-3.
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