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Abstract. We study the recently proposed convection–diffusion model equationut + f (u)x =
Q(ux)x , with a bounded functionQ(ux). We consider both strictly monotone dissipation fluxes
with Q′(ux) > 0, and nonmonotone ones such thatQ(ux) = ±νux/(1 + u2

x), ν > 0. The novel
feature of these equations is that large amplitude solutions develop spontaneous discontinuities,
while small solutions remain smooth at all times. Indeed, small amplitude kink solutions are smooth,
while large amplitude kinks have discontinuities (subshocks). It is demonstrated numerically that
both continuous and discontinuous travelling waves are strong attractors of a wide classes of initial
data. We prove that solutions with a sufficiently large initial data blow up in finite time. It is
also shown that ifQ(ux) is monotone and unbounded, thenux is uniformly bounded for all times.
In addition, we present more accurate numerical experiments than previously presented, which
demonstrate that solutions to a Cauchy problem with periodic initial data may also break down in
a finite time if the initial amplitude is sufficiently large.

AMS classification scheme numbers: 35Kxx, 35Qxx, 65Mxx

1. Introduction

In this work we continue our studies of the recently proposed convection–diffusion models
[12, 11],

ut + f (u)x = Q(ux)x, (1.1)

with Q(ux), the dissipation flux function, assumed to be a bounded function. Though the
boundedness of the flux functionQ(ux) is a fundamental property of real physical systems,
more often that not this feature is lost in the weakly nonlinear, small gradients expansion. We
consider both strictly monotone dissipation fluxes such thatQ′(ux) > 0 [12], and nonmonotone
ones such thatQ(ux) = ±νux/(1 + u2

x), ν > 0 [11]. The nonconvective, purely diffusive
variants of equation (1.1) were proposed in earlier works for both monotone [18, 17, 3, 4], and
nonmonotoneQ′s [17, 15]. Interestingly, the nonmonotone case was proposed at about the
same time to describe the evolution of systems with a controlled instability, [17], and in the
context of image processing [15]. The monotone dissipation fluxQ(ux) to be adopted, was
constructed in [17] as a Padé approximant which correctly connects both the infra-red and
ultra-violet limits (for more details see [17]). In the nonmonotone case the flux function we
assume is not a replica of a particular response; rather it is intended to be a simple caricature of
complex scenarios where the medium yields at a critical stress (say, elasto–plastic transition) or
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Figure 1. An example of initial data satisfying hypotheses (a)–(d).

undergoes some critical transition. This transition is accompanied by a structural change (say,
a non-Newtonian behaviour in complex fluids) and, as a consequence, its dynamical response
changes drastically. This critical transition is accompanied by a change of sign of the elliptic
part rendering the evolution backward parabolic. However, the saturation of the flux mitigates
the instability and instead of a typical amplitude blow up, a much milder effect is observed.
For more details see [11].

The novel feature of equations (1.1) as compared with the conventional Burgers equation,
is that large amplitude solutions develop discontinuities within finite time, while small solutions
remain smooth at all times. This was shown in [12, 11] for the Cauchy problem with sufficiently
small, smooth, periodic (or compactly supported) initial data,

u(x, t = 0) = u0(x). (1.2)

This feature is best seen in explicit analysis of travelling waves [12, 11]: small amplitude
kinks are smooth, while large amplitude kinks have discontinuities (subshocks). The resulting
subshock jump was calculated and it was demonstrated numerically, that both the continuous
and the discontinuous travelling waves are strong attractors of a wide classes of initial data.

In this paper,we prove that solutions with a certain large initial data blow up in a finite
time. The proof relies on considering the total mass in a box of lengthR, as in figure 1, and
is not an extension of the conventional blowup arguments for Burgers’ equation. In addition,
we present new, and more accurate numerical experiments then previously presented, which
demonstrate that solutions to a Cauchy problem with periodic initial data may also break down
within a finite time if the initial amplitude is sufficiently large. The issue of breakdown was
left unresolved in [12].

It is useful to provide an intuitive explanation of the dynamics. The critical threshold for
a break-up is caused by the imbalance between the convective and dissipative fluxes at high
amplitudes. While in the original Burgers model these mechanisms can always balance each
other, and as we shall see shortly, this is also true for anyQ that is unbounded and increasingly
monotone, this changes once the dissipative flux is forced to remain bounded. While the
inertial flux can be made arbitrarily large, the dissipative flux responds up to a certain critical
amplitude only. At higher amplitudes the mismatch between these two fluxes is resolved by
a discontinuous jump(s). Indeed, the interest to capture this kind of behaviour, encountered,
for instance, in elasto–plastic transitions, was the main motivation to propose these models
[17, 12, 11].
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In section 2.1 we consider equation (1.1) with a bounded dissipation fluxQ, that increases
monotonously and is appended with a smooth, bounded, and infinitely supported initial data,
(1.2). In theorem 2.1 we prove that if the flux functions,f andQ, and the initial data satisfy
certain assumptions detailed below, then there is a finite breaktimeT , such that the solution of
the initial value problem (1.1), (1.2) satisfies

lim
t↑T

{
sup
x

|ux(x, t)|
}
= ∞.

This theorem corroborates our intuitive understanding of the problem supported by the
numerical results presented in [12]. Note that numerically we solve not the Cauchy problem,
(1.1), (1.2), but rather the Dirichlet problem: equation (1.1) augmented with the initial-
boundary value conditions,

u(x, t = 0) = u0(x), −L < x < L,

u(±L, t) = u0(±L), t > 0.
(1.3)

In section 2.2 we prove theorem 2.5, that extends the result obtained in theorem 2.1 to the
initial-boundary value problem, (1.1), (1.3).

In section 2.3 we present several numerical examples. The use of a difference scheme based
on the operator splitting method enables us to obtain a much better resolution of the subshocks,
than was possible in [12]. We have also applied this scheme to the Cauchy problem to obtain
qualitatively new numerical results for problem (1.1), (1.2) with large periodic initial data. We
have observed a formation of subshocks for this problem as well. Though a complete proof
of this fact is not available yet, our numerical studies make the behaviour of the solutions of
equation (1.1) far more transparent—to the effect that for sufficiently large periodic initial data,
the solution breaks down in a finite time. Moreover, we conjecture that given a nonconstant
periodic functionφ(x), then there exists a constantA such that the solution of (1.1), subject
to the initial data

u(x, 0) = Aφ(x),
breaks down in a finite time.

Section 3 is concerned with the proof of the breakdown when the dissipation flux is
nonmonotone,

ut + f (u)x = ν
(

ux

1 +u2
x

)
x

, ν > 0. (1.4)

Note that if the initial datum is large enough (even if it is infinitely smooth), the questions
of existence and uniqueness of solutions to the problem (1.4), (1.2) are highly nontrivial.
Nevertheless, theorem 3.1 guarantees that its classical solution (if such a solution exists) will
break down in a finite time.

In the second part of section 3 we develop a third-order central scheme based on the the
nonoscillatory piecewise parabolic reconstruction (see [13, 14]). The use of this high-order
scheme in conjunction with equation (1.4) allows us to improve the numerical results obtained
in [11].

2. Equations with monotonic dissipation fluxes

We consider the model problem proposed in [12],

ut + f (u)x = Q(ux)x, (2.1)

u(x, 0) = u0(x), (2.2)

where the flux functions,f andQ, satisfy the following assumptions:
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(i) f (u) andQ(s) are smooth functions of their argumentsu ands, respectively;
(ii) f andQ have the symmetry properties needed to support odd solutions:

f (−u) = f (u) ∀u, Q(−s) = Q(s) ∀s;
(iii) f andQ are strictly monotone:

f ′(u) > 0 ∀u > 0, Q′(s) > 0 ∀s;
(iv) f is unbounded, whereasQ is bounded, that is,

f (u)→ +∞ as u→ +∞, Q(s)→ Q∞ <∞ as s → +∞.

2.1. Initial value problem

In this section we prove breakdown of solutions of the initial value problem (2.1), (2.2) for the
following class of initial data:

(a) u0 is a smooth function;
(b) u0 is skew symmetric, that is,u0(−x) = u0(x) ∀x;
(c) ū 6 u0(x) 6 0 ∀x > 0;
(d) u0(x) 6 ϕ(x) ∀x > 0.

Hereū is a large negative constant andϕ(x) is a profile to be determined.

Remark. Note that condition (d) means that the initial data,u0(x), are ‘large enough’.

Theorem 2.1.Consider the initial value problem (2.1), (2.2). Let hypotheses (i)–(iv) and (a)–
(d) be satisfied. Ifu∗ is a negative constant such thatf (u∗) > 2Q∞, and ifϕ(x) is a smooth
function satisfyingϕ(R) = u∗ for someR > 0 and

Q(ϕx)x − f (ϕ)x < 0 ∀x > 0; (2.3)

then there existsT such that

sup
x

|ux(x, t)| → ∞ as t ↑ T . (2.4)

Before we turn to the proof of this theorem, we state and prove several auxiliary results.

Assertion 2.2.Let hypotheses (i)–(iv) be satisfied. Then for any negative numberū there is a
(possibly large)m > 1 so that there is a viscous connection for a viscosity fluxmQ. That is,
there is a solution to the following boundary value problem,

f (ϕ)x = mQ(ϕx)x,
ϕ(x)→±ū as x →±∞. (2.5)

Moreover,ϕ(x)xx > 0 ∀x > 0.

Proof. Note that due to the symmetry of the problem,ϕ(x) has to be a skew symmetric function
and therefore, problem (2.5) is equivalent to the following one:

f (ϕ)x = mQ(ϕx)x, 0< x < +∞,
ϕ(0) = 0, ϕ(x → +∞) = ū. (2.6)

Solving (2.6) we obtain∫ ϕ(x)

0

du

Q−1
(
f (u)−f (ū)

m

) = x, (2.7)
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whereQ−1 is an inverse function ofQ, which exists due to the monotonicity assumption, (iii).
Furthermore, the choice of sufficiently largem ensures thatf (u)−f (ū)

m
belongs to the domain

of Q−1 for all u ∈ [ū, 0], and this proves the existence of the desired profileϕ(x).
Next, it is easy to see thatϕ(x) < 0 and thatϕ(x) is a monotone decreasing function.

Consequently,f (ϕ)x > 0, and we obtain thatϕxx > 0 due to the positivity ofQ′. This
completes the proof of assertion 2.2. �

Equipped with assertion 2.2 we now prove the following.

Proposition 2.3. Let hypotheses (i)–(iv) be satisfied. Then, for anyu∗ < 0 there is a bounded
skew symmetric functionϕ(x) satisfying (2.3) andϕ(R) = u∗ for someR > 0.

Remark. Theorem 2.1 and proposition 2.3, together with the flux inequalities (iv) imply that
there is a large class of smooth bounded initial data that leads to blow up of gradients in a finite
time (see figure 1).

Proof. Let us takeϕ(x) obtained in (2.7). Assertion 2.2 implies that

Q(ϕx)x − f (ϕ)x = (1−m)Q(ϕx)x = (1−m)Q′(ϕx)ϕxx < 0 ∀x > 0,

sincem > 1 andQ′ > 0. Now takeū = u∗ − 1. Sinceϕ(0) = 0 andϕ(x)→ ū asx → +∞,
we must haveϕ(R) = u∗ for someR > 0 due to the continuity ofϕ(x). This proves the
proposition. �

The purpose of proposition 2.3 and the assumptions (c) and (d) is to establish the following
bounds on the solution of (2.1), (2.2):

Lemma 2.4. Under the hypotheses (b)–(d) and inequality (2.3), a solution of the problem
(2.1), (2.2) is bounded as follows:

ū 6 u(x, t) 6 0 ∀x > 0, t < T (2.8)

and

u(R, t) 6 u∗ ∀t < T . (2.9)

Proof. The solutionu(x, t) satisfies equation (2.1) forx > 0 and, due to the skew symmetry of
u0(x), we also haveu(0, t) ≡ 0. Therefore the bounds (2.8) are a consequence of comparison
principles for scalar parabolic equations (see, e.g., [8]) and the initial bounds (c). Similarly,
(d) and (2.3) imply

u(x, t) 6 ϕ(x) ∀t < T .

This yields (2.9) and the lemma follows. �
Equipped with lemma 2.4 we are now ready to complete the proof of theorem 2.1.

Proof of theorem 2.1.First, from the lower bound in (2.8) we obtain∫ R

0
u(x, t)dx > Rū. (2.10)

On the other hand, integrating equation (2.1) with respect tox over(0, R) results with

d

dt

∫ R

0
u(x, t)dx = −f (u(R, t)) + f (u(0, t)) +Q(ux(R, t))−Q(ux(0, t)). (2.11)

From the flux bound (iv),|Q| 6 Q∞, we obtain

|Q(ux(R, t))−Q(ux(0, t))| 6 2Q∞. (2.12)
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Also, as we have already mentioned,u(0, t) = 0, so

f (u(0, t)) = 0. (2.13)

Finally, inequality (2.9) implies that

f (u(R, t)) > f (u∗) > 2Q∞. (2.14)

Plugging (2.12)–(2.14) into (2.11) results with a positive constantα so that

d

dt

∫ R

0
u(x, t)dx 6 −α < 0.

This is inconsistent with the bound (2.10) and
∫ R

0 u0(x) dx < 0. This contradiction shows
that the solution cannot remain regular beyond

T ∗ = −Rū
α
.

This concludes the proof of theorem 2.1. �

2.2. Dirichlet problem

We now turn to show an analogous breakdown for the Dirichlet problem. Let us consider
equation (2.1) in the finite interval−L < x < L, subject to the initial-boundary conditions
(1.3). Assumptions (i)–(iv), (a) and (b) are intact, while instead of (c) and (d) we assume:

(c′) u0(L) 6 u0(x) 6 0 ∀x ∈ [0, L];
(d′) u0(x) 6 ϕ(x) ∀x ∈ [0, L].

Note that due to its skew symmetry, problem (2.1), (1.3) is actually equivalent to the
following initial-boundary value problem:

ut + f (u)x = Q(ux)x, 0< x < L,

u(x, t = 0) = u0(x), 0< x < L,

u(0, t) = 0, u(L, t) = u0(L), t > 0.

(2.15)

The result of theorem 2.1 can be extended to problem (2.15) as follows,

Theorem 2.5.Consider the initial-boundary value problem (2.15). Let hypotheses (i)–(iv),
(a), (b) and (c′), (d ′) be satisfied. Ifu∗ is a negative constant such thatf (u∗) > 2Q∞, and if
ϕ(x) is a smooth function satisfyingϕ(L) = u∗ and

Q(ϕx)x − f (ϕ)x < 0 ∀x ∈ (0, L); (2.16)

then there existsT such that

sup
−L<x<L

|ux(x, t)| → ∞ as t ↑ T .

We prove this theorem arguing along the lines of the proof of theorem 2.1. At first, we
extend assertion 2.2 to the finitex-domain.

Assertion 2.6.Let hypotheses (i)–(iv) be satisfied. Then, for any negative numberu∗, there is
anm > 1 such that there exists a solution to the following boundary value problem,

f (ϕ)x = mQ(ϕx)x,
ϕ(0) = 0, ϕ(L) = u∗. (2.17)

Moreover,ϕ(x)xx > 0 ∀x ∈ (0, L).
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Proof. Solving (2.17) yields∫ ϕ(x)

0

du

Q−1
(
f (u)+c
m

) = x, (2.18)

where the constantsc andm are chosen so as to satisfy the second boundary condition, i.e.,∫ u∗

0

du

Q−1
(
f (u)+c
m

) = L.
Therefore, to prove the assertion we have to show the existence ofc andm.

Note that by an appropriate choice ofc, sufficiently largem, and due to the monotonicity
of Q, ϕ(x) defined by (2.18), can be bounded for allx ∈ [0,+∞). In this case we denote by
ū := limx→+∞ ϕ(x). Thenc = −f (ū).

To complete the proof, we now define

G(ū,m) :=
∫ u∗

0

du

Q−1
(
f (u)−f (ū)

m

) ,
and show the existence ofū andm such that

G(ū,m) = L. (2.19)

It is easy to see thatG is a continuous function in both arguments, and that

G(ū,m) > 0 ∀ū, m, and G(ū,m→ +∞)→ +∞. (2.20)

On the other hand, settingm = f (ū), we obtain

G(ū,m = f (ū)) =
∫ 0

u∗

du

Q−1
(
1− f (u)

f (ū)

)
6 |u∗| · max

u∈[u∗,0]

 1

Q−1
(
1− f (u)

f (ū)

)
 = |u∗|

Q−1
(
1− f (u∗)

f (ū)

) .
It is now clear that if we take sufficiently smallū = ūmin, thenQ−1(1− f (u)

f (ū)
) will be greater

than 2|u∗|, and consequently,

G(ū = ūmin,m = f (ū)) 6 L

2
. (2.21)

Finally, due to the continuity ofG, it follows from (2.20) and (2.21) that there existū andm
which satisfy (2.19).

Moreover, we have shown that the solution of (2.17),ϕ(x), also satisfies problem (2.5)
with a corresponding value of̄u. Hence, by assertion 2.2 we haveϕxx > 0, and the proof of
assertion 2.6 is completed. �

All further steps of the proof of theorem 2.5 are identical to the proof of theorem 2.1 taking
L instead ofR. This implies a breakdown of the solution of the Dirichlet problem with a large
initial-boundary conditions.



254 J Goodman et al

2.3. Numerical examples

We conclude section 2 with a number of new numerical results, which were obtained
using the following second-order scheme based on the operator splitting approach (see, e.g.,
[7, 10, 1, 2, 5, 6, 9]).

Our splitting method can be summarized as follows. LetS(t − τ) be the exact solution
operator associated with the corresponding conservation law,

vt + f (v)x = 0; (2.22)

and letH(s − τ) be the exact solution operator associated with the corresponding nonlinear
diffusion equation,

wt = Q(wx)x. (2.23)

This means thatv(x, t) = S(t−τ)v(x, τ ) andw(x, t) = H(t−τ)w(x, τ ), respectively. Then
we can construct the second-order splitting approximation in the following way:

u(x, t +1t) ≈
[
S

(
1t

2

)
◦H(1t) ◦ S

(
1t

2

)]
u(x, t). (2.24)

To obtain a fully discrete splitting method one should use second-order accurate
approximate solution operators,S̃ andH̃ , instead ofS andH , respectively. In the presented
examplesS̃(1t2 ) was obtained by means of the central Nessyahu–Tadmor scheme [16]. This
scheme isBV -stable and converges to the unique entropy solution of (2.22) under the following
CFL condition,

1t 6 1x

max
u
|f ′(u)| . (2.25)

The approximate parabolic operatorH̃ (1t) was obtained by means of the standard central
difference scheme,

wn+1
j = wnj +

1t

1x

[
Q

(
wnj+1− wnj

1x

)
−Q

(
wnj − wnj−1

1x

)]
,

which isL∞-stable under the different CFL condition,1t 6 (1x)2

2 maxs Q′(s)
.

In order to guarantee stability of the resulting scheme (for instance, in the strongL∞-
norm), we take1t satisfying (2.25) and replacẽH(1t) by the composition ofm operators,
H̃ (1t

m
) ◦ H̃ (1t

m
) ◦ · · · ◦ H̃ (1t

m
), wherem is the minimal integer, such that

1t

m
6 (1x)2

2max
s
Q′(s)

.

The resulting scheme can be written in the following operator form:

u(x, t +1t) ≈
[
S̃

(
1t

2

)
◦ H̃

(
1t

m

)
◦ · · · ◦ H̃

(
1t

m

)
◦ S̃

(
1t

2

)]
u(x, t). (2.26)

In figure 2 a numerical solution of the following problem,

ut + (u2)x =
(

ux√
1 +u2

x

)
x

, (2.27)

augmented with the decreasing step-function initial data,

u0(x) =
{

1.2, x < 0,

−1.2, x > 0,
(2.28)
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Figure 2. Riemann problem—(2.27), (2.28).
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initial data
stationary travelling wave

numerical solution at t=1.5

Figure 3. Problem (2.27), (2.28).N = 200; zoom on the [−0.2, 0.2] interval.

is displayed (with the number of grid pointsN = 400). The numerical solution converges
much better to the exact travelling wave solution than was possible to obtain by means of
the nonsplitting, second-order Nessyahu–Tadmor-type scheme in [12]. To illustrate this
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initial data
 stationary travelling wave
numerical solution at t=1.5

Figure 4. Problem (2.27), (2.28).N = 400; zoom on the [−0.2, 0.2] interval.

-1

-0.5

0

0.5

1

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

initial data
 stationary travelling wave
numerical solution at t=1.5

Figure 5. Problem (2.27), (2.28).N = 800; zoom on the [−0.2, 0.2] interval.

convergence the numerical solutions with increasing number of grid points are shown in
figures 3–6.

The same situation occurs when we compute the numerical solution to equation (2.27),
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initial data
 stationary travelling wave
numerical solution at t=1.5

Figure 6. Problem (2.27), (2.28).N = 1600; zoom on the [−0.2, 0.2] interval.
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initial data
 stationary travelling wave

numerical solution at t=3

Figure 7. Tanh initial data for problem (2.27), (2.29).

subject to the following smooth initial data,

u0(x) = −1.2 tanh(x). (2.29)

The result forN = 400 is presented in figure 7.
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0

0.5

1

1.5

2

2.5

-1 0 1 2 3 4 5 6

initial data
 travelling wave

numerical solution at t=1.5

Figure 8. Asymmetric Riemann problem—(2.27), (2.30).

In both of these cases, a very good resolution of the discontinuity was obtained. Note
that for the symmetric upstream–downstream values (±1.2) used in these examples, the exact
travelling wave solution is stationary.

Remark. In the second case of the smooth initial data, our numerical solution converges at a
slower rate to its steady state: the solution to (2.27), (2.28) becomes stationary approximately
at t = 1.5, and the solution to (2.27), (2.29)—att = 3. Such a behaviour of the numerical
solutions seems to us quite reasonable, although we lack a rigorous proof of this fact.

Finally, in figure 8 we display the ‘moving’ solution with asymmetric upstream-
downstream values of 0 and−2.4, respectively: we solve numerically equation (2.27)
augmented with the following initial data,

u0(x) =
{

2.4, x < 0,

0, x > 0.
(2.30)

One can observe that in this case the resolution of the subshock is as good as in the stationary
case.

In addition, we have used the same operator splitting method to solve numerically
two Cauchy problems: equation (2.27) augmented with large periodic initial data—skew
symmetric,

u0(x) = 2 sin(x), (2.31)

or asymmetric,

u0(x) = sin(x) + cos(2x); (2.32)

and small, periodic, initial data

u0(x) = 0.5 sin(x). (2.33)
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Figure 9. Small periodic initial data—problem (2.27), (2.33).
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Figure 10. Large periodic initial data—problem (2.27), (2.31).

For the small initial data the resulting numerical solution of (2.27), (2.33) is plotted in
figure 9. As was shown in [12, theorem 3.3], in this case the exact solution preserves its initial
smoothness, and our numerical result confirms this fact. For the large initial data, like (2.31)
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Figure 11. Large periodic initial data—problem (2.27), (2.32).

or (2.32), we were not able so far to prove what is clearly seen from the numerics in figures 10
and 11, namely; that large periodic initial data may induce aformation of a discontinuity within
a finite time.

We would like to conclude section 2 by stressing that the breakdown results proved here
are sharp in the sense that solutions will not break down if the dissipation flux is unbounded.

Lemma 2.7 (a priori estimate ofux). Consider equation (1.1) with a monotoneQ such that
Q(s)→±∞ ass →±∞. Thenux(x, t) is uniformly bounded for allt > 0.

Proof. LetU(x, t) ≡ ∫ x u(x, t) denote the primitive ofu(x, t). Then it satisfies the following
equation:

Ut + f (Ux) = Q(Uxx). (2.34)

Differentiating (2.34) with respect tot we obtain a parabolic (due to the positivity ofQ′)
equation inUt ,

(Ut )t + f ′(Ux)(Ut )x = Q′(Uxx)(Ut )xx. (2.35)

The maximum principle for (2.35) gives a uniform bound onUt , while the maximum principle
for the original equation (1.1) provides such a bound onf (Ux). Therefore, from (2.34) we
obtain that for allt > 0,

|Q(ux)| 6 const.

Hence,ux(x, t) is uniformly bounded due to the monotonicity and the unboundedness ofQ. �
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3. Equation with a nonmonotone dissipation flux

In this section we consider the following model equation [11],

ut + f (u)x = Q(ux)x, Q(ux) = ν ux

1 +u2
x

, ν > 0. (3.1)

The convection flux satisfies the following assumptions:

(I) f (u) is a smooth function;
(II) f (−u) = f (u) ∀u;

(III) f ′(u) > 0 ∀u > 0;
(IV) f (u)→ +∞ asu→ +∞.

We study solutions of the initial value problem associated with (3.1) subject to initial data
(2.2) which satisfy assumptions (a)–(d) in section 2.1. Our main concern in this section is the
breakdown of the Cauchy problem.

3.1. Theory

Theorem 3.1.Consider the initial value problem (3.1),(2.2). Let hypotheses (I)–(IV) and (a)–
(d) be satisfied. Ifu∗ is a negative constant such thatf (u∗) > ν, and if ϕ(x) is a smooth
function that for someR > 0 satisfiesϕ(R) = u∗, and

Q(ϕx)x − f (ϕ)x < 0 ∀x > 0, (3.2)

then there existsT such that

sup
x

|ux(x, t)| → ∞ as t ↑ T .

Again, we proceed along the lines of the proof of theorem 2.1, and begin with the following
assertion.

Assertion 3.2.Let assumptions (I)–(IV) be satisfied. Then for any negative numberū there
exists anm > 1 (possibly a large one), such that there is a solution to the following boundary
value problem,

f (ϕ)x = mQ(ϕx)x, 0< x < +∞ (3.3)

ϕ(0) = 0, ϕ(x → +∞) = ū. (3.4)

Moreover,∀x > 0,

ϕ(x)xx > 0 and − 16 ϕ(x)x < 0. (3.5)

Proof. ThoughQ(s) = ν s
1+s2 is in general nonmonotone, and hence noninvertible, on the

intervals ∈ [−1, 1], where its inverse,Q−1(z), exists and is defined via

Q−1(z) = ν −√ν2 − 4z2

2z
, |z| 6 ν

2
,

it increases monotonously. Solving (3.3), (3.4) we obtain again,∫ ϕ(x)

0

du

Q−1
(
f (u)−f (ū)

m

) = x. (3.6)

Note that the integral in the LHS of (3.6) is defined for a sufficiently largem, since then
| f (u)−f (ū)

m
| < ν/2.
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As before,ϕx < 0 andϕxx > 0. Since

|ϕx | =
∣∣∣∣Q−1

(
f (ϕ)− f (ū)

m

)∣∣∣∣ 6 1,

it is also clear thatϕx > −1, and assertion 3.2 is thus proved. �
Next, by a complete analogy with the proof of proposition 2.3, we derive the following.

Proposition 3.3. Let assumptions (I)–(IV) be satisfied. Then for anyu∗ < 0 and certain
R > 0, there is a bounded skew symmetric functionϕ(x) satisfying (3.2) andϕ(R) = u∗.

We now turn to the analogue of lemma 2.4.

Lemma 3.4. Under the hypotheses (b)–(d) and inequality (3.2), a solution of the problem
(3.1),(2.2) is bounded as follows:

ū 6 u(x, t) 6 0 ∀x > 0, t < T (3.7)

and

u(R, t) 6 u∗ ∀t < T . (3.8)

Proof. The bounds (3.7) are a simple consequence of the maximum principle for equation
(3.1), which is valid. To prove the second bound, (3.8), we subtract (3.3) from (3.1) to obtain

(u− ϕ)t + (f (u)− f (ϕ))x = ν
(

ux

1 +u2
x

−m ϕx

1 +ϕ2
x

)
x

. (3.9)

Let y(t) := maxx>0 (u(x, t)− ϕ(x)) = u(xm(t), t) − ϕ(xm(t)). Note thatat the points of
maximum, (xm(t), t),

ux = ϕx, uxx 6 ϕxx.
Thus, sinceν > 0, using the bounds (3.5), we conclude that the RHS of (3.9),

ν

(
ux

1 +u2
x

−m ϕx

1 +ϕ2
x

)
x

= ν 1− ϕ2
x

(1 +ϕ2
x)

2 (uxx −mϕxx) 6 0

at (xm(t), t). Consequently, we obtain the following ordinary differential inequality,

ẏ(t) + ϕx(xm(t))f
′′(ξ)y(t) 6 0, (3.10)

whereξ = ξ(t) is a midpoint betweenu(xm(t), t) andϕ(xm(t)). Integration of (3.10) yields
the following inequality,

y(t) 6 y(0) · exp

{
−
∫ t

ϕx(xm(s))f
′′(ξ) ds

}
,

which in turn implies the desired bound, (3.8), since by assumption (d),y(0) 6 0. �
The last stage of the proof of theorem 3.1 is completely identical with the proof of

theorem 2.1.

Remark. Our breakdown result, which was derived for the initial value problem (3.1),(2.2),
can be also extended to the following Dirichlet problem,

ut + f (u)x = ν
(

ux

1 +u2
x

)
x

, −L < x < L,

u(x, t = 0) = u0(x), −L < x < L,

u(±L, t) = u0(±L), t > 0.

(3.11)
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However, unlike the Dirichlet problem studied in section 2.2, in the present caseL must be
sufficiently large. Otherwise, there will be no solution of the corresponding boundary problem,

f (ϕ)x = νm
(

ϕx

1 +ϕ2
x

)
x

,

ϕ(0) = 0, ϕ(L) = u∗,
(3.12)

for u∗ satisfyingf (u∗) > ν. This is a possibility because, as was shown in assertion 3.2,
|ϕx | 6 1, and hence existence of the solution of (3.12) depends on the balance betweenL

andu∗.
In other respects theorem 3.1 can be extended to problem (3.11) in the same way as

theorem 2.1 was extended in section 2.2.

3.2. Numerical examples

In our previous works, [11, 12], the numerical solutions of equations (3.1) and (2.1) were
computed using a second-order central Nessyahu–Tadmor-type scheme. Its stability was
assured under an appropriate CFL condition. However, to satisfy this condition we had to
take a very small time step,1t ∼ (1x)2, which caused the scheme to be overly dissipative
and did not allow us to achieve a good resolution of discontinuities, [11, 12].

We note that the operator splitting method described in section 2.3 does not give any
encouraging results when applied to equation (3.1): the numerical solution converges in
time towards a piecewise constant stationary weak solution, which does not seem to be
relevant. This happens since the nonmonotonicity ofQ(ux) hampers the construction of a
stable approximation of the diffusion operator,H(t − τ).

Our third-order scheme is based on a nonoscillatory piecewise parabolic reconstruction
by Liu and Osher [13],v(x, tn) = ∑j pj (x)χj (x), where each quadratic piece,pj (x), is of
the form

pj (x) = vnj + v′j

(
x − xj
1x

)
+

1

2
v′′j

(
x − xj
1x

)2

, (3.13)

wherevnj , 1
1x
v′j and 1

(1x)2
v′′j are approximate values ofu(xj , tn), ux(xj , tn) anduxx(xj , tn),

respectively. Due to the conservation and accuracy requirements, these reconstructed
pointvalues are uniquely given by

v′j := θj
v̄nj+1− v̄nj−1

21x
, v′′j := θj

v̄nj+1− 2v̄nj + v̄nj−1

(1x)2
, vnj := v̄nj −

v′′j
24
.

Herev̄nj denotes an approximate value of the average ofu(x, tn) over the corresponding spatial
cell [xj− 1

2
, xj+ 1

2
) of uniform width1x ≡ xj+ 1

2
− xj− 1

2
; andθj is a nonlinear limiter, designed

to prevent oscillations (consult [13, 14]).
This third-order accurate reconstruction, (3.13), is evolved in time using a central

Nessyahu–Tadmor-type approach, that is, the staggered cell averages ofu(x, tn+1) are
calculated via,

v̄n+1
j+ 1

2
= 1

2[v̄nj + v̄nj+1] + 1
8[v′j − v′j+1] −

1

1x

[ ∫ tn+1

τ=tn
f (v(xj+1, τ ))dτ −

∫ tn+1

τ=tn
f (v(xj , τ ))dτ

]
+

1

1x

[ ∫ tn+1

τ=tn
Q(vx(xj+1, τ ))dτ −

∫ tn+1

τ=tn
Q(vx(xj , τ ))dτ

]
. (3.14)
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Next, we approximate the integrals in (3.14) by Simpson’s quadrature rule, which is
sufficient for retaining the overall third-order accuracy,

1

1x

∫ tn+1

τ=tn
f (v(xj , τ ))dτ ∼ λ

6
[f (v(xj , t

n) + 4f (v(xj , t
n+ 1

2 )) + f (v(xj , t
n+1)],

1

1x

∫ tn+1

τ=tn
Q(vx(xj , τ ))dτ ∼ λ

6
[Q(vx(xj , t

n) + 4Q(vx(xj , t
n+ 1

2 )) +Q(vx(xj , t
n+1)],

whereλ ≡ 1t
1x

is a constant ratio. The last two formulae, in turn, require the approximate
pointvalues on the right, which can be computed via the Taylor expansion:

v(xj , t
n+β) ≈ vnj + (β1t)vt (xj , t

n) +
(β1t)2

2
vtt (xj , t

n),

vx(xj , t
n+β) ≈ 1

1x
v′j + (β1t)vxt (xj , t

n) +
(β1t)2

2
vxtt (xj , t

n).

Here, the derivatives on the right are evaluated by exact differentiation of the quadratic
reconstruction (3.13) and equation (3.1),

vt (xj , t
n) = −f ′(vnj )

v′j
1x

+Q′
(
v′j
1x

)
v′′j

(1x)2
,

vtt (xj , t
n) = [f ′(vnj )]

2 v′′j
(1x)2

+ 2f ′(vnj )f
′′(vnj )

(
v′j
1x

)2

− 2f ′(vnj )Q
′′
(
v′j
1x

)(
v′′j

(1x)2

)2

−4f ′′(vnj )Q
′
(
v′j
1x

)
v′j
1x
· v′′j
(1x)2

− f ′′(vnj )Q′′
(
v′j
1x

)(
v′j
1x

)2
v′′j

(1x)2

−f ′′′(vnj )Q′
(
v′j
1x

)(
v′j
1x

)3

+Q′
(
v′j
1x

)
Q′′′

(
v′j
1x

)(
v′′j

(1x)2

)3

Figure 12. Initial value problem (3.15), (2.28).N = 100.
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Figure 13. Problem (3.15), (2.28).N = 200; zoom on the [−0.2, 0.2] interval.

+

[
Q′′

(
v′j
1x

)]2(
v′′j

(1x)2

)3

;

vxt (xj , t
n) = −f ′(vnj )

v′′j
(1x)2

− f ′′(vnj )
(
v′j
1x

)2

+Q′′
(
v′j
1x

)(
v′′j

(1x)2

)2

,

vxtt (xj , t
n) = 6f ′(vnj )f

′′(vnj )
v′j
1x
· v′′j
(1x)2

+ 2f ′(vnj )f
′′′(vnj )

(
v′j
1x

)3

+ 2[f ′′(vnj )]
2
(
v′j
1x

)3

−2f ′(vnj )Q
′′′
(
v′j
1x

)(
v′′j

(1x)2

)3

− f ′′(vnj )Q′
(
v′j
1x

)(
v′′j

(1x)2

)2

−8f ′′(vnj )Q
′′
(
v′j
1x

)
v′j
1x

(
v′′j

(1x)2

)2

− f ′′(vnj )Q′′′
(
v′j
1x

)(
v′j
1x

)2(
v′′j

(1x)2

)2

−f ′′′(vnj )Q′
(
v′j
1x

)(
v′j
1x

)2
v′′j

(1x)2
− f ′′′(vnj )Q′′

(
v′j
1x

)(
v′j
1x

)3
v′′j

(1x)2

+Q′′
(
v′j
1x

)
Q′′′

(
v′j
1x

)(
v′′j

(1x)2

)4

.

By means of this third-order scheme we solve numerically the following initial value
problem:

ut + (u2)x =
(

ux

1 +u2
x

)
x

, (3.15)

subject to the decreasing step-function initial data, (2.28). The results obtained for different
numbers of grid points,N, are displayed in figures 12–16.

Note that we still have to take1t ∼ (1x)2 to ensure the stability of our third-order
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Figure 14. Problem (3.15), (2.28).N = 400; zoom on the [−0.2, 0.2] interval.

 

Figure 15. Problem (3.15), (2.28).N = 800; zoom on the [−0.2, 0.2] interval.

scheme. Again, as in the case of the second-order scheme [11], a large amount of numerical
dissipation can be observed. Therefore, in spite of its formal third order of accuracy, this
scheme gives less satisfactory results than it was possible to obtain by the splitting method in
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Figure 16. Problem (3.15), (2.28).N = 1600; zoom on the [−0.2, 0.2] interval.

section 2.3. Nevertheless, the resolution of the subshock in figures 12–16 is much better than
the one obtained in [11], and corroborates the analytical result of theorem 3.1.

Final remarks

(1) The numerical solution of the corresponding problem with the smooth initial data, (2.29),
is quite similar and need not to be displayed.

(2) The breakdown of the solution of equation 3.1 with large periodic initial data was
demonstrated numerically in [11].
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