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We introduce a new family of Godunov-type semi-discrete central schemes for multidimensional
Hamilton—Jacobi equations. These schemes are a less dissipative generalization of the central-upwind
schemes that have been recently proposed in Kurganov, Noelle and PetrovaJ 2001, Sci. Comput.,

23, pp. 707-740). We provide the details of the new family of methods in one, two, and three space
dimensions, and then verify their expected low-dissipative property in a variety of examples.
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1. Introduction

We consider the multidimensional Hamilton—Jacobi equation,
o+ H(Vxkp) =0, xeRY, (1.1)

with Hamiltonian H. First-order numerical schemes that converge to the viscosity solution of (1.1)

were first introduced by Crandall & Lions (1984) and by Souganidis (1985). Recent attempts to obtain
higher-order approximate solutions of (1.1) include upwind methods (Jiang & Peng, 2000; Osher &
Sethian, 1988; Osher & Shu, 1991), discontinuous Galerkin methods (Hu & Shu, 1999), and others.
Here, we study a class of projection—evolution methods, called Godunov-type schemes. The main
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structure of these schemes is as follows: one starts with the point values of the solution, constructs an
(essentially) non-oscillatory continuous piecewise polynomial interpolant, and then evolves it to the next
time level while projecting the solution back onto the computational grid. The key idea in Godunov-type
central schemesis to avoid solving (generalized) Riemann problems, by evolving (locally) smooth parts

of the solution.

Second-order staggered Godunov-type central schemes were introduced by Lin & Tadmor (2001,
2000).L -convergence results for these schemes were obtained in Lin & Tadmor (2001). More efficient
non-staggered central schemes as well as genuinely multidimensional generalizations of the schemes
in Lin & Tadmor (2000) were presented in Bryson & Levy (2003a), with high-order extensions (up to
fifth-order) proposed in Bryson & Levy (2003b,c).

Second-order semi-discrete Godunov-type central schemes were introduced in Kurganov & Tadmor
(2000), wherdocal speeds of propagation were employed to reduce the numerical dissipation. The
numerical viscosity was further reduced in tbentral-upwind schemes (Kurganoet al., 2001) by
utilizing one-sided estimates of the local speeds of propagation. Higher-order extensions of these
schemes were introduced in Bryson & Levy (2003d), where weighted essentially non-oscillatory
(WENO) interpolants were used to increase accuracy. WENO interpolants were originally developed
for numerical methods for hyperbolic conservation laws (tial., 1994; Jiang & Shu, 1996), and were
first implemented in the context of upwind schemes for Hamilton—Jacobi equations in Jiang & Peng
(2000).

Godunov-type central-upwind schemes are constructed in two steps. First, the solution is evolved to
the next time level on a non-uniform grid (the location of the grid points depends on the local speeds,
and thus can vary at every time step). The solution is then projected back onto the original grid. The
projection step requires an additional piecewise polynomial reconstruction over the non-uniform grid.
In this paper we show that in the semi-discrete setting different choices of such a reconstruction lead to
different numerical Hamiltonians, and thus to different schemes. In particular, we can recover the scheme
from Kurganovet al. (2001). A more careful selection of the reconstruction results in a new central-
upwind scheme with smaller numerical dissipation. This approach was originally proposed in Kurganov
& Petrova (2000), where it was applied to one-dimensional (1D) systems of hyperbolic conservation
laws. It has been recently generalized and implemented for multidimensional systems of hyperbolic
conservation laws in Kurganov & Lin (in preparation).

The paper is organized as follows. In Section 2, we develop new semi-discrete central-upwind
schemes for 1D Hamilton—Jacobi equations. We also review the interpolants that are required to
complete the construction of the second- and fifth-order schemes. Generalizations to more than one
space dimension (with special emphasis on the two-dimensional setup) are then presented in Section 3,
where the corresponding multidimensional interpolants are also discussed. In Section 4, we evaluate the
performance of the new schemes with a series of numerical tests. Finally, in Appendix A, we prove the
monotonicity of the new numerical Hamiltonian.

2. One-dimensional schemes
2.1 Semi-discrete central-upwind schemes for Hamilton—Jacobi equations

In this section, we describe the derivation of a new family of semi-discrete central-upwind schemes for
the 1D Hamilton—Jacobi equation,

¢t + H(px) =0, x € R, (2.1)
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subject to the initial data(x,t =0) = ¢o(X). We follow the approach in Kurganoet al. (2001) (see
also Kurganov & Tadmor, 2000). For simplicity we assume a uniform grid in space and time with grid
spacingAx and At, respectively. The grid points are denotedsgy := jAx, t" := nAt, and the
approximate value ap (x;, t") is denoted by

Assume that the approximate solution at tibfe (p?, is given, and that a continuous piecewise-
polynomial interpolani(x, t") is reconstructed frorm?. At every grid point, the maximal right and left

speeds of propagatioa;r andaj*, are then estimated by

a = max {H'W,0}, a = min {H'w.0}|, (2.2
min{ey @ }<usmaXipy o } min{px .oy ) <uKmax(ex .¢x }

wheregi are the one-sided derivativesxat Xxj, that is
oE = Px(x; £0,tM).

Obviously, the quantities™ also depend on time, ang" depend on both time and location. These
dependences are omittedJ to simplify the notation. If the Hamiltonian is convex, (2.2) reduces to
aj+ = max{H'(;), H'(¢;). 0} , aj = Imin{H’(¢5). H'(¢{). 0}|, (2.3)
while in the non-convex case, one has to use directly the expressions in (2.2).
We then proceed by evolving the reconstructi@at the evolution pointx?i =Xj* aJiAt, to the
next time level according to (2.1). The time st&pis chosen so thatjf‘Jr < x(”j+1)_ for all j. Therefore
the solution remains smooth m;?i fort e [t", t"+1] (see Fig. 1) and we can compute the values of the

ewlved solution{go?f} by the Taylor expansion in time:

O] = PO AN — AtH (300t ) + 0 (4t7). (2.4)
Using the vaIue$<p?Il} on the non-uniform gridx?i}, we construct a new quadratic interpola}u
On the interva[x?_, x?+], the interpolant takes the form

QL _ 0l 1
it n+1y) ._ n+l I+ 1= _ N S(oo o+l N _ N
¥ (xt )_¢F,+—@:jzt—0 X_) + 5@0] = =), (25)
Where(@x)rj”rl is yet to be determined and is an approximatiomp(i?, th+1), S(‘? = (x?Jr + xjf‘_)/z.
The projection back onto the original grid is then carried out by evalué&i(ng t+1) atxj,
n+1 T n+1 a}i_ n+1 ai_ n+1 1 n+14+,— 2
901' = w(Xj,t ) = m(pj_ + a?_?(PH_ - E((/)xx)j aj aj (At)“. (26)

i
Note that if the Riemann fan is symmetric, that isa]-TT =aj, theni‘j1 = Xj. Substituting (2.4) in (2.6)
yields

+
A = T (0017 — AH GO 1))
j a?__i_aj_ j— X j—
a- 1
J ~c N N ~ N N = AN+l 4+ — 2 2
+m(§0(xj+7t ) — AtH (@x (X}, t ))) - E(ﬁﬁxx)j aja; (A + O(AH~. (2.7)

J J
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FiG. 1. Central-upwind differencing: 1D.

Using the Taylor expansion in space,

G ") = ol £ Ataf o + O(AD?, (2.8)
we arrive at
CRECH At
N+l _ on I (pF — o) = ——|aT H(@(x", . t" FH@G (XD "
i = +Ataj++aj_ (v =) al +a; [aJ H@x (X} 1)) + 8 H(@x(x] . t ))]
1
—5 @) a8 (402 + 0(An?. (2.9)

Wethen letAt — 0, and end up with the (family of) semi-discrete central-upwind schemes:

a; H(pd) +aiHipg + _ o
%@](t):_ J (9x) j (ex) + ((px Px _1‘ lim [At(?ﬁxx)?ﬂ])- (2.10)

aj*+aj‘ 1 aj++aj‘ 2 At>0

Here, the one-sided speeds of propagati?‘r;are given by (2.2), angiS are the left and right derivatives
at the pointx = x; of the reconstructio(-, t) at timet.

Finally, in order to complete the construction of the scheme, we must dete(@;a)ﬁ*l. For
example, selectingé‘xx)'j”rl to be independent afit gives

lim | At(@)™ 1| =0,
ALO[ @]

and then (2.10) recovers the central-upwind scheme in Kurgahal: (2001). However, since the
interpolanty (-, t"*1) is defined on the interva[sxjf‘_, xjf‘+], whose size is proportional tdt, itisnatural

to choose@xx)Trl to be proportional to AAt. In this case, the approximation of the second derivative
in (2.10) will add a non-zero contribution to the limit @& — 0. At the same time, to guarantee a
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non-oscillatory reconstruction, we should use a nonlinear limiter. For example, one can use the minmod
limiter:

. Px KT L) — P (R, 7)) P (R0, ) — G (xD_, )
At(axx)er_l — 2m|nm0d( X J+ X ] X ] X ] , (211)

al +aj ’ al +a;

where  is the derivative of (2.5);Zx(x? I s 1) are the values of the derivative of the evolved

reconstructiop(-, t") att = t"+1, and the multivariate minmod function is defined by
min{xj}, if x; >0 V],
minmod Xy, Xo, ...) := mjax{xj}, if xj <0 Vj, (2.12)
O,] otherwise.

A different choice of limiter in (2.11) will result in a different scheme from the same family of central-
upwind schemes.

All that remains is to determine the quantities used in (2.11). Since all data are smooth along the line
segment$x?i, t),t" <t < t"1, we can use a Taylor expansion in time to obtain

Px O, th) = G (X[, t) + O(AY). (2.13)

According to (2.5), the derivativ%x(i?, t"+1) of the new reconstructiofr at time levet"1 is

{}X(?ﬂ "t = M (2.14)
I @ +anAt’
and after substituting (2.4) and (2.8) into (2.14), we obtain
~ afof +aor  H@ (M tM) — H@ (X, t")
(XD, tL) = ) R ) ) +O(A). (2.15)
e @ +a;) @ +a)
Passing to the semi-discrete limi\ — 0) in (2.11), (2.13), and (2.15) gives
2 : :
. ~ r.H‘l _ . + _ g int int __—
A“trEO [At(wxx)J ] 7(aj*+aj*) mlnmod(wx x o Ux <px>, (2.16)
where
. agf +a 9x  H(pd) — H(pD)
Nt fim [ (R0, 1Yy = X T X T x (2.17)
x At—0 ! (ajfr +a)) (aJ?L +ay)

Finally, substituting (2.16) into (2.10), we obtain the 1dv-dissipative semi-discrete central-upwind
scheme:

a; gD +a Hipy) +_ - +_ it gint _ -
L T pata [ TP —mian(((pX x Fx ¢x> ,

a +a; al +a; al +a; " a +a

a1 = Tra

(2.18)

wherey Nt is given by (2.17). For future reference, we denote the RHS of (2.18)§KLP.
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Notice that in the fully-discrete setting the use of the intermediate quadratic reconstrctiof1)
at levelt"™! (as opposed to the intermediate piecewise linear reconstruction in Kurgaaby2001)
increases the accuracy of the resulting fully-discrete schéreat)? + (Ax)") versusO (At + (Ax)"),
wherer is the (formal) order of accuracy of the continuous piecewise polynomial reconstrgictiaR).
When we pass to the semi-discrete limitt(— 0), both quadratic and linear interpolation errors go to
0, and therefore the (formal) order of accuracy of both (2.17)—(2.18) and the semi-discrete scheme in
Kurganovet al. (2001) isO((Ax)"). The temporal error is determined solely by the (formal) order of
accuracy of the ODE solver used to integrate (2.18). However, the minmod limiter introduces a new term
that leads to a reduction of the numerical dissipation without affecting the accuracy of the scheme. To
demonstrate this, we show tha™ is always in the intervaimin{ey, o5 }, max{e;, o5 }1, and therefore
the absolute value of the ter@;" — ¢5 ) in the numerical dissipation in the scheme from Kurgagov
al. (2001) is always greater than the absolute value of the new term, that is

o — oy — minmod(<px+ — Nty it (p;>‘ .

oy —ox | =
Indeed, we have

el +aied  H@H -He) [a,-* - H’(S)} B [H/@Haj—
- X

int __ +¢
@ +a)) @ +a)) al +aj X a +aj

X =

} . (2.19)

where& € (min{oy, ¢y }, maxXey, ¢y }). It follows from the definition of the local speeds (2.2) that
af —H'(§) >0, H'@®+a; >0.

Thus, (2.19) is a convex combinationgf andgy , and thereforesi™ e [min{py, o5 }, maxey, o5 }1.
Remarks.

1. We would like to emphasize that the reduced dissipation in the scheme (2.18) when compared
with the scheme of Kurganaat al. (2001) is due to the minmod term in the RHS of (2.18). This

additional term arises when we defi@?&x)’;*l by (2.11) such that the lipg_. o [At (@x)’j‘*l] in

(2.10) does not vanish.

2. While the new nonlinear limiters in the scheme (2.18) require additional computational work,
the quantities that participate in the limiter do not require any new flux evaluations and hence
the increase in the computational complexity is minimal. Such additional work (when compared
with the original scheme of Kurganat al., 2001) can be worthwhile in cases where the user is
interested in increasing the resolution of the solution without increasing the order of accuracy of
the method.

It was shown in Bryson & Levy (2003d) that the numerical Hamiltoni&fiNP from Kurganovet
al. (2001) is monotone, provided that the Hamiltonidnis convex. Here, we state a theorem about
the monotonicity ofH BXLP__the new, less dissipative Hamiltonian in (2.18). The proof is left to the
Appendix. We will consider only Hamiltonians for whidd’ changes sign, because otherwise either
a~ = 0orat = 0and the Hamiltonian in (2.18) reduces to the upwind one for which such a theorem is
known.

THEOREM2.1 Let the HamiltoniarH € C? be convex and satisfy the following two assumptions:



SEMI-DISCRETE CENTRAL-UPWIND SCHEMES 119

(A1) The function
G(Uu, v) := 2H" () [(U—v)H'(v) = (H(U) — H@)] + [H'(u) — H’(v)]2 <0 (2.20)

for all u andv in the setS~(u, v) U St (u, v), where

S (U v) = {(u’ Ny H(uL)j — 1I)-|(v) < H’(u) —; H/(v)’ S Ut > v},
B , , (2.21)
S+(U,U)Z={(U,U)IH(ul)j::)_'(v)ZH(U);H(U), <ut < }’

andu* is the only point such thatl’(u*) = 0;

(A2) For anyv and for an arbitrary intervdh, b], the setsS™(u, v) N [a, b] andS* (u, v) N [a, b]
are either the empty set or finite unions of closed intervals and/or points.
Then the numerical Hamiltonian in (2.18):

a H@uM) +a™Hu")
at +a-

ut —u- ut —uint it —y-

:
—a'a | —— mmmoc{ , , (222
[a++a— at+a- a++a—> (2.22)

HBKLP g+ =) .=

where
gt &ut+atum HuhH -Hw)
(@ar+a) @ +a)
and wherea™ := af(ut,u”) = max{H'(u"),H'wW),0}, a= = a (ut,u) =

|min{H’(u™), H (u™), 0}| is monotone, that i#1 BXLP is a non-increasing function of* and a
non-decreasing function of".

Remarks.

1. Examples of Hamiltonian that satisfy conditions (2.20)—(2.21) are any convex quadratic
Hamiltonian H(u) = au® + bu + c. Straightforward computation gives that the function
G(u,v) = 0, and the sets in (A2) are either empty or one closed interval, or one point, and
therefore the theorem holds. Another example, for which Theorem 2.1 is vakuis = u®. In
this case, the sets (2.21) are

S Uv)={Uv):u+v=0=v}, STUv)={Uv):u+v<0< v},
and, as one can easily verify, the function
G(u, v) = —8(u — v)3U® + 3u?v + 6uv? + 2v%) < 0,

in S™(u, v) U S*t(u, v). As for the sets in assumption (A2), they are either empty or one closed
interval, or one point.

2. Notice that assumption (A2) in Theorem 2.1 is needed only for technical purposes and in fact it is
satisfied by (almost) every Hamiltoniath that arises in applications.
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3. The monotonicity of the numerical Hamiltonian is an essential ingredient in the theory of Barles
& Souganidis (1991). The main theorem in Barles & Souganidis (1991) implies that a consistent,
stable and monotone approximation of a Hamilton—Jacobi equation that satisfies an underlying
comparison principle converges to the unique viscosity solution of that equation. In our context,
such an approximation can be obtained if we assume a piecewise-linear reconstruction and replace
the time derivative by a forward Euler approximation.

2.2 A second-order scheme

A non-oscillatory second-order scheme can be obtained if one uses a non-oscillatory continuous
piecewise quadratic interpolafit The values of the one-sided derivativesgft (xj, t") in (2.17)
and (2.18) are given by

(A%O)l-1 1
B3] AX
= T Gy @ =l e (2:23)

where the second derivative is computed with a nonlinear limiter. For example,

(Aw)TJr% - (A<p)'j‘+% (A<p)’j‘+% - (Aw)?_% (Aw)'j‘Jr% - (Asv)’j‘_%
(Ax)? ’ 2(Ax)2 ’ (Ax)?

(¢XX)?+% = minmod| 6
(2.24)

Here,6 e [1,2] and the minmod function is given by (2.12). As is well-known, larger valueg of
correspond to less dissipative limiters (see Sweby, 1984). The scheme requires an ODE solver that is at
least second-order accurate.

2.3 Higher-order schemes

In this section, we briefly describe the third- and fifth-order WENO reconstructions. They were derived
in Bryson & Levy (2003d) in the context of central-upwind schemes, and are similar to those used in
high-order upwind schemes (Jiang & Peng, 2000).

In smooth regions, the WENO reconstructions use a convex combination of multiple overlapping
reconstructions to attain high-order accuracy. In non-smooth regions, a smoothness measure is employed
to increase the weight of the least oscillatory reconstruction. Here, we reconstruct the one-sided

derivatives(w)(i)k’j atx = xj fork =1, ..., d stencils, and write the convex combination
d d
6= u WOk 2w =1 Wi =0, (2.25)
k=1 k=1

where the valueg; are to be used in the scheme (2.17)—(2.18). The weigmsare defined as

+
+ y + Ck
Wi = , A= T P (2.26)
+ (e—l—S(-)
X;Lal,] )
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The constantski are set so that the convex combination in (2.25) is of the maximal possible order of
accuracy in smooth regions. We tage= 2 and choose = 10 to prevent the denominator in (2.26)
from vanishing.

A third-order WENO reconstruction is obtained in the case 2 with

Pj+1— @j-1 —@j—2 +4pj_1— 3pj
(ﬁox)lj :T7 ( X)lj ZAX )
0H), = —3¢j +40j+1— @j+2 (o), = il 0i-1
Px )2j = 2AX ’ xJ2j = 2AX '

The constantsﬁIE are given by

2
+ + o —
C=CG=3 G=C¢=z

and the smoothness measures are
S =5I[-10, §; =501, S;=S5[-2-1, S;=S5[-10.
Here,
Aty S, (ATAg e
Si[r, sl _sz< +Axi:r2+:1 e ) ATeiE=Eeim-ep. 227)
A fifth-order WENO reconstruction is obtained wher= 3. In this case,

@j—2 —6¢j_1+ 3pj + 2¢j41 2¢0j—3—99j_2+ 18pj_1 — 11p;

@y = @)L =

B6AX ’ 6AX
—2¢j -1 — 3¢j +6¢j11— )42 . —pj—2+6pj_1—3pj —2€01+1
(0x)sj = (x )2
Px)2j = 6AX ’ Ox2j = 6AX
_ —1lpj +18pj41 — Wj12+ 20j43 2¢j-1+3pj —6pj+1+ ¢j42
(73 = 6AX C W = 6AX '
The constantski are given by
3 1 3
+ _ o +_ o +
Cl :C3 :l—o, C3 :Cl :E’ C2 :g,

and the smoothness measures are

S =s-20. §; =511, §;=51[02,
S =§[-3-1, $;=5[-20, §;=S5[-11].

The time evolution of (2.18) should be performed with an ODE solver whose order of accuracy is
compatible with the spatial order of the scheme. In our numerical examples, we use the strong stability
preserving (SSP) Runge—Kutta methods from Gotttedd. (2001).

3. Multidimensional schemes

In this section, we derive the two-dimensional (2D) generalization of the semi-discrete central-
upwind scheme (2.17)—(2.18) and then extend it to three space dimensions. We also comment on the
multidimensional interpolants that these extensions require.
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(, k+1)

FIG. 2. Central-upwind differencing: 2D.

3.1 Atwo-dimensional scheme

We consider the 2D Hamilton—Jacobi equation,

and proceed as in Kurgana al. (2001). We assume that at tintle= t" the approximate point
valueng)?k ~ ¢(Xj, Yk, t") are given, and construct a 2D continuous piecewise-quadratic interpolant,

@(x, y,t"), defined on the cell§jx := {(x, y) : '%ﬁ—“ + 'yjjg—"‘ < 1}. On eat cell Sjk there will be
four such interpolants (labelled NW, NE, SE, and SW), one for each triangle that cons8jutese
Fig. 2). Specific examples @f(x, y, t™) are discussed in Section 3.3.

Similarly to the 1D case, we use the maximal values of the one-sided local speeds of propagation in
the x- andy-directions to estimate the widths of the local Riemann fans. These values at any grid point
(Xj, yk) can be computed as

’

+ . ~ ~ = — |mi = ~
A= max{ Hu@x, v 0.5y v o ajic ‘@jukrl{Hu(gox(x,y,t),goy(x,y,t))}

’

(3.2)

b = @ﬁx{ Hu @06 Y. 0.3y, v ) | L b= ‘ré‘fk” [H@xx v, 0. 00 y. )]

whereCji = [xj_%, xj+%] X [yk_%, yk+%], ()4 := max:,0), (-)_ := min(-, 0), and(Hy, H,)T is
the gradient oH. Note that in order to obtain a monotone scheme in two dimensions, one may need to
use global a priori bounds on some of the derivatives in (3.2) (see Osher & Shu, 1991 for details).

The reconstructiof(x, y, t") is then evolved according to the Hamilton—Jacobi equation (3.1). Due
to the finite speed of propagation, for sufficiently smal,, the solution of (3.1) with initial datg
is smooth aroundx(,, yg,) wherex”, := xj + &}, At, yg, := ¥k + bj; At, see Fig. 2. We denote
Oy ke = P(X]4, Yy, tT), and use the Taylor expansion to calculate the intermediate values at the next
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time levelt = t"1:
@?i’lk:t = (Z?i,ki - At-H @x(X?i, y|r<]iv tn), @y(X?f yl?i’ tn)) + O(At)z- (3-3)

We now project the intermediate vaquaTEQElejE onto the original grid pointgx;, yk). First, similarly to
(2.5), we use new 1D quadratic interpolants in yhéirection,fﬁ(x?i, ., t"*1), to obtain

n+1 nt1
Pitk+ ~ Pjtk— _
PO Yo T =l + Jb—J (ﬁﬁyy)Tilk KD (AD?
+ ka
+
bjk n+1 ka n+1

_ n+l — 2
“bitb, bj—k‘pji,k— + 7ka o Pitks T (‘Pyy)Ji kDb (407, (3.4)

where (@) 1h ~ @y 0L, TRt and § = (W, + Yg)/2. Next, we use the values

1/~/(x51 , Yk, t"t1) to construct another 1D quadratic interpoIaTn(«, vk, t"t1), this time in thex-
direction, whose values at the original grid points are

ot =00, Y, "
+ —

= +a_k1/f(xj_’YK,tn+l)+ﬁ‘ﬁ(XH’Ykatm_l)— <<oxx), aa(An% (3.5)
J ] J J

Here, @00 ~ oxx (X, Yk, t"1) andX] := (x], + x_)/2. We choose@x) " to be the weighted
average

+ —

b
Ml —— (¢ xx)TT(l + b b_ (‘Pxx)l k+v ({P\xx)?j_(i ~ </)xx(5(\?, yi?i’thrl)_ (3.6)

((/’xx)
b, + bii

Notice that both@yy)1}, in (3.4) and@x)' ] in (3.6) are yet to be determined.
We then substltute (3 4) and (3.6) into (3 5), and obtain

1 1 1
o = 2 iy bl i + afbne i +alblielt i
a @y + aj ) (bjy + by
ata; At)2
ILSHL & 1] 4y
s (B @0 + b5 @0t | 5
b b, At
7”( ik +1 ( ) 2
N ajk T aj [ajk(‘pyy)J— kT @)L k] + O(AH~. (3.7)
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Substituting (3.3) into (3.7) yields

S ajkbjk
T @+ ap b+ b

((p?-',-,k{- - At : H ((ZX(X?J,_’ ylr(1+7 tn)7 ay(x?.l,_a yE+5 tn)))

n jkbjk
(ajk + ajk)(b + b]k)

(¢?+,k7 - At : H((;’X(X?+s yL?71 tn)’ ay(x?+, y|r(]7, tn)))

a.]k Jk ~ n n ny ~ n n n
+(ak+ak)(b +bk)( —At-H((/)X(Xj_s YK+st ),(py(Xj_,yk_i_,t )))
] ] j
' el (71 s = At H@ O Y M), Gy v t))
(ajk+ajk)(b +bjp) Px(Xj_s Yk Uy Oy (X, Vi
— (At)?
bjﬂ [ ((Pxx) + b]k(¢XX)TIi] T
D (At)2
_m [alk(‘/’yy)J_ kT a]k(‘Pyy)Tilk] + O(At)z (3.8)
J J

The value.o,’oﬁ?i’kjE are computed by the Taylor expansions:
(pj:I: k+ — 901 k + Ata k‘/’x + Atb k‘Py + O(At)za (3.9)

wheregf = gx(x; £ 0, yk, t") and go?,: = @y(Xj, Yk £ 0,t") are the corresponding right and left
derivatives of the continuous piecewise quadratic reconstruction ak).
Next, substituting (3.9) into (3.8) gives

bjkb]k At

(o — ¢ )+At7(¢ —¥y) —
jk ]k g g b Y Y (ajk+a]k)(b +bjk)

[ B H @x (X vy 1), By Oy 11 ))+akb H(@x (X}, Yie— 1), Gy (X[, Vi, th)

Jkalk

1
(P?;r —(PJk+ At

+ali b H @x O Y, t, @y (X, Yy, th) + ai b H (@, v, t), @y (<, Wi, t”))]

CHEM 17 (Av?
ﬁ[b+k(§0xx) L+ D@0l 5
b b, At
— el Jk‘ [ajk(ﬁﬁyy)J_ k+ajk(§0yy)Tilk] (an? +O(AD?. (3.10)

+ —
aj + Ak
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Finally, the limit At — O generates a family of 2Bemi-discrete central-upwind schemes:

4t = _ bR ¢y) + by H((px,(py)—i—a kaH(‘pX’ vy) +ajbiH ey ¢y)
ik(t) =
aia, bt b7
1kTik + - jkjk -
+aj+k+ajk((px wx)+4b +b]k(‘/)y (py>
ﬂ bik lim {At(w )”*l}+ P jim {At(a )n+1}
bji + by | 2 At=o “ At—0 XX j ket
b- b3 a-+ a:.
S LS L S R LT Gt LT ~ \n+l
o+ [ 2 Amo | At@ T+ 5 A'L”:o{vay)H,k}]- .11

We still need to speC|fy(<pXX)J kt and (<pyy)’J‘Ilk If they are proportional t6A(px))"*1/Ax and to
(A(py))"1/ Ay respectively, then

. 1 ; 1
Jmo[4t@eofid} =0, tm {ar@miti] =o

and we obtain the original 2D central- upwind scheme from Kurgabal. (2001). However, similarly
t_o t_he _1D case, we can chooé{@x)J i and(goyy)Ji « to be proportional to AAt, so that the above
limit will not vanish. For example, one can use the minmod limiter:

((‘pX)H- k£ ¢X (s(\n ykia tn+1) ¢X (S(\n YEi, tn+l) - (‘pX)Ti_lki
+
ajy +ajy ajy + ajy

At ((pXX)J ki = 2minmod

), (3.12)

At(goyy)]i k = 2minmod

)

((@‘y)?;lk+ — Py, T D Py (X, B —(goy)Tilk) (3.13)

b, K+ Dji b k 0y
where (@071 = GO WRe ™) and @) = Gy(xL. e ™). The values of the
derivativegy in (3.12) are given by
n+1 n+1
~ Dit ke — P
0y, ) = ”—’, 3.14
PG Vi 1) = (@ + a5 ) At (3.14)

and after using (3.3) and (3.9), we obtain
H ((pX(XJ+’ ykj:’ n) @y(XH_, yki7 n)) - H(JX(Xn_v y||2:|:7 tn)’ a)'(xn_, yl?iv tn))
@ + a5,

(EX(S(\?, yl?i5 tn+1) = -

al oy +aex
X KX 4 ocav. (3.15)
(ajk+ajk)

Since the data are smooth along the line segn(ea’-i&s Yoo, b, th <t < t™ itisclear that

1
Mim (<px)Ti ke = 05 Jim (<px),_ ket = @x- JIm (wy),i ke =9y Jim (‘Py)li ke =9y -

(3.16)
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Therefore using (3.12), (3.16), and (3.15), we obtain

Jim_ {At(@x)?jii} = @TTZ@‘;D miﬂmod(wi — Nt gints _ ) : (3.17)
where
ints ._ Akex Taex  Hd 9)) - H(wx‘,wyi). (3.18)
X @jy +ap) @ +aj)
Likewise, using (3.13), we obtain
Jlim {At(ayy)?i}k} - m minmod(go;{ — Nt int: _ w;) : (3.19)
where
inte . Doy TPy H@E o)) — Hil vp) (3.20)

Yo b+ b5 (bjy +bj)
Finally, we substitute (3.17) and (3.19) into (3.11). The resulting sei-discrete central-upwind
schemeis
b H @ o) + ajbiH (@, oy) + &b Hex, o) +ajibfi H (e ¢y)
(a;fk + aj—k)(b;“k +bp)

at I =

_ + int— int— _
P bl g — oMt N — o
+aj @ | — = — minmo - —, —
aj +ap b+ by aj tap  aj+ay
bT + _ _int+ _int+ _ -

—%k, minmo{‘/’er ‘Px7 ’ Q"x+ i"x ):|

bjk+bjk ajy+ay A t+aj
+ - + + _ int— _int— _ —
e | Oy Ty Bk : Py —%y Yy Py
+bj by | - - — minmo - —, — —
as + _ int+ int+ _—

—%ki minm0E<¢y+ (py7 y (py+ wy) . (321)

Here,<p)i(nti and<p§,mjE are given by (3.18) and (3.20), respectively; the one-sided local smﬁﬁdmd
bjik, are given by (3.2); and formulae fog" and<p§t are discussed in Section 3.3 below.

Remark. In practice, for convex Hamiltoniand the one-sided local speeds are computed as
ai = max{Hy (¢, 05 ) .0}, ajy = ‘ min { Hx (¢, ¢5°) . 0]

+ + — H + +
b}"kzmiaX{Hy(q)X,(py),O}, bjkz‘mln{Hy((pX,(py),O}

where the maximum and minimum are taken over all the possible permutatigns of

)

(3.22)

)
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3.2 Athree-dimensional scheme

We consider the three-dimensional (3D) Hamilton—Jacobi equation,

¢t + H(ox, oy, 02) = 0.

We use the maximal values of the one-sided local speeds of propaga‘ﬁprbfkl, andc]?—Lkl, in the x-,
y- and z-directions, respectively. These values at any grid poit y«, z) are given by the obvious
generalizations of (3.2) and

Clhy + = max{ Hy(@x(X, Y, Z, 1), §y(X, ¥, 2, ), G2(X, ¥, Z, D) |
! Ciu +

C;k| L= ‘r(r:-“k? { Hw(ax(xa yﬂ Z? t)7 5}/()(5 y5 Z7 t)5 az(xa y5 Z7 t))] ' )
i -
whgregm = [xj_%, xjf%] X [yk_%., yk+%]><, [z|__%, z|+%]. Ergceeding as in two dimensions, the 3D
semi-discrete central-upwind scheme is (suppressing the indicgsk, I)

d@ _ 1 Z [aibiCiH((p):(F’ go;F’ (p;:):l
+

dt (@t +a )bt +b)(ct+c)

ata~ bTh~ (

LA () ctec™
arta- x b+ + b~

ct+c~
1 + 54— + +,n2 (11
_ b D2p)"
(a++a)(b++b><c++c){a > [7*c 0% i<

+bTh~ Z I:aici(Di(p)r.H'l :I +cte™ Z Iiaibi(Dggp)?;}kjFJ] }, (3.23)
+ +

oy — oy ) + (07 —¢2)

iFTkIF

where the summations are taken over all possible permutatiohsinfl—. For example, in the first sum
a*b~c* should be multiplied byH (g5, ¢5, ¢7 ). In (3.23), we use the notation

2 n+1 . i i _
(Dx‘p)j,k:l:,lj: = m"'“de(‘l);r - (‘P;(nt)j,kd:,ljzs (¢;<nt)j,kj:,|:|: — ¥x ) ’

2 \n+1 + int int _
(DY) s iz 1= m'”mOd(‘Py — @) e @y ) e ‘/’y) ’
n+1 . i ; _
(D20)j1pey i = m'and(fﬂ; — @) ket BT jaa) — 97 ) ;
where
(gimy. _atefrargr H@O ¢y e — Hie oy ¢7)
X J,k:l:,l:l: ° (a+ + a_) (a+ + a_) 9
N CLE ) (bt +b") ’
: ctot +c gy HE of. o) — Hief, oF. 07)
@)Lk = L Yz _ X'y e X'y el

(ct+c¢) (ct+c¢)
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3.3 Multidimensional interpolants

The schemes developed in Sections 3.1 and 3.2 require a multidimensional non-oscillatory reconstruc-
tion. The simplest option is to use straightforward multidimensional extensions of the 1D interpolants
from Sections 2.2 and 2.3, obtained via a ‘dimension-by-dimension’ approach.

For example, a 2D non-oscillatory second-order central-upwind scheme is given by (3.21) with

n n
L (Aﬁﬂ)ji%,k AX N L (A(p)j,ki% Ay )
¥x _T:F7(¢XX)j+%,k’ Py —Tq:?@yy)j,m_%,
n . n n B N
Pxx j+%ak - (AX)Z ) Z(Ax)z R
n n
Q) 3~ (Do) 4
(Ax)2 ’
n _ n n . n
(pyy)", 1 =minmod Q(AW)j*k“L% (A(p)i,k+% (A(p)j,k+g (A‘p)j,k_%
ikt (A%)2 ’ 2(Ax)2 ’

(A9)f 1~ (Do)

jk—3

o (Ax)2 ’

wheref € [1, 2], and the minmod function is given by (2.12). Similarly, the corresponding ‘dimension-
by-dimension’ 2D extensions of the WENO interpolants from Section 2.3 can be used to reconstruct the
derivatives in (3.18), (3.20), and (3.21). For more details see Bryson & Levy (2003d).

4. Numerical examples

In this section, we test the performance of the new semi-discrete central-upwind schemes on a variety of
numerical examples. We compare the methods developed in this paper, labelled BKLP, with the second-
order scheme from Kurganaat al. (2001) and the fifth-order scheme from Bryson & Levy (2003d),
both of which are referred to as KNP. Our results demonstrate that the BKLP schemes achieve a better
resolution of singularities in comparison with the corresponding KNP schemes.

Note that in regions where the solution is sufficiently smoatha~ andb*b~ are either equal to
zero or very small (for smooth Hamiltonians and sufficiently sradland Ay). Hence, the BKLP and
KNP schemes of the same order will be almost identical in these areas, and thus there will be practically
no difference in the resolution of smooth solutions. We therefore only examine results after the formation
of singularities, for whicla*ta~ and/orb*b~ may be large.

The ODE solver that was used in all our simulations is the fourth-order strong stability preserving
Runge—Kutta method (SSP-RK) of Gottlieb al. (2001). Assuming an ODE of the forr&w =
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—H (V) and initial datap", the fourth-order SSP-RK method is

(p(l) =" — %AtH (ng)") ,

0% = 1e06¢" * 2193606 (V) * g0~ 7z tH (Vo).

0 = 5500008 * 5000006 (") * 20000008 4
2000 (7)™ oo (7))

o= ég’n N EAtH (Ve") + 3?00200 Ve AtH (V (l)) + 37080750 ”

+ %go(g’) - éAtH (w@)) .

The intermediate values of the gradient that are required at every stage of the RK method (4.1) are
computed using WENO reconstructions.

4.1 One-dimensional problems

A convex Hamiltonian. Wefirst test the performance of our schemes for the Hamilton—Jacobi equation
with a convex Hamiltonian:

1
ot (o + 1)? =0, (4.2)

subject to the periodic initial data(x, 0) = — cogx X). The change of variablas(x, t) = gx (X,t) +1
transforms the equation into the Burgers equatips % (uz)x = 0, which can be easily solved via the
method of characteristics. The solution develops a singularity in the form of a discontinuous derivative
attimet = 1/72.

The computed solutions &t = 2.5/72 (after the singularity formation) are shown in Figure 3, where
the second- and fifth-order BKLP and KNP schemes are compared. There is a significant improvement
in the resolution of the singularity for the BKLP schemes compared with the KNP schemes. The second-
order BKLP scheme has a smaller error at the singularity than the fifth-order KNP scheme, while the
fifth-order BKLP scheme has the smallest error. In Table 1 we show the relatiand L ®-errors.

A non-convex Hamiltonian. In this example, we compute the solution of the 1D Hamilton—Jacobi
equation with a non-convex Hamiltonian:

¢t —cos(px +1) =0, (4.3)

subject to the periodic initial data (x,0) = — cos(rx). This initial-value problem has a smooth
solution fort < 1.049/72, after which a singularity forms. A second singularity forms at 1.29/72.

The solutions at timd = 2/72, computed withN = 100, are shown in Fig. 4, with a close-up of

the singularities in Fig. 5. The convergence results after the singularity formation are given in Table 2.
In this example, the local speeds of propagation were estimated by (2.2). The results are similar to the
convex case, though the improvement here is somewhat less dramatic.
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convex example, N=100 at t=2-54¢ closeup: convex example, N=100 at t=2-5/¢
[e % 0.25 - - - -

0-245 \ -

0-24 -

0-235

0-23 -

0-225
o o-5 a1 1-5 2 1-24 1-245 1-25 1-255 1-26 1-265

x x

FiIG. 3. Problem (4.2). Left: the solution. Right: a close-up of the solution near the singubarisecond-order KNP; o: second-
order BKLP,A: fifth-order KNP,x: fifth-order BKLP. The exact solution is the dashed line.

TABLE 1 Problem (4.2). Relative L1- and L>-errors for the KNP and

BKLP schemes
Convex exampler + 3 (px + )% =0
second-order after singularity = 2-5/712
relative L 1-error relativel. *°-error
N KNP BKLP KNP BKLP

100 343x 104 294x 104 176x 1004 1.29x 10°%
200 457x107° 410x10°° 7.00x 106 1.96x 1076
400 215x107° 185x10°° 118x 107> 885x 1076
800 287x10% 255x10°° 4.38x 1077 1.47x 1077

fifth-order after singularityT = 2.5/ 2
relative L 1-error relativel *°-error
N KNP BKLP KNP BKLP
100 150x 1004 1.13x 1074 146x 1004 1.10x 1074
200 233x106 995x 1077 156x 106 342x 1077
400 939x 108 7.08x 1076 9.33x 108 7.02x10°8
800 113x 107 394x10°8 754x 1078 1.41x 1078

Next, we examine the convergence of the numerical solutions of (4.2) and (4.3), computed by the
fifth-order BKLP and KNP schemes. These results, together with the fifth-order methods from Jiang &
Peng (2000) and Bryson & Levy (2003c), are shown in Fig. 6. The reader may note that the convergence
rates in these examples are erratic. However, this investigation of the rélatamors for many different
grid spacings shows that the behaviour is due to super-convergence at some grid spacings. Notice that
for all grid spacings thé 1-error of the BKLP method is less than the others.
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non-convex example, N=100 to t=2-0/1¢
T T T T T

FIG. 4. Problem (4.3): the KNP and BKLP numerical solutions.

closeup: non—convex example, N=100 to t=2-0/7 closeup: non—convex example, N=100 to t=2-0/F
1-08 T T T T —0-84 T T

—0-845
1-075 |- —

—0-85
—0-855
1-07 |-

—0-86
S- 1-065 — S- —0-865

—0-87

1-06 |-

—0-875

—o-88 | E
1-055

—0-885 1

1.05 " " " " _o.89 " "
1-08 1-09 -1 1-11 1-12 1-13 0-24 0-25 0-26 0-27
x x

FIG.5. Problem (4.3). Right: the singularity near = 0-25. Left: the singularity neak = 1.11. x: second-order KNP, o:
second-order BKLPA: fifth-order KNP,x: fifth-order BKLP. The exact solution is the dashed line.

4.2 Two-dimensional problems

In this section, we test the 2D BKLP schemes on Hamilton—Jacobi equations with convex and non-
convex Hamiltonians. We start with the convex problem (compare with (4.2))

1 2
ot + > (‘Px + oy + 1) =0, (4.4)

which can be reduced to a 1D problem via the coordinate transformation

(5)=(3% 22)(5)

The relativeL1- and L*-errors for the periodic initial data (x,y,0) = —cos(z(X+Y)/2) =
— cos(&) after the singularity formation & = 2.5/72 are shown in Table 3. The results show that
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TABLE 2 Problem (4.3). Relative L1- and L>°-errors for the KNP and
BKLP schemes

Non-convex examplet — cos(gx +1) =0
second-order after singularify = 2.0/ 2

relative L 1-error relativeL >°-error
N KNP BKLP KNP BKLP
100 559x 104 497x 1074 175x 1004 122x 1074
200 952x 1075 952x 10°° 447x 10°% 411x 1076
400 240x 1075 240x 1073 206x 108 157x10°6
800 602x10% 602x 1076 6:30x 1077 3.09x 10~/
fifth-order after singularityl = 2-0/7r2
relativeL 1-error relativel *°-error
N KNP BKLP KNP BKLP
100 148x 104 991x 10°° 125x 1004 817x 107>
200 849x 108 582x 1078 135x 1077 888x 108
400 789x10°9 6.60x 1079 821x 107 548x 1077

800 663x10°10 513x 10710 2.25x 1077 7.77x 1078

convex H, T=2.5/¢

non convex H, T=2-0/¢

relatve L -error

10

1

107 10° 10* 10" 107 10°

number of points number of points

a

10

FIG. 6. Convergence of the 1D examples. Left: problem (412)= 2-5/n2. Right: problem (4.3)T = 2~O/n2. +: fifth-order
BKLP, A: fifth-order KNP,o: the fifth-order method from Jiang & Peng (2000), The solid lines show example rates of convergence.

while the order of accuracy of the new (reduced dissipation) method does not change, the Irélative

and L*°-errors are smaller with the new method (when compared with the results obtained with the

method of Kurganoet al., 2001).
In Table 4, we present similar results for the non-convex problem (compare with (4.3))

@t —cos(px + gy +1) =0,

(4.5)

with the periodic initial data (x, y, 0) = — cos(z (X + y)/2). Smilarly to the convex case, also with
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TABLE 3 Problem (4.4). Relative L1- and L>°-errors for the 2D KNP
and BKLP schemes

2D convex example
second-order after singularily = 2.5/72
relative L 1-error relativel *°-error
N KNP BKLP KNP BKLP
50 731x107% 7.26x107°% 213x 10°% 223x10°°
100 327x 1074 2.99x 1074 158x 1076 1.30x 1076
200 437x107° 412x10°° 234x 108 9.87x10°°

fifth-order after singularityT = 2.5/ 2
relativeL 1-error relativeL *°-error
N KNP BKLP KNP BKLP
50 601x 10™° 4.39x 1074 379%x 107 160x 107
100 1.40x 1074 1.19x 1074 133x106 111x10°6
200 198x 106 1.23x10°6 597x 1079 258x 1079

TABLE 4 Problem (4.5). Relative L1- and L>-errors for the 2D KNP
and BKLP schemes.

2D non-convex example
second-order after singulariy = 2-0/72

relativeL -error relativeL *°-error
N KNP BKLP KNP BKLP
50 184x10° 1.75x 103 511x 10® 366x10°°
100 586x 1074 548x 1074 150x 106  1.21x 1076
200 114x 104 113x10°4 215x 108 2.04x 1078
fifth-order after singularityl = 2~O/712
relativeL 1-error relativel *°-error
N KNP BKLP KNP BKLP
50 179x 104 144x10°% 681lx 107/ 680x 107
100 1.14x 1074 897x 107° 102x 1076  7.82x 1077

200 442x 107 432x 1077 565x 10710  4.18x 10710

the non-convex problem we observe relativle and L>°-errors that are smaller with the new method
than the errors that are obtained with the method of Kurgahek (2001).
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Appendix A. Proof of Theorem 2.1

Proof. First, we fixu~ and show thatH BK-P(u, u~) given by (2.22) is a non-increasing functionwof
(the proof thatH BXLP is a non-decreasing function of its second argument is similar). We denote

H(u) — H_(u’)’ u£u,
Q) := u-u (A1)
H (u™), u=u-,
and 1
AW =3 (@ (W) —a~ W),

wherea™t (u) = max{H’(u), H’(u™), 0} anda~(u) = | min{H’(u), H’(u™), 0}|, and denote by, Uy,
V1, V2, the sets

Up:=Ug(u") ={u: Q) — A(uw) <0}, Uz:=Uzu") ={u: Q) — A(u) >0}, (A.2)

Vii=Viu7) ={u: Q) — A) <0}, Vz:=Vz2u7) ={u: Q) — A() > 0}. (A-3)

Both U1 andV; are open setgJ and A are continuous) and as such can be represented as a union of at
most countably many disjoint open intervajsand J;, respectively, i.e.

Ur=U2l) and Vo= U, (A.4)
In the new notation it is easy to verify that the Hamiltonid§X " can be written as

kLp HEKLP(u,u™), ueUy,
H u,u) = (A.5)
HEKLP(u,u™), ueU,,

or as

HEKLP(u,u™), uewvy,
HBKLP (. u™) = (A.6)
HEKEP U um), ue W,

where

a_(WHUH +a*wHu?)  af(wa
at(u +a(u at(u)+a(u

at(wa(u) _ _
- A7
(a+(u)+a_(u))2(u u) [Qu +a~ W], (A7)

HlBKLP(u’ uT) =

u—-u)

and
a_(WHUH +a*wHu?)  afwa
at(u) +a(u) at(u)+a (u)

at(wa (u) o
@ a2 U ) [t (w - Q. (A.8)

HEKLP (u,u7) =

(u—-u

+
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Notice that for thosel for which Q(u) = A(u), we have that HEXLP(u, u™) = HBXLP(u, u™), and
thereforeH BKLP (. u~) is a well defined function consisting of the piedd&X-P(,u™),i = 1,2.
We will use formulae (A.5) and (A.6) and continuity arguments to show #&K-P (., u~) is a non-
increasing function on the whole real line.

Consider the point* such thatH’(u*) = 0 (see assumption (A1)). ThedBX-Pu,u™),i = 1,2,
are continuously differentiable on the intervélsoco, min(u—, u*)), (min(u—, u*), maxu—, u*)), and
(max(u—, u*), co) (in the casai~ = u*, on the first and third interval only) and continuousRn

CASE 1. Letu e (—oo, min(u—, u*)). Then% (a*(w) = 0sincea™(u) = max{H’(u), H'(u™), 0}
andH’ is a non-decreasing function of In this case we have

d /oBKLP,, o) _ 2@ (W)aT(watuu—u’)
du (H2 (. u )> = @) +a-(u)3
@ upP@tW - H'W)
(@t (u) +a=(u))?

[a" (W) — Q)]

Note that there exists € (u, u™) such that

H(u) — Hu~
Q(u) := % =H'(¢) <H'@u) <af(,

a~ is a smooth non-increasing function ¢r oo, min(u=—, u*)), at(u) > 0,a=(u) > 0, H'(u) <
at(u), and therefore the derivativ (HEXP(u, u™)) < 0. HenceHLKLP (u, u™) is non-increasing
on (—oo, min(u—, u*)).

Similarly, foru € (—oo, min(u—, u*)) we have

d /oekip, o) 2@ @)@t u)iu—u) B
q (P Pwun) = @Wra e W= AW]
_a (watw@tw -Hw)  a (WwH'u

(at(u) +a-(u)? at(u +a (u’ (A.9)

Now we fix j and consider the corresponding open interlaln (—oo, min(u=, u*)) (see (A.4)
and representation (A.5)). As abowe, is a smooth non-increasing function ¢roo, min(u—, u*)),
at(u) > 0,a (u) > 0. Oneachj, Q(u) < A(u), and therefore the first term on the right-hand side
(RHS) of (A.9)< 0. The second term is non-positive sirece(u) > H’(u). The last term is< 0 because
H'(u) < 0foru e (—oo, min(u~, u*)). This proves thaH£X-P(u, u™) is a non-increasing function
ofuonlj N (—oo, min(u—, u*)), for everyj.

CASE 2. Letu € (min(u—, u*), maxu~—, u*)). In this case the derivatives alé% (@*(w) = 0 and
8 (a=(u) = 0. Therefore

d /o Bkip,, ) @ )@t —H'W) , + :
N (H2 (U, u )> =~ W W) <0, since at(u) = H'(u),

which shows thatd 2K P (., u™) is non-increasing ommin(u~, u*), maxu—, u*)). Likewise

% (HlBKLP(u’ u*)) _

_a (watw@ w-—Hw) a WwH'u
(@t u) +a(u)? at(u+a - (u
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The first term on the RHS is 0sincea™ (u) > H’(u). Asfor the second term, we have two possibilities.
If U= < u < u*thenH’(u) < 0, which will make the whole terng 0. If u* < u < u—,thena=(u) =0
and the second term is 0. Therefore, the derivativel§-" is < 0, and thusHEX P (-, u™) is non-
increasing on(min(u™, u*), max(u—, u*)), and in particular orl; N (min(u~, u*), maxu~, u*)) for
ewery j.

CasE 3a.Let u* < u~™ < u. Thena“(u) = 0 and thereforeHBXLP = HBKLP(y y=) =
HEKLP (u, u™) = H(u™). In particular, HEX P is a non-increasing function au—, co), andHEXLP

is a non-increasing function di N (U™, oo), for everyj.

Combining the results from Cases 1, 2 and 3a, we obtairH#t-P is non-increasing on the whole
real line (since it is continuous dR and non-increasing on each of the intervalso, min(u—, u*)),
(min(u~, u*), maxu—, u*)), and(maxu~, u*), c0)), andH£X-P is a non-increasing function on every
open interval j from U; (same reasoning). Siné¢2K P (u, u=) = HEXLP(u, u™) for u e a1; it will
follow from (A.5) thatH BKLP (. u™) is non-increasing on the whole real line.

CasE 3b. Letu™ < u* < u. Inthis case we will utilize representation (A.6) fBrBXLP and, using the
results from Cases 1 and 2, we will show thb#X P is a non-increasing function on the interyal b]
for anya andb, and therefore on the whole real line.

Notice that in this cas®¥; = S (u, u™), and then, by assumption (A2); N [a, b] is either empty
or a finite number of points and/or a finite union of closed interZal$\ote also that we have

(u*, 00) N [a, b] = U2,y [Jj N (u*, 00)N[a, b]]UU Tk, forsome m. (A.10)

Foru e (u*, oo) we have tha{f—u (@~ (w) = 0, and hence

) [Q) — A(w)] —

d (HEKEP(u,u) = 2@ W)@ W)Au—u- (@ (W)@t ) — H'w)
2 ’ B @+ (u) +a(u)3 (a+(u) +a(u))2

du

As in Case 1, we fixj and consider this time the corresponding intedah (u*, co). Sincea™ is a
smooth non-decreasing function @n*, oo) and Q(u) > A(u) on Jj, the first term in the RHSC 0.
Also a*(u) > H’(u) and hence the second term is aks00. This gives thatH2XLPwu, u) is a
non-increasing function af on J; N (u*, co) for everyj.

Whenu~ < u* < u,a’(u) = H’(u),a"(u) = —H’(u™), and hence
d /. BkLp ~) . a (uH(u _
- (Hl (u, u )) = arw st U, (A.11)

whereG(u, u™) is given by (2.20). Sincél’(u) > 0 for u > u*, conditions (2.20)—(2.21) ensure that
the RHS in (A.11) is< O for u € 7. This shows thaH X (u, u™) is a non-increasing function on
each of the interval§y constitutingVy N [a, b] (if V1 N [a, b] consists of a finite number of points, then
HEKLP = HBKLP at these points).

Since HEXLP(u,u™) = HPKLP(u,u™) on aJ;, all the above arguments and (A.6) prove that
HBKLP is non-increasing oriu*, co). This, together with the conclusion in Cases 1 and 2 and the
continuity of HBXLP(u, u™), i = 1, 2, gives thatH BXLP is non-increasing ofa, b].

Similarly, one proves thaH BXLPwut, u) (whenut is fixed) is a non-decreasing function of the
second argument. Here, in the case corresponding to (A.11) in Case 3b, we have

d

a /I BKLP,, + _atwH'(u n . 4
au (H2 (u ,u))_ (a+(u)+a*(u))3G(u’u ), uUu<u®<u'.
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SinceH’(u) < 0for u < u*, conditions (2.20)—(2.21) guarantee that the derivative is non-negative,
and henceH2XLPu*, u) is a non-decreasing function of on the finite union of closed intervals
Stu,ut) NIa, b]. O



