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We consider approximate solutions to nonlinear hyperbolic conservation laws. If the ex-
act solution is unavailable, the truncation error may be the only quantitative measure for the
quality of the approximation. We propose a new way of estimating the local truncation error,
through the use of localized test-functions. In the convex scalar case, they can be converted
into L∞

loc estimates, following the Lip′ convergence theory developed by Tadmor et al. Com-
parisons between the local truncation error and the L∞

loc-error show remarkably similar be-
havior. Numerical results are presented for the convex scalar case, where the theory is valid,
as well as for nonconvex scalar examples and the Euler equations of gas dynamics. The lo-
cal truncation error has proved a reliable smoothness indicator and has been implemented in
adaptive algorithms in [Karni, Kurganov and Petrova, J. Comput. Phys. 178 (2002) 323–341].
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1. Introduction

We consider the system of one-dimensional hyperbolic conservation laws subject
to the compactly supported (or periodic) initial data,

ut + f (u)x = 0, u(x, t = 0) = u0(x). (1.1)

Such systems arise in many different applications, including fluid mechanics, astro-
physics, meteorology, semiconductors and others – thus, solving (1.1) is of a great prac-
tical importance.

System (1.1) admits the (finite time) formation of shock discontinuities, even for
infinitely smooth initial data. This makes the theory of (1.1) difficult and the design of
numerical methods challenging (a detailed review of a variety of modern methods and
approaches can be found in, e.g., [1,3,6,9]).
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Beyond the time of shock formation, classical solutions cease to exist and the so-
lution of (1.1) is extended as a weak solution in the sense of distributions.

Definition 1.1. u(x, t) is a weak solution of the IVP (1.1) if it satisfies

−
∫ ∞

t=0

∫
X

{
u(x, t)φt (x, t)+f

(
u(x, t)

)
φx(x, t)

}
dx dt+

∫
X

u(x, 0)φ(x, 0) dx = 0 (1.2)

for all test-functions φ(x, t) ∈ C∞
0 (X × [0,∞[).

Weak solutions are not unique and an additional criterion, known as an entropy
condition, is used to select the unique physically relevant solution (see, e.g., [14]).

In this paper, we focus on the problem of measuring local errors in numerical solu-
tions. Since solutions of nonlinear conservation laws are generally nonsmooth, standard
methods of convergence rate analysis, based on the Taylor expansions (see, e.g., [12]),
are invalid. Hitherto, there is no general convergence theory available, even for scalar
hyperbolic conservation law (1.1).

Our work falls within the theoretical framework developed by Tadmor [17]
for general vanishing viscosity approximations to strictly convex scalar conservation
laws (f ′′ � α > 0). In this theory, the errors are measured in the weak Lip′-
norm:∥∥w(x, t)

∥∥
Lip′ := sup

φ∈C∞
0

|(w − w,φ)|
‖φ(x, t)‖Lip

= sup
φ∈C∞

0 : ‖φ(x,t)‖Lip=1

∣∣(w − w,φ)
∣∣, (1.3)

where

w := 1

supp(w)

∫
supp(w)

w(x, t) dx dt, and

∥∥φ(x, t)
∥∥

Lip
:= ess sup

(x,t) �=(y,τ )

|φ(x, t) − φ(y, τ)|
|x − y| + |t − τ | .

Let u�(x, t) be an approximate solution to (1.1), depending on a small parame-
ter �. A method is said to be Lip′-consistent if u�(x, t) satisfies∥∥u�

t + f
(
u�

)
x

∥∥
Lip′ + ∥∥u0(x) − u�(x, 0)

∥∥
Lip′ = O

(
�p

)
, p > 0, (1.4)

where the first term on the left-hand side is the Lip′ truncation error.1

A-priori truncation error analysis, [10,17], shows that in the convex scalar case,
Lip′-consistency together with one-sided stability imply convergence of the approxi-
mate solution to the unique entropy solution of (1.1). This approach was extended in
[10,11] for various approximations including a number of first-order finite difference

1 Throughout this paper, we follow the theoretical framework and notational convention of [10,11,17],
where ‖u�

t + f (u�)x‖Lip′ is referred to as the Lip′ truncation error, while, in fact, it should be referred

to as the Lip′ residual.



S. Karni, A. Kurganov / Error analysis for conservation laws 81

schemes and spectral viscosity approximations. The analogous convergence rate results
for second-order Godunov-type schemes were obtained in [7].

Alternatively, error estimates can be obtained using a-posteriori truncation error
analysis following the approach by Süli [16] developed for the discontinuous Galerkin
finite element method.

In either approach, the rate of convergence, measured in the Lip′-norm, is of the
same order as the Lip′-size of truncation error (provided that the approximation of the
initial condition in (1.4) is sufficiently accurate). Total variation boundedness of the
approximate solution then enables one to convert Lip′ error estimates to both global,
Ws(Lp)-, and local (all the way up to the discontinuity, consult [18,19]) L∞

loc conver-
gence rate estimates. The latter are of particular usefulness in applications.

In the present work, we propose a new method for practical measurement of the
local Lip′ truncation errors by using a basis of locally supported test-functions. Our
particular choice of such test-functions is the localized quadratic B-splines. A global,
compactly supported test-function may then be approximated by means of the local test-
functions, and thus, in the scalar convex case the global Lip′ truncation error can be
obtained from the local ones.

In particular, we show that the local truncation error is of order O(�r+2) away from
discontinuities, and O(�) near shocks, where r is the formal order of accuracy of the
method. This difference of several orders of magnitude between smooth and nonsmooth
regions provides an effective tool for identifying nonsmooth parts of the solution, which
was successfully utilized in scheme and mesh adaption algorithms in [5].

In the case of a system of conservation laws, no rigorous error estimates can be
obtained. However, one may still compute the local Lip′ truncation error and use it as an
error indicator and a tool to identify nonsmooth regions.

The paper is organized as follows. In section 2 we derive the formula for comput-
ing local Lip′ truncation errors. In section 3 we utilize this result to establish the error
estimates for both smooth and nonsmooth solutions. A variety of numerical examples
are presented in section 4.

2. Computation of the local errors

Let (xj := j�x, tn := n�t) be a uniform grid, and un
j be approximate values of

u(xj , t
n), obtained by a conservative method. We denote by u�(x, t) the corresponding

piecewise constant approximation,

u�(x, t) := un
j , if (x, t) ∈ [xj−1/2, xj+1/2] × [

tn−1/2, tn+1/2], (2.1)

where xj±1/2 := xj ± �x/2 and tn±1/2 := tn ± �t/2.
Our goal is to obtain a measure of how good this approximation is by computing

how much it fails to locally satisfy (1.2). To this end, we compute the (x, t)-integral
in (1.2) using locally supported test-functions,

ϕn
j (x, t) = Bj(x)Bn(t). (2.2)
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There are various possible choices of such C1
0 test-functions. In the following derivation,

we have used local quadratic B-splines (see, e.g., [2]). We thus have

Bj(x) :=




1

2

(
x − xj−3/2

�x

)2

, if xj−3/2 � x � xj−1/2,

3

4
−

(
x − xj

�x

)2

, if xj−1/2 � x � xj+1/2,

1

2

(
x − xj+3/2

�x

)2

, if xj+1/2 � x � xj+3/2,

0, otherwise;

(2.3)

Bn(t) :=




1

2

(
t − tn−3/2

�t

)2

, if tn−3/2 � t � tn−1/2,

3

4
−

(
t − tn

�t

)2

, if tn−1/2 � t � tn+1/2,

1

2

(
t − tn+3/2

�t

)2

, if tn+1/2 � t � tn+3/2,

0, otherwise.

(2.4)

We then plug (2.1) and (2.2) into the (x, t)-integral in (1.2). A straightforward
computation yields the weak form of the truncation error,

En
j := −

∫ tn+3/2

tn−3/2

∫ xj+3/2

xj−3/2

{
u�(x, t)

[
ϕn

j (x, t)
]
t
+ f

(
u�(x, t)

)[
ϕn

j (x, t)
]
x

}
dx dt

= 1

12

{[
un+1

j+1 − un−1
j+1 + 4

(
un+1

j − un−1
j

) + un+1
j−1 − un−1

j−1

]
�x

+ [
f

(
un+1

j+1

) − f
(
un+1

j−1

) + 4
(
f

(
un

j+1

) − f
(
un

j−1

)) + f
(
un−1

j+1

) − f
(
un−1

j−1

)]
�t

}
.

(2.5)

Remarks. Given a discrete approximate solution (2.1), the corresponding weak form
of the truncation error En

j can be computed straightforwardly by inserting the values of
{un

j } into (2.5) both for scalar equations and for systems.

3. Error etimates

In this section, we derive error estimates for one-dimensional scalar conservation
laws using the weak local truncation errors En

j , (2.5). Throughout the section, we will
assume that
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(H1). The approximate solution u� is computed by an rth-order stable scheme,2 and
hence it converges toward the exact entropy solution.

Smooth case. We begin by considering the simplest case of the unique, sufficiently
smooth solution of (1.1). Then, the weak form of the truncation error En

j may be esti-
mated using Taylor expansions about (xj , t

n). Let ũ be the exact solution of the modified
equation,

ũt + f ( ũ )x = RHS,

where RHS is O(�r), � := max(�x,�t). The computed solution, {un
j }, is then an

(r + 1)st-order approximation of ũ, and the substitution of ũ into (2.5) gives

En
j = 1

12

{[̃
u
(
xj+1, t

n+1
) − ũ

(
xj+1, t

n−1
) + 4

(̃
u
(
xj , t

n+1
) − ũ

(
xj , t

n−1
))

+ ũ
(
xj−1, t

n+1
) − ũ

(
xj−1, t

n−1
)]

�x + [
f

(̃
u
(
xj+1, t

n+1
)) − f

(̃
u
(
xj−1, t

n+1
))

+ 4
(
f

(̃
u
(
xj+1, t

n
)) − f

(̃
u
(
xj−1, t

n
))) + f

(̃
u
(
xj+1, t

n−1
))

− f
(̃
u
(
xj−1, t

n−1))]�t
} + O

(
�r+2)

= �x�t
[
ũt + f ( ũ )x

] + (�x)3�t

6

[̃
ut + f ( ũ )x

]
xx

+ �x(�t)3

6

[̃
ut + f ( ũ )x

]
t t

+ O
(
�r+2) + O

(
�5) = O

(
�r+2) + O

(
�5). (3.1)

Remarks. Estimate (3.1) indicates that in the smooth case, the weak local truncation
error is dominated by the accuracy of the method, provided that r � 3, that is, the method
is first-, second- or third-order accurate. For higher-order methods, estimate (3.1) is still
valid but will be dominated by the O(�5) term, which is a consequence of the choice of
quadratic B-splines as local test-functions. In this case, different local test-functions (for
example, higher degree B-splines with a larger support) would be needed to reduce the
B-splines approximation error.

Nonsmooth case. Let us now consider the general case of a nonsmooth weak solution.
We assume that the exact solution of (1.1) is piecewise smooth, and that it has finite
number of shocks and rarefaction waves, the case commonly encountered in practice.
We also assume that our approximate solution u� is bounded by the constant depending
only on the initial data.

Consider the IVP (1.1) for 0 � t � T , where T is finite. We split the domain
X × [0, T ] into two parts according to the smoothness of the exact solution: let u(x, t)

be smooth in D1, and let D2 be a unity of small neighborhoods of discontinuity curves
with D1 ⊕ D2 = X × [0, T ], see figure 1.

2 When a smooth solution is considered, it is enough to assume that the scheme is linearly stable (e.g.,
L∞-, L1- or L2-stable). In a generic, nonsmooth case, the lip+-stability [10,11] or, say, the BV-stability
together with the discrete entropy inequality are assumed to be satisfied.
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Figure 1. Smooth and nonsmooth domains.

Throughout the remainder of the section, we will assume that

(H2) The size of domain D2 is O(�), and that outside of D2 the computed solution u�

manifests an order α behavior, namely,

max
D1

∣∣u� − u
∣∣ = O

(
�α

)
, (3.2)

where 0 < α � r.

Remarks. In general, the value of α depends on the order of the discretization scheme r

and on how the domain is split into smooth and nonsmooth regions. Notice that in a
generic case of a “reasonable”, convergent scheme of order r � 1, one may choose D2

to be sufficiently large to ensure α � 1. We also note that for computed shock waves
of width of order O(�), if the domains D1 and D2 are chosen accordingly, one ex-
pects α ≈ r.

We will treat the smooth and nonsmooth regions separately. If the solution is
smooth in the neighborhood of (xj , t

n), we may still use the Taylor expansions, to obtain
the estimate similar to (3.1):∣∣En

j

∣∣ � C�α+2 + O
(
�5

)
, if

(
xj , t

n
) ∈ D1. (3.3)

For the points located near the discontinuities or rarefaction “tips”, we can only
use the boundedness of the solution. Therefore, from (2.5) we obtain,∣∣En

j

∣∣ = O(�), if
(
xj , t

n
) ∈ D2. (3.4)

Next, we need to estimate the Lip′ truncation error in order to establish the Lip′-
consistency of the approximate solution, (1.4). Let φ(x, t) be a C∞

0 (X × [0, T ]) test-
function, such that ‖φ‖Lip = 1. First, note that for the exact solution



S. Karni, A. Kurganov / Error analysis for conservation laws 85

∫ T

t=0

∫
X

(
ut + f (u)x

)
φ dx dt = 0. (3.5)

For an approximate solution, u�(x, t), we use (3.5) and integration by parts to obtain

∫ T

t=0

∫
X

(
u�

t + f
(
u�

)
x

)
φ dx dt =

∫ T

t=0

∫
X

([
u� − u

]
t
+ [

f
(
u�

) − f (u)
]
x

)
φ dx dt

=
∫

X

[
u�(x, 0) − u0(x)

]
φ dx −

∫ T

t=0

∫
X

([
u� − u

]
φt + [

f
(
u�

) − f (u)
]
φx

)
dx dt

=: I − II. (3.6)

The first integral on the right-hand side of (3.6), I , is small provided the approximation
of the initial data is sufficiently accurate. We thus consider integral II, and split the
integration into two contributions – over smooth and nonsmooth parts of the solution,

II =
∫∫

D1

([
u� − u

]
φt + [

f
(
u�

) − f (u)
]
φx

)
dx dt

+
∫∫

D2

([
u� − u

]
φt + [

f
(
u�

) − f (u)
]
φx

)
dx dt =: IIa + IIb. (3.7)

Our goal is to establish bounds on IIa and IIb. To estimate IIa, we interpolate
φ(x, t) together with its derivatives by the localized B-splines, (2.2)–(2.4). For the
quadratic B-splines one has (see, e.g., [2])

φ(x, t) =
∑

j

∑
n

cn
j ϕ

n
j (x, t) + O

(
�3

)
,

φx(x, t) =
∑

j

∑
n

cn
j

∂ϕn
j

∂x
(x, t) + O

(
�2

)
, (3.8)

φt (x, t) =
∑

j

∑
n

cn
j

∂ϕn
j

∂t
(x, t) + O

(
�2

)
,

where cn
j are independent of the grid scale �. Then, using (2.5), (3.2), (3.3) and (3.8)

we may estimate IIa as follows,

|IIa| =
∣∣∣∣∣
∑

j

∑
n

cn
j

∫ tn+3/2

tn−3/2

∫ xj+3/2

xj−3/2

([
u� − u

](
ϕn

j

)
t

+ [
f

(
u�

) − f (u)
](

ϕn
j

)
x

)
dx dt

∣∣∣∣ + O
(
�α+2)

�
∑

j

∑
n

∣∣cn
j

∣∣∣∣En
j

∣∣ + O
(
�α+2). (3.9)
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Using hypothesis (H2), the boundedness of u, φx and φt , and the assumed bound-
edness of u�, we obtain the estimate on IIb:

|IIb| � |D2| · max
(x,t)∈D2

(∣∣u�
∣∣ + |u| + ∣∣f (

u�
)∣∣ + ∣∣f (u)

∣∣) · ‖φ‖Lip = O(�). (3.10)

Finally, we use (3.6), (3.7), (3.9), (3.10), and the definition of the global Lip′-norm, (1.3),
to estimate the Lip′ truncation error,

∥∥u�
t + f

(
u�

)
x

∥∥
Lip′ = sup

‖φ(x,t)‖Lip=1

∣∣∣∣
∫ T

t=0

∫
X

(
u�

t + f
(
u�

)
x

)
φ dx dt

∣∣∣∣
� sup

{cn
j }: ‖φ(x,t)‖Lip=1

[∑
j

∑
n

∣∣cn
j

∣∣∣∣En
j

∣∣] + O
(
�α+2) + O(�)

� sup
{cn

j }: ‖φ(x,t)‖Lip=1

[∑
j

∑
n

∣∣cn
j

∣∣(O
(
�α+2

) + O
(
�5

))] + O(�)

= O
(
N2)(O

(
�α+2) + O

(
�5)) + O(�) = O

(
�α

) + O(�), (3.11)

where N = O(1/�) is the number of grid points.

Remarks. Estimate (3.11) demonstrates that the optimal estimate of the Lip′ truncation
error is limited by the convergence rate in the nonsmooth region, and is of order O(�).
In principle, this limitation can be alleviated only if the shock location is known to better
than O(�) accuracy.

We summarize these results in the following theorem.

Theorem 3.1. Let ϕn
j (x, t) ∈ C1

0 be the set of locally supported B-splines (2.2)–(2.4),
En

j be the weak local truncation error (2.5), and u�(x, t) be an approximate sol-
ution to (1.1) of formal order r � 3, satisfying hypotheses (H1) and (H2), and � :=
max(�x,�t). Then

(i) if the exact solution of (1.1) is smooth∣∣En
j

∣∣ = O
(
�r+2

)
, ∀j, n∥∥u�

t + f
(
u�

)
x

∥∥
Lip′ � O

(
�r

);
(ii) if u(x, t) is nonsmooth∣∣En

j

∣∣= O
(
�α+2

)
, away from discontinuities,∣∣En

j

∣∣= O(�), near discontinuities,∥∥u�
t + f

(
u�

)
x

∥∥
Lip′ = O

(
�α

) + O(�),

where α is the assumed order of accuracy in D1.
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Using the results in [10,11,17] for the convex scalar case with rarefaction-free
initial data, Lip′-consistency (3.11) together with one-sided stability of the numerical
method imply Lip′-convergence of the same order. Note that this technique was devel-
oped for obtaining a-priori error estimates, while our truncation error computation is an
a-posteriori computation.

In the framework of a-posteriori convergence analysis (for example, see [16]), the
error is obtained directly in terms of the a-posteriori truncation error, and no appeal to the
stability of the method is made. Let us denote the a-posteriori discrete Lip+-seminorm
of the approximate solution u�(x, t) by

max
n

∥∥u�
(·, tn)∥∥

lip+ := max
j,n

(
un

j+1 − un
j

�x

)
+

≡ K�. (3.12)

We then obtain the following a-posteriori Lip′ error estimate,∥∥u(·, t) − u�(·, t)∥∥Lip′(X)
� C(K�)� max

j,n

∣∣En
j

∣∣, (3.13)

which is valid with the constant C depending on the discrete lip+-seminorm of the ap-
proximate solution.

Remarks.

1. If the approximate solution is also BV -stable, then the estimate (3.13) can be con-
verted both into a global Ws(Lp) with −1 � s � 1/p, 1 � p � ∞ [10,17], and into
a local L∞

loc error estimates (all the way up to the discontinuity) [18,19].

2. For rarefaction-free initial data, if the approximate solution is lip+-stable then the
constant C(K�) in (3.13) is of order O(1), and the Lip′ convergence rate is of the
same order as the Lip′ truncation error. Otherwise, C(K�) may get very large, and
the estimate (3.13), while still valid, may become totally useless.

4. Numerical results

In this section, we present examples for the convex scalar case, for which the error
estimates in section 3 hold, as well as for the nonconvex scalar case and for systems. We
compute the weak form of the truncation error (2.5) for the first- and second-order Roe-
type upwind schemes [13] and the first-, second- and third-order semi-discrete central
schemes in [8]. Convergence rates in smooth and nonsmooth subregions are checked,
and are generally in excellent agreement with our local convergence theory.

Within the Lip′ convergence theory, Lip′ consistency together with (discrete) Lip+
stability imply global Lip′ convergence, which can then be converted into local L∞

loc
convergence. However, it does not provide a direct relation between the local truncation
error and the local error. In particular, smallness of the local truncation error does not
ensure smallness of the local error, which, in fact, is not obvious [4]. The potential of
the local truncation error as an error indicator is demonstrated by comparison with the
actual pointwise L∞

loc-error (see example 1).
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In the convex scalar case, one unexpected finding is that the local convergence rate
near nonlinear discontinuities is of order O(�), as predicted by the theory, while near lin-
ear discontinuities the order appears to be somewhat larger – between O(�) and O(�2).

While the Lip′ convergence theory and the error estimates in section 3 are not valid
for systems of conservation laws, the weak form of the truncation error (2.5) can still be
computed. In section 4.2, we present an example with the Euler equations of gas dynam-
ics. It is interesting to note, that the convergence rates near the shock and the contact dis-
continuities are in agreement with the nonlinear and linear (section 4.1) scalar examples.

In the following, we use the abbreviations LTE and LE to denote the weak form of
the truncation error, (2.5), and the L∞

loc-error. We also use the notation U1, U2, C1, C2
and C3 for the first-, second- and third-order upwind and central schemes, respectively.

4.1. Scalar equations

Example 1 (Burgers equation). We start with Burgers equation subject to a periodic
boundary conditions, 

ut +
(

u2

2

)
x

= 0, x ∈ [0, 2],
u(x, 0) = sin(πx).

The computations were performed on a sequence of grids with N = 40, 80, 160, 320,
640 and 1280 points. The results are shown at time T = 1, which is beyond the time of
shock formation (t∗ = 1/π ). The local convergence rates are computed over the smooth
subregion x ∈ [0.4, 0.6], and over the entire interval.

Figures 2–4 show the computed solution, LTE and LE, respectively. We note that
the region where the LTE is significantly larger is in good agreement with the shock
location. As predicted by the theory, this region becomes narrower with mesh refine-
ment, and the amplitude of the LTE decays. Convergence rates for the various schemes
are summarized in tables 1–3, and show excellent agreement with the theoretical predic-
tions – O(�) near the shock, and O(�r+2) in the the smooth subregion.

We note that the difference in size of the LTE between the smooth and nonsmooth
regions is of several orders of magnitude – O(�) compared with O(�r+2) – which is

Table 1
Burgers equation – maximal LTE in the smooth subregion [0.4, 0.6].

N U1 Rate U2 Rate C1 Rate C2 Rate C3 Rrate

40 3.905e−06 – 8.132e−07 – 2.105e−05 – 8.430e−07 – 3.967e−07 –
80 4.854e−07 3.01 1.220e−08 6.06 3.156e−07 6.06 1.953e−09 8.75 5.245e−08 2.92

160 6.097e−08 2.99 7.196e−10 4.08 5.105e−08 2.63 1.293e−10 3.92 4.645e−12 13.5
320 7.644e−09 3.00 4.482e−11 4.00 6.925e−09 2.88 8.237e−12 3.97 1.396e−13 5.06
640 9.571e−10 3.00 2.797e−12 4.00 8.960e−10 2.95 5.286e−13 3.96 4.405e−15 4.99

1280 1.197e−10 3.00 1.747e−13 4.00 1.138e−11 2.98 3.330e−14 3.99 1.387e−16 4.99
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(a)

(b)

Figure 2. Solution (a) by 1-order upwind scheme, (b) by 2-order central scheme.

(a)

Figure 3. LTE, (a) 1-order upwind scheme, (b) 2-order central scheme.
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(b)

Figure 3. (Continued).

(a)

(b)

Figure 4. LE, (a) 1-order upwind scheme, (b) 2-order central scheme.
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Table 2
Burgers equation – maximal LE in the smooth subregion [0.4, 0.6].

N U1 Rate U2 Rate C1 Rate C2 Rate C3 Rate

40 1.376e−02 – 1.391e−03 – 1.301e−02 – 7.299e−04 – 3.164e−04 –
80 6.957e−03 0.98 3.465e−04 2.01 5.359e−03 1.28 1.997e−04 1.87 5.829e−05 2.44

160 3.500e−03 0.99 8.684e−05 2.00 3.279e−03 0.71 5.235e−05 1.93 1.463e−06 5.32
320 1.756e−03 1.00 2.170e−05 2.00 1.774e−03 0.89 1.340e−05 1.97 1.858e−07 2.98
640 8.794e−04 1.00 5.420e−06 2.00 9.188e−04 0.95 3.391e−06 1.98 2.342e−08 2.99

1280 4.401e−04 1.00 1.357e−06 2.00 4.672e−04 0.98 8.530e−07 1.99 2.940e−09 2.99

Table 3
Burgers equation – maximal LTE in the entire interval [0, 2].

N U1 Rate U2 Rate C1 Rate C2 Rate C3 Rate

40 1.376e−03 – 1.173e−03 – 3.830e−04 – 7.891e−04 – 7.743e−04 –
80 7.072e−04 0.96 5.714e−04 1.03 2.200e−04 0.80 3.938e−04 1.00 3.825e−04 1.02

160 3.581e−04 0.98 2.811e−04 1.02 1.175e−04 0.90 1.958e−04 1.01 1.778e−04 1.11
320 1.802e−04 0.99 1.398e−04 1.01 6.038e−05 0.96 9.763e−05 1.00 8.356e−05 1.09
640 9.038e−05 1.00 6.971e−05 1.00 3.059e−05 0.98 4.869e−05 1.00 3.808e−05 1.13

1280 4.526e−05 1.00 3.484e−05 1.00 1.539e−05 0.99 2.434e−05 1.00 1.857e−05 1.04

reflected in the size of the LTE in the respective regions (for example, ∼10−4 compared
with ∼10−10, for the second-order schemes with N = 160). This suggest that the LTE
might be a useful tool in identifying regions of large errors and flagging them for mesh
refinement, as supported by the numerical results presented in [5]. We would also like to
point out the excellent agreement between the LTE and the LE (note the different scale).

Figure 5 displays a comparison of the LTE for the aforementioned schemes. We
note that the width of the shock layer decreases with the order of the scheme, which
is clearly reflected by the behavior of the LTE. We also note that the amplitude of the
LTE near the shock is not an indication of the quality of the approximation. In fact, the
magnitude of the LTE may even be larger for higher resolution schemes.

Example 2 (Linear advection equation). We next compute the LTE for the linear advec-
tion equation,

ut + ux = 0, x ∈ [0, 2],
with the discontinuous initial data,

u(x, 0) =
{

2, x < 0.5,
−2, x > 0.5,

and Dirichlet boundary conditions.

The LTE and convergence rates at time T = 1 are summarized in table 4. An
unexpected result is that the LTE converges with the rate between O(�) and O(�2), as
opposed to O(�) in the nonlinear case (see table 3). It is worth noting that this difference
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Figure 5. LTE – comparison of different schemes with N = 80 (zoom).

Table 4
Linear advection equation – maximal LTE.

N U1 Rate U2 Rate C1 Rate C2 Rate C3 Rate

40 3.103e−04 – 2.702e−04 – 1.436e−04 – 9.728e−05 – 1.298e−04 –
80 1.102e−04 1.49 7.032e−05 1.94 3.804e−05 1.92 9.222e−05 0.08 1.726e−05 2.91

160 3.032e−05 1.86 1.936e−05 1.86 9.686e−06 1.97 1.163e−05 2.99 7.968e−06 1.12
320 7.595e−06 2.00 6.708e−06 1.53 2.453e−06 1.98 9.810e−06 0.25 2.976e−06 1.42
640 1.897e−06 2.00 2.463e−06 1.45 6.181e−07 1.99 4.924e−06 0.99 9.598e−07 1.63

1280 4.741e−07 2.00 9.088e−07 1.44 1.554e−07 1.99 1.346e−06 1.87 2.286e−07 2.07

in convergence rates is also observed in the case of the system of Euler equations – O(�)

near a shock, and somewhat larger order of up to O(�2) near a contact discontinuity (see
section 4.2).

Example 3 (Buckley–Leverett equation). In this example, we solve the Riemann prob-
lem for the Buckley–Leverett equation,



ut +
[

u2

u2 + (1 − u)2

(
1 − k(1 − u)2

)]
x

= 0, x ∈ [0, 1],

u(x, 0) =




0, 0 � x < 1 − 1√
2

,

1, 1 − 1√
2

� x � 1,

with gravitation (k = 5) and without gravitation (k = 0).
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(a)

(b)

Figure 6. Buckley–Leverett solution, (a) k = 0, (b) k = 5.

In this nonconvex case, the solution consists of shock-rarefaction (k = 0) or shock-
rarefaction-shock (k = 5) wave configurations. The numerical solutions at time T = 2,
computed by the central schemes C1, C2 and C3 with N = 200 are shown in figure 6.

The corresponding LTEs are displayed in figure 7. As can be observed in these
figures, the LTE clearly identifies all the shock regions, figures 7(a), (b). A zoom at the
corner of the rarefaction wave (figure 7(c)) reveals that the LTE there, while significantly
smaller than at the shock, is still large compared to the smooth regions. The LTE might
thus be useful in identifying sharp rarefaction corners, particularly in high-order schemes
(see also the Euler system in section 4.2).
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(a)

(b)

(c)

Figure 7. Buckley–Leverett, (a) k = 0, LTE; (b) k = 5, LTE; (c) k = 0, LTE – zoom.



S. Karni, A. Kurganov / Error analysis for conservation laws 95

4.2. Euler equations of gas dynamics

In this section, we compute the LTE for the Euler system,

∂

∂t


ρ

m

E


 + ∂

∂x


 m

ρu2 + p

u(E + p)


 = 0, p = (γ − 1) ·

(
E − 1

2
ρu2

)
,

where ρ, u, m = ρu, p and E are the density, velocity, momentum, pressure and total
energy, respectively. The initial data corresponds to the shock-tube problem proposed
by Sod [15],

(ρ, u, p)(x, 0) =
{

(1.000, 0, 1.0), x < 0.5,
(0.125, 0, 0.1), x > 0.5.

(a)

(b)

Figure 8. Density (a) by upwind schemes, (b) by central schemes.
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(a)

(b)

Figure 9. Density LTE (a) by upwind schemes, (b) by central schemes.

The density and the corresponding LTE for N = 200 are displayed at time T =
0.16 in figures 8, 9. The convergence rates of the LTE, measured near the rarefaction
corner, in the smooth part of the rarefaction wave, near the contact discontinuity and
near the shock, are shown in tables 5–8, respectively.

In agreement with the theory, which is restricted for scalar equations, the con-
vergence rate in the smooth subregion appears to be O(�r+2), and only O(�) near the
shock. One can also observe that the convergence rate in the neighborhood of the (linear)
contact wave is between O(�) and O(�2), similarly to the linear advection case.

Again we observe the significant difference in the order of magnitude of the LTE
between the smooth and nonsmooth regions (for example, ∼10−5, ∼10−6∼10−7 and
∼10−9 near the shock, contact, rarefaction corner and smooth regions, respectively, for
the second-order schemes with N = 200).



S. Karni, A. Kurganov / Error analysis for conservation laws 97

Table 5
Euler equation of gas dynamics, maximal density LTE near the rarefaction corner [0.25, 0.35].

N U1 Rate U2 Rate C1 Rate C2 Rate C3 Rate

100 3.931e−06 – 8.478e−07 – 2.173e−06 – 5.912e−07 – 1.385e−07 –
200 7.524e−07 2.39 1.380e−07 2.62 4.302e−07 2.34 8.515e−08 2.80 6.713e−08 1.04
400 1.403e−07 2.42 2.225e−08 2.63 8.334e−08 2.37 5.399e−09 3.98 1.051e−08 2.68
800 2.589e−08 2.44 3.554e−09 2.65 1.585e−08 2.39 2.476e−09 1.12 1.223e−09 3.10

1600 4.706e−09 2.46 5.607e−10 2.66 2.963e−09 2.42 1.236e−09 1.00 6.263e−10 0.97
3200 8.481e−10 2.47 8.861e−11 2.66 5.462e−10 2.44 8.748e−11 3.82 1.392e−10 2.17
6400 1.512e−10 2.48 1.394e−11 2.67 9.960e−11 2.46 2.935e−11 1.58 1.867e−11 2.90

Table 6
Euler equation of gas dynamics, maximal density LTE in the smooth subregion [0.35, 0.45].

N U1 Rate U2 Rate C1 Rate C2 Rate C3 Rate

100 2.389e−06 – 1.818e−07 – 1.694e−06 – 2.037e−08 – 3.371e−08 –
200 3.416e−07 2.81 7.908e−09 4.52 2.467e−07 2.78 1.372e−09 3.89 9.266e−10 5.19
400 4.525e−08 2.92 6.633e−10 3.58 3.503e−08 2.82 9.344e−11 3.88 1.060e−10 3.13
800 5.807e−09 2.96 3.802e−11 4.12 4.909e−09 2.84 6.485e−12 3.85 7.633e−12 3.80

1600 7.403e−10 2.97 2.060e−12 4.21 6.775e−10 2.86 4.393e−13 3.88 2.223e−13 5.10
3200 9.376e−11 2.98 1.156e−13 4.16 9.212e−11 2.88 2.929e−14 3.91 1.047e−14 4.41
6400 1.181e−11 2.99 6.761e−15 4.10 1.236e−11 2.90 1.917e−15 3.93 4.795e−16 4.45

Table 7
Euler equation of gas dynamics, maximal density LTE near the contact discontinuity [0.6, 0.7].

N U1 Rate U2 Rate C1 Rate C2 Rate C3 Rate

100 4.729e−06 – 3.328e−06 – 2.310e−06 – 1.103e−06 – 1.006e−06 –
200 1.155e−06 2.03 1.028e−06 1.70 5.875e−07 1.98 4.295e−07 1.36 5.381e−07 0.90
400 2.899e−07 1.99 2.206e−07 2.22 1.497e−07 1.97 1.793e−07 1.26 1.336e−07 2.01
800 7.285e−08 1.99 8.418e−08 1.39 3.800e−08 1.98 4.689e−08 1.94 2.398e−08 2.48

1600 1.834e−08 1.99 2.629e−08 1.68 9.621e−09 1.98 1.493e−08 1.65 6.426e−09 1.90
3200 4.623e−09 1.99 2.831e−09 3.22 2.425e−09 1.99 6.923e−09 1.11 2.099e−09 1.61
6400 1.163e−09 1.99 1.160e−09 1.29 6.104e−10 1.99 3.074e−09 1.17 5.070e−10 2.05

Table 8
Euler equation of gas dynamics, maximal density LTE in the entire interval [0, 1].

N U1 Rate U2 Rate C1 Rate C2 Rate C3 Rate

100 2.712e−05 – 2.466e−05 – 1.005e−05 – 1.687e−05 – 1.935e−05 –
200 1.395e−05 0.96 1.314e−05 0.91 4.737e−06 1.09 8.793e−06 0.94 1.055e−05 0.88
400 7.354e−06 0.92 7.235e−06 0.86 2.308e−06 1.04 4.541e−06 0.95 5.874e−06 0.84
800 3.904e−06 0.91 4.279e−06 0.76 1.126e−06 1.04 2.208e−06 1.04 2.980e−06 0.98

1600 1.911e−06 1.03 2.289e−06 0.90 5.702e−07 0.98 9.052e−07 1.29 1.120e−06 1.41
3200 9.097e−07 1.07 8.741e−07 1.39 2.872e−07 0.99 5.600e−07 0.69 7.058e−07 0.67
6400 4.814e−07 0.92 4.917e−07 0.83 1.413e−07 1.02 2.836e−07 0.98 3.464e−07 1.03
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