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Central schemes may serve as universal finite-difference methods for solving non-
linear convection–diffusion equations in the sense that they are not tied to the specific
eigenstructure of the problem, and hence can be implemented in a straightforward
manner as black-box solvers for general conservation laws and related equations gov-
erning the spontaneous evolution of large gradient phenomena. The first-order Lax–
Friedrichs scheme (P. D. Lax, 1954) is the forerunner for such central schemes. The
central Nessyahu–Tadmor (NT) scheme (H. Nessyahu and E. Tadmor, 1990) offers
higher resolution while retaining the simplicity of the Riemann-solver-free approach.
The numerical viscosity present in these central schemes is of orderO((1x)2r /1t).
In the convective regime where1t ∼1x, the improved resolution of the NT scheme
and its generalizations is achieved by lowering the amount of numerical viscosity
with increasingr . At the same time, this family of central schemes suffers from
excessive numerical viscosity when a sufficiently small time step is enforced, e.g.,
due to the presence of degenerate diffusion terms.

In this paper we introduce a new family of central schemes which retain the sim-
plicity of being independent of the eigenstructure of the problem, yet which enjoy
a much smaller numerical viscosity (of the corresponding orderO(1x)2r−1)). In
particular, our new central schemes maintain their high-resolution independent of
O(1/1t), and letting1t ↓ 0, they admit a particularly simple semi-discrete formu-
lation. The main idea behind the construction of these central schemes is the use of
more precise information of the local propagation speeds. Beyond these CFL related
speeds, no characteristic information is required. As a second ingredient in their
construction, these central schemes realize the (nonsmooth part of the) approximate
solution in terms of its cell averages integrated over the Riemann fans of varying
size.

The semi-discrete central scheme is then extended to multidimensional problems,
with or without degenerate diffusive terms. Fully discrete versions are obtained with
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Runge–Kutta solvers. We prove that a scalar version of our high-resolution central
scheme is nonoscillatory in the sense of satisfying the total-variation diminishing
property in the one-dimensional case and the maximum principle in two-space di-
mensions. We conclude with a series of numerical examples, considering convex
and nonconvex problems with and without degenerate diffusion, and scalar and sys-
tems of equations in one- and two-space dimensions. Time evolution is carried out
by the third- and fourth-order explicit embedded integration Runge–Kutta methods
recently proposed by A. Medovikov (1998). These numerical studies demonstrate
the remarkable resolution of our new family of central scheme.c© 2000 Academic Press

Key Words:hyperbolic conservation laws; multidimensional systems; degenerate
diffusion; central difference schemes; non-oscillatory time differencing.
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1. INTRODUCTION

During the past few decades there has been an enormous amount of activity related to the
construction of approximate solutions for nonlinear conservation laws,

∂

∂t
u(x, t)+ ∂

∂x
f (u(x, t)) = 0, (1.1)

and for the closely related convection–diffusion equations,

∂

∂t
u(x, t)+ ∂

∂x
f (u(x, t)) = ∂

∂x
Q[u(x, t), ux(x, t)]. (1.2)

Here,u(x, t)= (u1(x, t), . . . ,uN(x, t)) is an N-vector of conserved quantities,f (u) is a
nonlinear convection flux, andQ(u, ux) is a dissipation flux satisfying the (weak) parabol-
icity condition∇sQ(u, s)≥ 0 ∀u, s. In the general multidimensional caseu is anN-vector in
thed-spatial variablesx = (x1, . . . , xd), with the corresponding fluxesf (u)= ( f 1, . . . , f d)

andQ(u,∇xu)= (Q1, . . . , Qd).
These equations are of great practical importance since they govern a variety of physical

phenomena that appear in fluid mechanics, astrophysics, groundwater flow, meterology,
semiconductors, and reactive flows. Convection–diffusion equations (1.2) also arise in two-
phase flow in oil reservoirs, non-Newtonian flows, front propagation, traffic flow, financial
modeling, and several other areas.

In this work we present new second-order central difference approximations to (1.1)
and (1.2). These new schemes can be viewed as modifications of the Nessyahu–Tadmor
(NT) scheme [38]. Our schemes enjoy the major advantages of the central schemes over



HIGH-RESOLUTION CENTRAL SCHEMES 243

the upwind ones: first, no Riemann solvers are involved, and second—as a result of being
Riemann solver free—their realization and generalization for complicated multidimensional
systems (1.1) and (1.2) are considerably simpler than in the upwind case. At the same time,
the new schemes have a smaller amount of numerical viscosity than the original NT scheme,
and unlike other central schemes, they can be written and efficiently integrated in their semi-
discrete form.

We would like to emphasize the importance of semi-discrete formulations for solv-
ing “real,” practical problems associated with multidimensional systems (1.1) and (1.2).
Semi-discrete schemes are especially effective when they combinehigh-resolution, non-
oscillatory spatial discretizationwith high-order, large stepsize ODE solvers for their time
evolution.

The advantage of our semi-discrete scheme is clearly demonstrated later, in Figs. 6.21 and
6.22, where it is compared with the fully discrete NT solution of the degenerate convection–
diffusion equation.

ut + f (u)x =
(

ux√
1+ u2

x

)
x

. (1.3)

This model, recently proposed in [28], describes high-gradient phenomena with possible
discontinuous subshock solutions; consult [12, 28] for details. When the NT scheme is used
to resolve these discontinuities, the computed subshocks are smeared due to the larger nu-
merical dissipation which is accumulated ove the small time steps enforced by the restricted
CFL stability condition,1t ∼ (1x)2. This situation—of excessive numerical dissipation (of
orderO((1x)2r /1t))—is typical for fully discrete central schemes with time steps much
smaller than the convective CFL limitation. Alternatively, our new central scheme will ac-
cumulate less dissipation (of orderO(1x)2r−1) and hence can be efficiently used with time
steps as small as required.

This paper is organized as follows. In Section 2 we provide a brief description of the
central differencing approach for hyperbolic conservation laws.

In Section 3 we introduce our new fully discrete second-order central scheme, which
is constructed for systems of one-dimensional hyperbolic conservation laws. The limiting
case,1t ↓ 0, brings us to the semi-discrete version presented in Subsection 4.1. Here we
prove that our second-order semi-discrete central scheme satisfies the scalar total-variation
diminishing (TVD) property; consult Theorem 4.1 below. In Subsections 4.2 and 4.3 our
semi-discrete scheme is extended, respectively, to one-dimensional convection–diffusion
equations and to multidimensional hyperbolic and (degenerate) parabolic problems.

In Section 5 we return to the fully discrete framework, discussing time discretization
for our semi-discrete central scheme. Specifically, we use efficient Runge–Kutta ODE
solvers to integrate the semi-discrete schemes outlined earlier in Section 4. We retain the
overall Riemann-free simplicity without giving up high resolution. Here we prove that
the resulting second-order fully discrete central scheme satisfies the scalar the maximum
principle; consult Theorem 5.1.

We end in Section 6 by presenting a number of numerical results. These results are
convincing illustrations that our new central schemes provide high resolution at a low-
est cost, when applied both to hyperbolic systems of conservation laws and to a variety
of convection–diffusion models. These numerical results confirm an essential aspect of
the current approach—retaining high-resolutionwithoutthe costly (approximate) Riemann
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solvers, characteritic decompositions, etc. This aspect in the context of high-resolution
schemes was introduced in the Nessyahu–Tadmor scheme [38] and was extended to two-
dimensional problems in [18]. A nonstaggered and hence less dissipative version was pre-
sented in [17]. The relaxation scheme introduced in [19] is closely related to these staggered
central schemes; in fact, they coicide in the relaxation limitε ↓ 0. The choice for a relax-
ationmatrix A in [19] provides us afamilyof high-resolution schemes; we note in passing
that the special scalar choiceA = ρ(∂ f (u)/∂u)I is anO(ε) perturbation of the central
scheme discussed in this paper. Other componentwise approaches were presented in [34].
The CUSP scheme presented in [16] is a semi-discrete scheme which avoids characteristic
decompositions. And more recently, Liu and Osher [35] introduced a semi-discrete scheme
based on a pointwise formulation of ENO which retains high resolution without Riemann
solvers.

2. CENTRAL SCHEMES—A BRIEF OVERVIEW

Central schemes offer universal finite-difference methods for solving hyperbolic con-
servation laws, in the sense that they are not tied up to the specific eigenstructure of the
problem and hence can be implemented in a straightforward manner as a black-box solver
for general systems (1.1). In particular, they do not involve characteristic decomposition of
the flux f . In fact, even computation of the Jacobian off can be avoided; in the particular
case of the second-order NT scheme, for example, numerical derivatives of the flux in (2.6)
below can be implemented componentwise—consult [18, 36].

In 1954 Lax and Friedrichs [10, 29] introduced the first-order stable central scheme, the
celebrated Lax–Friedrichs (LxF) scheme:

un+1
j = un

j+1+ un
j−1

2
− λ

2

[
f
(
un

j+1

)− f
(
un

j−1

)]
. (2.1)

Here,λ :=1t/1x is the fixed mesh ratio, andun
j is an approximate value ofu(x = xj , t =

tn)at the grid point (xj := j1x, tn := n1t). Compared with the canonical first-order upwind
scheme of Godunov [11], the central LxF scheme has the advantage ofsimplicity, since
no (approximate) Riemann solvers, e.g., [42], are involved in its construction. The main
disadvantage of the LxF scheme, however, lies in its large numerical dissipation, which
prevents sharp resolution of shock discontinuities and rarefaction tips.

A natural high-order extension of the LxF scheme—the NT scheme—was presented in
1990 in [38]. The main idea of this generalization is replacing the first-order piecewise
constant solution which is behind the original LxF scheme with van Leer’s MUSCL-type
piecewise-linear second-order approximation, e.g., [31]. This is then combined with aLxF
solver—an alternative to the upwind solvers, which avoids the time-consuming resolution
of Riemann fans by staggered(x, t)-integration. Thus, the NT scheme retains the simplicity
of the Riemann-free LxF framework while gaining high resolution, which eliminates the
disadvantage of excessive first-order dissipation.

Here is a brief readers’ digest based on the representation of the LxF and NT schemes
as Godunov-type schemes. We follow [36, Section 2]. To this end, we utilize the sliding
average ofu(·, t),

ū(x, t) := 1

|Ix|
∫
Ix

u(ξ, t) d ξ, Ix :=
{
ξ : |ξ − x| ≤ 1x

2

}
,
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so that the integration of (1.1) over the rectangleIx × [t, t + 1t ] yields an equivalent
reformulation of the conservation law, (1.1),

ū(x, t +1t)= ū(x, t)− 1

1x

 t+1t∫
τ=t

f

(
u

(
x+ 1x

2
, τ

))
dτ −

t+1t∫
τ=t

f

(
u

(
x−1x

2
, τ

))
dτ

.
(2.2)

We begin by assuming that we have already computed an approximation to the solution at
time levelt = tn—a piecewise linear approximationũ(x, tn)≈ u(x, tn) of the form

ũ(x, tn) :=
∑

j

[
ūn

j + (ux)
n
j (x − xj )

]
1[xj−1/2,xj+1/2], xj ± 1/2 := xj ± 1x

2
. (2.3)

Here,{ūn
j }are the computed cell averages,ūn

j ≈ ū(xj , tn)= ∫Ix j
u(ξ, tn) dξ/1x, and{(ux)

n
j }

are approximations to the exact derivatives,ux(xj , tn). These approximate derivatives are
reconstructedfrom the computed cell averages. The nonoscillatory behavior of the central
schemes hinges on the appropriate choice of approximate derivatives, and there is a library of
recipes for such nonoscillatory reconstructions. A total-variation (TV) stability, a maximum
principle, or a weaker nonoscillatory property of this piecewise-linear approximation (e.g.,
decreasing the number of extrema [36, Section 4]) can be satisfied for a wide variety of
such scalar reconstructions proposed and discussed in [4, 13, 14, 27, 32, 36, 38, 41]. For
example, a scalar TVD reconstruction in (2.3) is obtained via the ubiquitousminmod limiter
[13, 31, 41],

(ux)
n
j = minmod

(
un

j − un
j−1

1x
,

un
j+1− un

j

1x

)
, (2.4)

with minmod(a, b) := 1
2[sgn(a)+ sgn(b)] ·min(|a|, |b|). This is a particular case of a one-

parameter family of limiters outlined in (5.2) below.
We then proceed to solve Eq. (2.2) subject to the piecewise-linear initial data (2.3) depicted

in Fig. 2.1.
The piecewise-linear interpolant,ũ(x, tn), may be discontinuous at points{xj+1/2}. Yet

for sufficiently small1t , the solution of problem (2.2)–(2.3) will remain smooth aroundxj

for t ≤ tn+1t =: tn+1, due to the finite speed of propagation. Hence, if we takeIx to be the
staggered grid cell, [xj , xj+1] (see Fig. 2.1), we can computēu(x, t) on the RHS of (2.2)
exactly, and the flux integrals there can be approximated by the midpoint rule. This results
in the NT scheme [38]

ūn+1
j+1/2 =

ūn
j + ūn

j+1

2
+ 1x

8

(
(ux)

n
j − (ux)

n
j+1

)− λ[ f
(
un+1/2

j+1

)− f
(
un+1/2

j

)]
, (2.5)

where the midpoint values,un+1/2
j , are predicted by Taylor expansion,

un+1/2
j = ūn

j −
1t

2
( fx)

n
j . (2.6)

Thus, we have computed an approximate solution at the next time levelt = tn+1, a solution
which is realized by its (staggered) cell averages,ūn+1

j+1/2.
Extensions of the second order central NT scheme (2.5), (2.6) to higher-order central

schemes can be found in [4, 32, 36]. Multidimensional extensions were introduced in
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FIG. 2.1. Central differencing approach—staggered integration over the local Riemann fan.

[2, 3, 18]. We also would like to mention the corresponding central schemes for incom-
pressible flows in [24–26, 33] and applications to various systems in, e.g., [1, 7, 43]. Thus,
the use of higher-order reconstructions enables us to decrease the numerical dissipation
present in central schemes, and achieve a higher resolution of shocks, rarefactions, and
other spontaneous evolution of large gradient phenomena.

Remarks. 1. Characteristic vs componentwise approach.A key advantage of central
schemes is their simplicity–one avoids here the intricate and time-consuming character-
istic decompositions based on (approximate) Riemann solvers, which are necessary in
high-resolution upwind formulations. For systems of conservation laws, the numerical
derivatives (ux)

n
j can be implemented bycomponentwiseextension of the scalar recipe for

nonoscillatory limiters. Similarly, the predicted values in (2.6) are based on approximate
derivatives of the flux, (fx)

n
j . These values can be computed in terms of the exact Jacobian,

∂ f
∂u (ū

n
j )(ux)

n
j . Alternatively, we can even avoid the use of the computationally expensive

(and sometimes inaccessible) exact Jacobian∂ f
∂u . Instead, the approximate flux derivatives,

( fx)
n
j , are computed in a componentwise manner based on the neighboring discrete values

of f (ū(xj−1, tn)), f (ū(xj , tn)) and f (ū(xj+1, tn)). It was pointed out in [36, 18] that this
Jacobian-free version of the central scheme does not deteriorate its high resolution.

2. Cell averages vs point values.Note that here one realizes the approximate solution
by its cell averages,̄un+1

j+1/2. In general, when dealing with first- and second-order schemes,

the cell averages,̄un+1
j+1/2, can be identified with the corresponding point values,un+1

j+1/2,
modulo a negligible second-order term. We therefore from now on omit the bar notation.
(Consult [4, 36], for example, for this distinction with higher-order central schemes).

3. Second- vs first-order.In the particular case of(ux)
n
j ≡ 0, the second-order NT

scheme is reduced to the staggered form of the first-order LxF scheme. The nonstaggered
version of a second-order central scheme can be found in [17].
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The second-order NT scheme and its extensions owe their superior resolution to the lower
amount of numerical dissipation—considerably lower than in the first-order LxF scheme.
The dissipation present in these central scheme has an amplitude of orderO((1x)2r /1t);
unfortunately, this does not circumvent the difficulties with small time steps which arise, e.g.,
with convection–diffusion equations (1.2). Consider, for example, thedegenerate parabolic
equation (1.3). Stability necessitates small time steps,1t ∼ (1x)2, and the influence of the
numerical dissipation,accumulatedover the many steps of the NT scheme, can be clearly
seen in the smeared subshock computed in Fig. 6.22.

One possible way to overcome this difficulty is to use asemi-discreteformulation: when
a semi-discrete scheme is coupled with an appropriate ODE solver, one ends up with small
numerical viscosity proportional to the vanishing size of the time step1t . But in this context,
the central LxF scheme, NT scheme, and their extensions are of limited use, since these
schemes do not admit asemi-discrete form. To make our point, consider the LxF scheme
(2.1) in its viscous form,

un+1
j − un

j

1t
+ f

(
un

j+1

)− f
(
un

j−1

)
21x

= 1

21t

[(
un

j+1− un
j

)− (un
j − un

j−1

)]
. (2.7)

Passing to the limit1t→ 0 (while leaving1x to be fixed), we get the semi-discrete diver-
gence on the left of (2.7),̇u j (t)+{ f (u j+1(t))− f (u j−1(t))}/21x, which is balanced with
an increasing amount of dissipation on the right∼uxx(1x)2/1t ↑∞, as we refine the time
step1t ↓ 0. In the degenerate viscous case, for example, the CFL restriction1t¿1x is
responsible for the excessive smearing in the LxF scheme. The second-order NT scheme
has a considerably smaller numerical viscosity, with amplitude of orderO((1x)4/1t) away
from extrema cells.1 Nevertheless, the central NT scheme and its higher-order generaliza-
tions do not admit any semi-discrete versions, and hence are inappropriate for small time
step computations or steady-state calculations ast ↑ ∞.

This brings us to the new class of central schemes introduced in this paper. These new
central schemes have smaller numerical dissipation and are the first fully discrete Godunov-
type central schemes that admit a semi-discrete form.

3. THE FULLY DISCRETE SCHEME—ONE-DIMENSIONAL SETUP

The NT scheme is based on averaging over the nonsmooth Riemann fans using spatial
cells of thefixedwidth,1x. The main idea in the construction of our new central schemes
is to use more precise information about thelocal speed of wave propagation, in order to
average the nonsmooth parts of the computed solution over smaller cells of variable size of
orderO(1t). We proceed as follows.

Assume that we have already computed the piecewise-linear solution at time leveltn,
based on the cell averagesun

j , and have reconstructed approximate derivatives(ux)
n
j in (2.3).

We now turn to evolve it in time. To begin with, we estimate the local speed of propagation at
the cell boundaries,xj+1/2: the upper bound (disregarding the direction of the propagation)

1 The first two terms on the right of the NT scheme (2.5) yield for smoothu’s

ūn
j − 2ūn

j+1/2 + ūn
j+1

21t
+ 1x

81t
s(ux)

n
j − (ux)

n
j+1d ∼

(1x)4

1t
uxxxx.
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FIG. 3.2. Modified central differencing.

is denoted byan
j+1/2 and is given by2

an
j+1/2 = max

u∈C(u−j+1/2,u
+
j+1/2)

ρ

(
∂ f

∂u
(u)

)
, (3.1)

whereu+j+1/2 := un
j+1− 1x

2 (ux)
n
j+1 andu−j+1/2 := un

j + 1x
2 (ux)

n
j are the correspondent left

and right intermediate values ofũ(x, tn) atxj+1/2, andC(u−j+1/2, u
+
j+1/2) is a curve in phase

space connectingu−j+1/2 andu+j+1/2 via the Riemann fan.

Remark. In most practical applications, these local maximal speeds can be easily eval-
uated. For example, in the genuinely nonlinear or linearly degenerate case one finds that
(3.1) reduces to

an
j+1/2 := max

{
ρ

(
∂ f

∂u

(
u−j+1/2

))
, ρ

(
∂ f

∂u

(
u+j+1/2

))}
. (3.2)

In fact, the maximal local speeds are related to the already calculated CFL number. We
emphasize that these local speeds are the only additional information required to modify
the NT scheme.

Our new scheme is constructed in two steps. First, we proceed along the lines of the
NT scheme. The NT scheme is based on averaging over the staggered control volumes
[xj , xj+1]× [tn, tn+1] of fixed spatial width1x. Instead, we now use narrower control vol-
umes, where at each time step we integrate over the intervals [xn

j+1/2,l , xn
j+1/2,r ]× [tn, tn+1];

see Fig. 3.2. Due to the finite speed of propagation, the pointsxn
j+1/2,l := xj+1/2−an

j+1/2,1t
and xn

j+1/2,r := xj+1/2+an
j+1/21t separate between smooth and nonsmooth regions, and

2 Let λi (A) be the eigenvalues ofA; then we useρ(A) :=maxi |λi (A)| to denote its spectral radius.



HIGH-RESOLUTION CENTRAL SCHEMES 249

hence the nonsmooth parts of the solution are contained inside these narrower control
volumes of spatial width 2an

j+1/21t .
We proceed with the exact evaluation of the new cell averages attn+1. Let1xj+1/2 :=

xn
j+1/2,r − xn

j+1/2,l denote the width of the Riemann fan which originates atxj+1/2. Exact
computation of the spatial integrals yields

1

1xj+1/2

xn
j+1/2,r∫

xn
j+1/2,l

u(ξ, tn+1) dξ

= 1

1xj+1/2

xn
j+1/2,r∫

xn
j+1/2,l

ũ(ξ, tn) dξ − 1

1xj+1/2

tn+1∫
tn

[
f
(
u
(
xn

j+1/2,r , τ
))− f

(
u
(
xn

j+1/2,l , τ
))]

dτ

= un
j + un

j+1

2
+ 1x − an

j+1/21t

4

(
(ux)

n
j − (ux)

n
j+1

)
− 1

2an
j+1/21t

tn+1∫
tn

[
f
(
u
(
xn

j+1/2,r , τ
))− f

(
u
(
xn

j+1/2,l , τ
))]

dτ. (3.3)

Similarly, let1xj := xn
j+1/2,l − xn

j−1/2,r = 1x −1t (an
j−1/2 + an

j+1/2) denote the width of
strip aroundxj which is free of the neighboring Riemann fans. Then exact integration yields

1

1xj

xn
j+1/2,l∫

xn
j−1/2,r

u(ξ, tn+1) dξ

= 1

1xj

xn
j+1/2,l∫

xn
j−1/2,r

ũ(ξ, tn) dξ − 1

1xj

tn+1∫
tn

[
f
(
u
(
xn

j+1/2,l , τ
))

dτ − f
(
u
(
xn

j−1/2,r , τ
))]

dτ

= un
j +

1t

4

(
an

j−1/2− an
j+1/2

)
(ux)

n
j

− 1

1xj

tn+1∫
tn

[
f
(
u
(
xn

j+1/2,l , τ
))− f

(
u
(
xn

j−1/2,r , τ
))]

dτ. (3.4)

Using the midpoint rule to approximate the flux integrals on the RHS of (3.3) and (3.4), we
conclude with the new cell averages att = tn+1,

wn+1
j+1/2 =

un
j + un

j+1

2
+ 1x − an

j+1/21t

4

(
(ux)

n
j − (ux)

n
j+1

)
− 1

2an
j+1/2

[
f
(
un+1/2

j+1/2,r

)− f
(
un+1/2

j+1/2,l

)]
,

(3.5)

wn+1
j = un

j +
1t

2

(
an

j−1/2− an
j+1/2

)
(ux)

n
j

− λ

1− λ(an
j−1/2+ an

j+1/2

)[ f
(
un+1/2

j+1/2,l

)− f
(
un+1/2

j−1/2,r

)]
.
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Here, the midpoint values are obtained from the corresponding Taylor expansions,

un+1/2
j+1/2,l := un

j+1/2,l −
1t

2
f
(
un

j+1/2,l

)
x, un

j+1/2,l := un
j +1x(ux)

n
j

(
1

2
− λan

j+1/2

)
,

(3.6)

un+1/2
j+1/2,r := un

j+1/2,r −
1t

2
f
(
un

j+1/2,r

)
x
, un

j+1/2,r := un
j+1−1x(ux)

n
j+1

(
1

2
− λan

j+1/2

)
.

Again, if we want to, we can avoid the computation of the Jacobian off while using a
componentwise evaluation offx on the right of (3.6).

At this stage, we realize the solution at time levelt = tn+1 in terms of the approximate cell
averages,wn+1

j+1/2, w
n+1
j . These averages spread over a nonuniform grid which is oversampled

by twice the number of the original cells att = tn. In the second and final step of the
construction of our scheme, weconvertthese nonuniform averages back into the original
grid we started with att = tn, along the lines of the conversion recipe outlined in [17]. As
a by-product of this conversion, we avoid the staggered form of the original NT scheme
(2.5)–(2.6).

To obtain the cell averages over the original grid of the uniform, nonstaggered cells
[xj−1/2, xj+1/2], we consider the piecewise-linear reconstruction over the nonuniform cells
at t = tn+1, and following [17], we project its averages back onto the original uniform grid.
Note that we do not need to reconstruct the average of the smooth portion of the solution,
wn+1

j , as it will be averaged out (consult Fig. 3.2), and hence the required piecewise-linear
approximation takes the form

w̃(x, tn+1) :=
∑

j

{[
wn+1

j+1/2+ (ux)
n+1
j+1/2

(
x − xj+1/2

)]
1[xn

j+1/2,l ,x
n
j+1/2,r ]

+wn+1
j 1[xn

j−1/2,r ,x
n
j+1/2,l ]

}
. (3.7)

Here, the exact spatial derivatives,ux(xj+1/2, tn+1), are approximated by

(ux)
n+1
j+1/2 =

2

1x
·minmod

(
wn+1

j+1 − wn+1
j+1/2

1+ λ(an
j+1/2− an

j+3/2

) , wn+1
j+1/2− wn+1

j

1+ λ(an
j+1/2− an

j−1/2

)) . (3.8)

Finally, the desired cell averages,un+1
j , are obtained by averaging the approximate solution

in (3.7). Ourfully discrete second-ordercentral scheme then recasts into the final form

un+1
j = 1

1x

xj+1/2∫
xj−1/2

w̃(ξ, tn+1) dξ = λan
j−1/2w

n+1
j−1/2+

[
1− λ(an

j−1/2+ an
j+1/2

)]
wn+1

j

+ λan
j+1/2w

n+1
j+1/2+

1x

2

[(
λan

j−1/2

)2
(ux)

n+1
j−1/2−

(
λan

j+1/2

)2
(ux)

n+1
j+1/2

]
, (3.9)

where the intermediate values ofwn+1
j+1/2 andwn+1

j specified in (3.5) are expressed in terms

of the local speed,an
j±1/2, the midvalues,un+1/2

j+1/2,l , u
n+1/2
j+1/2,r , and the reconstructed slopes,

(ux)
n+1
j±1/2, given in (3.2), (3.6), and (3.8), respectively.
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Remarks. 1. Central differencing.The approach taken here can be still viewed as cen-
tral differencing in the sense that the Riemann fans are inside the domain of averaging.
Consequently, since no (approximate) Riemann solvers are involved, we retain one of the
main advantages of the central schemes—simplicity; no Jacobians and charactristic decom-
positions are needed. At the same time, treating smooth and nonsmooth regions separately,
we gain smaller numerical viscosity (independent ofO(1/1t)). In particular, the result-
ing central scheme (3.9), (3.5) admits a semi-discrete form which is discussed in the next
section.

2. Nonoscillatory properties.The exact entropy evolution operator associated with the
scalar equation satisfies the TVD property,‖u(·, t)‖BV ≤ ‖u(·, 0)‖BV. The various ingredi-
ents in the construction of our central scheme retain this TVD property—the nonoscillatory
reconstruction (with appropriate choice of approximate derivatives), exact evolution, and
cell averaging. Thus, theonly ingredient that is potentially oscillatory enters when we use
the midpoint quadrature rule for temporal integration of the fluxes, yet this does not seem
to violate the overall TVD property of our fully discrete central scheme; see, e.g., the TVD
proof of the original NT scheme in [38].

In the particular semi-discrete case (discussed in Section 4 below), the midpoint rule is
“exact,” and the TVD of the semi-discrete version of our scheme follows. A direct proof for
the semi-discrete scalar TVD is outlined in Theorem 4.1 below. Moreover, when this semi-
discrete scheme is coupled with appropriate Runge–Kutta solvers, we arrive at fully discrete,
second-order, central TVD schemes; consult Section 5 below. A maximum principle for
these schemes in two-space dimensions is outlined in Theorem 5.1.

3. Nonstaggered reconstruction.The piecewise linear reconstruction, (3.7), is neces-
sary in order to ensure second-order accuracy, since simple averaging (without reconstruc-
tion) over [xj−1/2, xj+1/2] reduces the order of the resulting scheme to first-order accuracy;
see [17].

4. First-order version.We conclude by commenting on the first-order version of our
scheme. To this end, we set the slopes, both(ux)

n
j and (ux)

n+1
j+1/2, to be zero. Then the

staggered cell averages in (3.5) are reduced to

wn+1
j+1/2 =

un
j + un

j+1

2
− 1

2an
j+1/2

[
f
(
un

j+1

)− f
(
un

j

)]
, wn+1

j = un
j .

Inserting these values into (3.9) yields the first-order scheme, which takes the viscous
form

un+1
j = un

j −
λ

2

[
f
(
un

j+1

)− f
(
un

j−1

)]+ 1

2

[
λan

j+1/2

(
un

j+1− un
j

)− λan
j−1/2

(
un

j − un
j−1

)]
,

(3.10)

wherean
j+1/2 are the maximal local speeds. This scheme was originally attributed to Rusanov

[30]; it is a special case of the family of first-order Godunov-type scheme introduced in [15]
(based on a symmetric approximate Rieman solver) and it coincides with the so-called local
LxF scheme in [45]. It should be noted, however, that although this scheme is similar to the
LxF scheme, (2.7), its numerical viscosity coefficient,Qn

j+1/2 = λan
j+1/2, is always smaller

than the corresponding LxF one,QLxF
j+1/2≡ 1, thanks to the CFL condition. In regions with

a small local speed of propagation (e.g., near the sonic points), the numerical viscosity
present in (3.10) is in fact considerably smaller,1tan

j+1/2¿1x.
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4. THE REDUCTION TO SEMI-DISCRETE FORMULATION

4.1. One-Dimensional Hyperbolic Conservation Laws

We consider the fully discrete second-order central scheme (3.9), (3.5), expressed in
terms of the cell averages,wn+1

j±1/2, w
n+1
j , and the approximate derivates, (ux)

n+1
j±1/2. Observe

that except the original averages,un
j , which participates inwn

j , all the terms on the right of
(3.9), (3.5) are proportional to1t (or λ). Rearranging the divided differences accordingly
while separating the vanishing terms proportional toλ (as1t ↓ 0) we find

un+1
j − un

j

1t

(3.9)

=↓
an

j−1/2

1x
wn+1

j−1/2+
(

1

1x
− an

j−1/2+ an
j+1/2

1x

)
wn+1

j + an
j+1/2

1x
wn+1

j+1/2−
1

1t
un

j +O(λ)

(3.5)

=↓
{

an
j−1/2

21x

(
un

j−1+ un
j

)+ 1

4
an

j−1/2

(
(ux)

n
j−1−(ux)

n
j

) − 1

21x

[
f
(
un+1/2

j−1/2,r

)− f
(
un+1/2

j−1/2,l

)]
−
(
an

j−1/2+ an
j+1/2

)
1x

un
j +

1

2

(
an

j−1/2− an
j+1/2

)
(ux)

n
j −

1

1x

[
f
(
un+1/2

j+1/2,l

)
− f

(
un+1/2

j−1/2,r

)]+ an
j+1/2

21x

(
un

j + un
j+1

)+ 1

4
an

j+1/2

(
(ux)

n
j − (ux)

n
j+1

)
− 1

21x

[
f
(
un+1/2

j+1/2,r

)− f
(
un+1/2

j+1/2,l

)]}+O(λ)
= 1

21x

{
−[( f

(
un+1/2

j+1/2,r

)+ f
(
un+1/2

j+1/2,l

))− ( f
(
un+1/2

j−1/2,r

)+ f
(
un+1/2

j−1/2,l

))]
+ an

j+1/2

1x

[(
un

j+1−
1x

2
(ux)

n
j+1

)
−
(

un
j +

1x

2
(ux)

n
j

)]

− an
j−1/2

1x

[(
un

j −
1x

2
(ux)

x
j

)
−
(

un
j−1+

1x

2
(ux)

n
j−1

)]
.

}
+O(λ).

Note that as1t → 0, the midvalues on the right approach (consult (3.6))

un+1/2
j+1/2,r → u j+1(t)− 1x

2
(ux) j+1(t) =: u+j+1/2(t),

(4.1)

un+1/2
j+1/2,l → u j (t)+ 1x

2
(ux) j (t) =: u−j+1/2(t),

where(ux) j (t) are the numerical derivatives reconstructed from the computed cell averages,
u j (t). Thus, letting1t ↓ 0, the resulting semi-discrete central scheme can be written in its
compact form

d

dt
u j (t) = −

(
f
(
u+j+1/2(t)

)+ f
(
u−j+1/2(t)

))− ( f
(
u+j−1/2(t)

)+ ( f
(
u−j−1/2(t)

))
21x

+ 1

21x

{
aj+1/2(t)

[
u+j+1/2(t)− u−j+1/2(t)

]− aj−1/2(t)
[
u+j−1/2(t)− u−j−1/2(t)

]}
.

(4.2)
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Recall thataj+1/2(t) is the maximal local speed, e.g., in the generic case one may take

aj+1/2(t) :=max

{
ρ

(
∂ f

∂u

(
u+j+1/2(t)

))
, ρ

(
∂ f

∂u

(
u−j+1/2(t)

))}
.

Remarks. 1. Conservation form.The second-order scheme, (4.2), admits the conserva-
tive form,

d

dt
u j (t) = −Hj+1/2(t)− Hj−1/2(t)

1x
, (4.3)

with the numerical flux

Hj+1/2(t) := f
(
u+j+1/2(t)

)+ f
(
u−j+1/2(t)

)
2

− aj+1/2(t)

2

[
u+j+1/2(t)− u−j+1/2(t)

]
. (4.4)

Here, the intermediate valuesu±j+1/2 are given by

u+j+1/2 := u j+1(t)− 1x

2
(ux) j+1(t), u−j+1/2 := u j (t)+ 1x

2
(ux) j (t). (4.5)

One verifies thatHj+1/2(t) ≡ H(u j−1(t), u j (t), u j+1(t), u j+2(t)) is a numerical flux con-
sistent with Eq. (1.1), i.e.,H(v, v, v, v) = f (v). In fact, with the minmod limiter, (2.4),
the corresponding approximate derivatives,(ux) j (t), vanish at extrema values,

sgn(u j+1(t)− u j (t))+ sgn(u j (t)− u j−1(t)) = 0⇒ (ux) j (t) = 0, (4.6)

and hence the corresponding numerical flux satisfies theessentially three-pointconsistency

H(·, v, v, ·) = f (v). (4.7)

2. Numerical viscosity.The second expression on the right of (4.2) accounts for the
numerical viscosity of the scheme. Taylor’s expansion shows that for smoothu’s, this amount
of numerical viscoity is of order∼(1x)3(a(u)uxxx)x/8. ThisO(1x)3 term, uniformly
bounded w.r.t. 1/1t , should be contrasted with the corresponding numerical viscosity terms
of orderO((1x)2/1t) in the first-order LxF scheme (indicated earlier in (2.7)) and of order
O((1x)4/1t) in the second-order NT scheme.

3. Simplicity.We again would like to emphasize the simplicity of the second-order
semi-discrete central scheme, (4.2), so that it doesnot require any information about the
eigenstructure of the underlying problem beyond the CFL-related speeds,aj+1/2(t). The
computation of the numerical derivatives,(ux) j (t), is carried outcomponentwise; no specific
knowledge of characteristic decomposition based on (approximate) Riemann solvers is
required.

4. First-order reduction.If we reset all the numerical derivatives,(ux) j (t)= 0, then
(4.2) is reduced to the first-order semi-discrete central scheme corresponding to the1t ↓
0-limit of the Rusanov scheme, (3.10),

d

dt
u j (t) = − f (u j+1(t))− f (u j−1)

21x

+ 1

21x

[
aj+1/2(t)(u j+1(t)− u j (t))− aj−1/2(t)(u j (t)− u j−1(t))

]
. (4.8)

We conclude this section with the proof of the one-dimensional scalar TVD property for
our new semi-discrete scheme.
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THEOREM 4.1 (TVD of Semi-discrete Central Scheme).Consider the scalar semi-
discrete central scheme(4.2),with intermediate values u±j±1/2 in (4.5)based on approximate
derivatives(ux) j (t) satisfying(4.6),e.g., the family of minmod-like limiters(with θ = 1cor-
responding to(2.4))

(ux)
n
j := minmod

(
θ

un
j − un

j−1

1x
,

un
j+1− un

j−1

21x
, θ

un
j+1− un

j

1x

)
, 1≤ θ ≤ 2. (4.9)

Then the following TVD property holds:

‖u(·, t)‖BV :=
∑

j

|u j+1(t)− u j (t)| ≤ ‖u(·, 0)‖BV.

Remark. Notice that in the scalar case the local propagation speeds are given by

aj+1/2(t) := max
u∈[u−j+1/2(t),u

+
j+1/2(t)]

| f ′(u)|, (4.10)

and in the special case of convexf , this is further simplified:

aj+1/2(t) := max{| f ′(u−j+1/2(t))|, | f ′(u+j+1/2(t))|}. (4.11)

Proof. The second-order flux in (4.2),Hj+1/2(t), can be viewed as a generalized MUSCL
flux [40],

Hj+1/2(t)= HRus
(
u+j+1/2(t), u

−
j+1/2(t)

)
,

expressed in terms of the first-order E-fluxHRus= HRus(u`, ur ), associated with the first-
order Rusanov scheme (4.8),

HRus(u`, ur ) := f (u`)+ f (ur )

2
− a`r

2
(ur − u`), a`r = max

u∈[u`,ur ]
| f ′(u)|.

According to [47], the TVD property of such scalar, semi-discrete generalized MUSCL
schemes is guaranteed if (consult [47, Example 2.4])∣∣∣∣ (ux) j+1/2

1u j±1/2

∣∣∣∣ ≤ 2. (4.12)

This is clearly fulfilled by the choice of approximate derivatives in (4.9). (We note in passing
the necessity of the clipping phenomenon, (4.6), enforced by (4.12).)j

4.2. One-Dimensional Convection–Diffusion Equations

Consider the convection–diffusion equation (1.2). If the dissipation flux,Q(u, ux), is a
nonlinear function, then Eq. (1.2) can be astronglydegenerate parabolic equation which
admits nonsmooth solutions. To solve it numerically is a highly challenging problem. In
this context, the operator splitting technique was used in, e.g., [6, 8, 12, 20, 22, 23], yet this
approach suffers the familiar limitations of splitting, e.g., limited accuracy, etc.
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Our second-order semi-discrete scheme, (4.3)–(4.4), can be applied to Eq. (1.2) in a
straightforward manner, since we can treat the hyperbolic and the parabolic parts of (1.2)
simultaneously. This results in the following conservative scheme:

u̇ j (t)=−Hj+1/2(t)− Hj−1/2(t)

1x
+ Pj+1/2(t)− Pj−1/2(t)

1x
. (4.13)

Here,Hj+1/2(t) is our numerical convection flux, (4.4), andPj+1/2(t) is a reasonable ap-
proximation to the diffusion flux, e.g., the simplest central difference approximation

Pj+1/2(t)= 1

2

[
Q

(
u j (t),

u j+1(t)− u j (t)

1x

)
+ Q

(
u j+1(t),

u j+1(t)− u j (t)

1x

)]
. (4.14)

4.3. Multidimensional Extensions

Our second-order semi-discrete schemes, (4.2) and (4.13), (4.4), (4.14), can be extended
to bothmultidimensionalhyperbolic and parabolic problems. Without loss of generality, let
us consider thetwo-dimensionalconvection–diffusion equation

ut + f (u)x + g(u)y= Qx(u, ux, uy)x + Qy(u, ux, uy)y, (4.15)

whereQx ≡ Qy≡ 0 corresponds to the two-dimensional hyperbolic conservation law.
We use a uniform spatial grid,(xj , yk)= ( j1x, k1y). Suppose that we have computed

the solution at some time levelt and have reconstructed the two-dimensional, non-oscillatory
piecewise-linear polynomial approximation

u(x, y, t) ≈
∑
j,k

[u j,k(t)+(ux) j,k(t)(x−xj )+(uy) j,k(t)(y− yk)]1[xj−1/2,xj+1/2]× [yk−1/2,yk+1/2] .

Here,xj±1/2 := xj ± 1x
2 , yk±1/2 := yk± 1y

2 ; (ux) j,k(t) and(uy) j,k(t) are numerical deriva-
tives, which approximate the exact ones,ux(xj , yk, t) anduy(xj , yk, t), respectively. With
a proper choice of numerical derivatives, the reconstruction of piecewise polynomial ap-
proximation is nonoscillatory. For example, using the minmod limiter, (2.4), guarantees
the nonoscillatory property in the sense of satisfying a (local) scalar maximum principle;
consult [18, Thm. 1].

The 2D extension of the scheme (4.13), (4.4), (4.14) can be written in the conservative
form

d

dt
u j,k(t) = −

H x
j+1/2,k − H x

j−1/2,k

1x
− H y

j,k+1/2− H y
j,k−1/2

1y

+ Px
j+1/2,k − Px

j−1/2,k

1x
+ Py

j,k+1/2− Py
j,k−1/2

1y
. (4.16)

Here,H x
j+1/2,k≡ H x

j+1/2,k(t) andH y
j,k+1/2≡ H y

j,k+1/2(t) arex- andy-numerical convection
fluxes, respectively (viewed as a generalization of the one-dimensional flux constructed
above in (4.4)),

H x
j+1/2,k(t) := f

(
u+j+1/2,k(t)

)+ f
(
u−j+1/2,k(t)

)
2

− ax
j+1/2,k(t)

2

[
u+j+1/2,k(t)− u−j+1/2,k(t)

]
,

(4.17)

H y
j,k+1/2(t) := g

(
u+j,k+1/2(t)

)+ g
(
u−j,k+1/2(t)

)
2

− ay
j,k+1/2(t)

2

[
u+j,k+1/2(t)− u−j,k+1/2(t)

]
,
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which are expressed in terms of the intermediate values

u±j+1/2,k(t) := u j+1,k(t)∓ 1x

2
(ux) j+1/2±1/2,k(t),

(4.18)

u±j,k+1/2(t) := u j,k+1(t)∓ 1y

2
(uy) j,k+1/2±1/2(t),

and the local speeds,ax
j+1/2,k(t) anday

j,k+1/2(t), are computed, e.g., by

ax
j+1/2,k(t) := max± ρ

(
∂ f

∂u

(
u±j+1/2,k(t)

))
, ay

j,k+1/2(t) := max± ρ

(
∂g

∂u

(
u±j,k+1/2(t)

))
.

(4.19)

Similarly, Px
j+1/2,k≡ Px

j+1/2,k(t) and Py
j,k+1/2≡ Py

j,k+1/2(t) are the correspondingx- and
y-numerical diffusion fluxes, given by

Px
j+1/2,k := 1

2

[
Qx

(
u j,k,

u j+1,k − u j,k

1x
, (uy) j,k

)
+ Qx

(
u j+1,k,

u j+1,k − u j,k

1x
, (uy) j+1,k

)]
,

(4.20)

Py
j,k+1/2 := 1

2

[
Qy

(
u j,k, (ux) j,k,

u j,k+1− u j,k

1y

)
+ Qy

(
u j,k+1, (ux) j,k+1,

u j,k+1− u j,k

1y

)]
.

5. FROM SEMI-DISCRETE BACK TO FULLY DISCRETE—THE GENERAL SETUP

The two-dimensional semi-discrete central scheme (4.2) forms a system of nonlinear
ODEs, the so-called “method of lines” for the discrete unknowns{u j,k(t)}. To integrate
in time, one must introduce a variable time step,1tn, stepping forward from time level
tn to tn+1 := tn + 1tn. We start by considering the simplest scenario of first-order time
differencing. The nonoscillatory behavior of the forward Euler scheme is summarized in
the maximum principle stated in Theorem 5.1 below. To retain the overall high accuracy of
the spatial differencing, however, higher-order stable time discretizations are required. To
this end, the forward Euler time differencing can be used as a building block for higher-
order Runge–Kutta and multi-level ODE solvers. In particular, second- and third-order ODE
solvers can be constructed byconvex combinationsof the simple forward Euler differencing,
retaining the overall maximum principle. Thus, we conclude in Corollaries 5.1 and 5.2
below with a fully discrete second-order central scheme satisfying the two-dimensional
scalar maximum principle.

We begin with

THEOREM5.1 (Maximum Principle). Consider the two-dimensional central scheme

un+1
j,k = un

j,k−
1tn

1x

(
H x

j+1/2,k(t
n)− H x

j−1/2,k(t
n)
)− 1tn

1y

(
H y

j,k+1/2(t
n)− H y

j,k−1/2(t
n)
)
.

(5.1)

Here, H x(t) and Hy(t) are the numerical fluxes given in(4.17)–(4.19); let their numerical
derivatives be determined by one of the following one-parameter family of minmod-like
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limiters:

(ux)
n
j,k := minmod

(
θ

un
j,k − un

j−1,k

1x
,

un
j+1,k − un

j−1,k

21x
, θ

un
j+1,k − un

j,k

1x

)
, 1≤ θ ≤ 2,

(5.2)

(uy)
n
j,k := minmod

(
θ

un
j,k − un

j,k−1

1y
,

u j,k+1− u j,k−1

21y
, θ

un
j,k+1− un

j,k

1y

)
, 1≤ θ ≤ 2.

Assume the following CFL condition holds:

max

(
1tn

1x
max

u
| f ′(u)|, 1tn

1y
max

u
|g′(u)|

)
≤ 1

8
. (5.3)

Then the resulting fully discrete central scheme satisfies the maximum principle

max
j,k
{u j,k(t

n+1)}≤ max
j,k
{u j,k(t

n)}. (5.4)

Proof. With λn := 1tn/1x andµn := 1tn/1y denoting thex- andy-mesh ratios, the
forward Euler time discretization of our scheme takes the explicit form

un+1
j,k = un

j,k −
λn

2

[
f
(
u+j+1/2,k(t

n)
)+ f

(
u−j+1/2,k(t

n)
)− f

(
u+j−1/2,k(t

n)
)− f

(
u−j−1/2,k(t

n)
)

−ax
j+1/2,k(t

n)
{

u+j+1/2,k(t
n)− u−j+1/2,k(t

n)
}+ ax

j−1/2,k(t
n)
{

u+j−1/2,k(t
n)

− u−j−1/2,k(t
n)
}]− µn

2

[
g
(
u+j,k+1/2(t

n)
)+ g

(
u−j,k+1/2(t

n)
)− g

(
u+j,k−1/2(t

n)
)

− g
(
u−j,k−1/2(t

n)
)− ay

j,k+1/2(t
n)
{

u+j,k+1/2(t
n)− u−j,k+1/2(t

n)
}

+ay
j,k−1/2(t

n)
{

u+j,k−1/2(t
n)− u−j,k−1/2(t

n)
}]
.

To simplify notations, we use the standard abbreviations

1x
j±1/2,ku := u+j±1/2,k(t

n)−u−j±1/2,k(t
n), 1x

j,k f := f
(
u−j+1/2,k(t

n)
)− f

(
u+j−1/2,k(t

n)
)
,

with the similar notations fory-differences, e.g.,1y
j,kg := g(u−j,k+1/2(t

n))−g(u+j,k−1/2(t
n)),

etc. Then our scheme can be rewritten as follows (where all the quantities on the right are
taken at time levelt = tn):

un+1
j,k =

u−j+1/2,k + u+j−1/2,k + u−j,k+1/2+ u+j,k−1/2

4
− λ

n

2

[
1x

j+1/2,k f

1x
j+1/2,ku

(
u+j+1/2,k − u−j+1/2,k

)
+ 2

1x
j,k f

1x
j,ku

(
u−j+1/2,k − u+j−1/2,k

)+ 1x
j−1/2,k f

1x
j−1/2,ku

(
u+j−1/2,k − u−j−1/2,k

)
−ax

j+1/2,k

(
u+j+1/2,k − u−j+1/2,k

)+ ax
j−1/2,k

(
u+j−1/2,k − u−j−1/2,k

)]
− µ

n

2

[
1

y
j,k+1/2g

1
y
j,k+1/2u

(
u+j,k+1/2− u−j,k+1/2

)+ 2
1

y
j,kg

1
y
j,ku

(
u−j,k+1/2− u+j,k−1/2

)
+ 1

y
j,k−1/2g

1
y
j,k−1/2u

(
u+j,k−1/2− u−j,k−1/2

)− ay
j,k+1/2

(
u+j,k+1/2− u−j,k+1/2

)
+ay

j,k−1/2

(
u+j,k−1/2− u−j,k−1/2

)]
.
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Rearranging the terms, we find thatun+1
j,k is given by the following linear combination of

the intermediate values,u±j±1/2,k andu±j,k±1/2:

un+1
j,k =

λn

2

{
ax

j+1/2,k −
1x

j+1/2,k f

1x
j+1/2,ku

}
u+j+1/2,k +

λn

2

{
ax

j−1/2,k +
1x

j−1/2,k f

1x
j−1/2,ku

}
u−j−1/2,k

+
{

1

4
+ λ

n

2

[
1x

j+1/2,k f

1x
j+1/2,ku

− ax
j+1/2,k − 2

1x
j,k f

1x
j,ku

]}
u−j+1/2,k

+
{

1

4
− λ

n

2

[
1x

j+1/2,k f

1x
j+1/2,ku

+ ax
j−1/2,k − 2

1x
j,k f

1x
j,ku

]}
u+j−1/2,k

+ µ
n

2

{
ay

j,k+1/2−
1

y
j,k+1/2g

1
y
j,k+1/2u

}
u+j,k+1/2+

µn

2

{
ay

j,k−1/2+
1

y
j,k−1/2g

1
y
j,k−1/2u

}
u−j,k−1/2

+
{

1

4
+ µ

n

2

[
1

y
j,k+1/2g

1
y
j,k+1/2u

− ay
j,k+1/2− 2

1
y
j,kg

1
y
j,ku

]}
u−j,k+1/2

+
{

1

4
− µ

n

2

[
1

y
j,k−1/2g

1
y
j,k−1/2u

+ ay
j,k−1/2− 2

1
y
j,kg

1
y
j,ku

]}
u+j,k−1/2. (5.5)

Note that all the coefficients in (5.5) are positive due to our CFL assumption, (5.3). This
means that the linear combination on the RHS of (5.5) is aconvexcombination and hence
the value ofun+1

j,k does not exceed the values ofu±j±1/2,k and u±j,k±1/2. And since our
choice of minmod-like approximate derivatives in (5.2) guarantees that these intermedi-
ate values,u±, satisfy a local maximum principle w.r.t. the original averages,un, e.g., [18],
maxj,k{u±j±1/2,k(t), u

±
j,k±1/2(t)}≤ maxj,k{u j,k(t)}, the result (5.4) then follows. j

The forward Euler scheme is limited to first-order accuracy. It can be used, however, as
a building block for higher-order schemes based on Runge–Kutta (RK) or multi-level time
differencing. Shu and Osher [44, 45] have identified a whole family of such schemes, based
onconvexcombinations of forward Euler steps.

To this end, we letC[w] denote our spatial recipe (4.17)–(4.19) for central differencing
a grid functionw={w j,k},

C[w] := −
[

H x
j+1/2,k(w)− H x

j−1/2,k(w)

1x
+ H y

j,k+1/2(w)− H y
j,k−1/2(w)

1y

]
. (5.6)

Expressed in terms of the forward Euler solver,w+1tC[w], we consider the one-parameter
family of RK schemes

u(1) = un +1tnC[un]

u(`+1) = η`u
n + (1− η`)

(
u(`) +1tnC

[
u(`)
])
, `= 1, 2, . . . , s− 1, (5.7)

un+1 := u(s).

In Table 5.1 we quote the preferred second- and third-order choices of [45]. We state

COROLLARY 5.1 (Maximum Principle for Runge–Kutta Time Differencing).Assume
that the CFL condition(5.3) holds. Then the fully discrete central scheme(4.17)–(4.19),
(5.2),(5.7) with ηm specified in Table5.1 satisfies the maximum principle(5.4).
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TABLE 5.1

Runge–Kutta Methods

η1 η2

Second order time differencing
Two-step modified Euler (s= 2) 1

2
—

Third order time differencing
Three-step method (s= 3) 3

4
1
3

A similar two-parameter family ofmulti-levelmethods was identified in [44]. They take
the particularly simple form

un+1 = η(un + c01tnC[un])+ (1− η)(un−s + cs1tnC[un−s]), (5.8)

with positive coefficients given in Table 5.2. We state

COROLLARY 5.2 (Maximum Principle for Multi-level Time Differencing).Assume that
the CFL condition

max

(
1tn

1x
max

u
| f ′(u)|, 1tn

1y
max

u
|g′(u)|

)
≤ min

ck

1

8ck
(5.9)

holds. Then the fully discrete multi-level central scheme(4.17)–(4.19), (5.2), (5.8), with η
and c’s specified in Table5.2, satisfies the maximum principle(5.4).

We close by noting that Corollaries 5.1 and 5.2 extend the maximum principle for the
second-order fully discrete two-dimensional scheme introduced in [18, Thm. 1].

6. NUMERICAL EXAMPLES

We conclude this paper with a number of numerical examples. In all the numerical
results presented below we have used theθ -dependent family of limiters corresponding
to (4.9). (These are in general the less dissipative limiter than the original minmod, (2.4),
corresponding to (4.9) withθ = 1). The spatial derivative ofu(x, t) is approximated by

ux(x, t)≈minmod

(
θ

ū(x + a)− ū(x)

a
,

ū(x + a)− ū(x − b)

a+ b
, θ

ū(x)− ū(x − b)

b

)
,

(6.1)

TABLE 5.2

Multi-level Methods

η c0 cs

Second-order time differencing
4-level method (s= 2) 3

4
2 0

5-level method (s= 3) 8
9

3
2

0

Third-order time differencing
5-level method (s= 3) 16

27
3 12

11

6-level method (s= 4) 25
32

2 10
7

7-level method (s= 5) 108
125

5
3

30
17
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wherea andb are appropriate grid scales, and the multivariable minmod function is defined
by

minmod(x1, x2, . . .)=


min j {xj }, if xj > 0 ∀ j,

maxj {xj }, if xj < 0 ∀ j,

0, otherwise.

The parameterθ ∈ [1, 2] has been chosen in the optimal way in every example. Note that
θ = 2 corresponds to the least dissipative limiter (no new local extrema are introduced),
whereasθ = 1 ensures a nonoscillatory nature of the approximate solution in the sense
that there is no increase of the total-variation. The reconstruction depicted in Fig. 3.2, for
example, does not increase in the variation at the interfacexj−1/2 but it is an oscillatory one
since new extrema is introduced atxj+1/2. In the scalar examples below,θ = 2 has provided
a satisfactory results, but consult the nonconvex Buckley–Levertt equation in Fig. 6.7 as a
counterexample; for systems the optimal values ofθ vary between 1.1 and 1.5.

Another point we would like to stress concerns the time discretization of our semi-discrete
central schemes. In general, the Runge–Kutta time differencing is preferable over the multi-
level differencing, since the former enables a straightforward use of variable time steps.
We note that for the standard explicit RK methods the time step can be very small due to
their strict stability restriction. There are two different approaches to increasing efficiency
at this point. First, one can use implicit or explicit–implicit ODE solvers. These methods are
unconditionally stable, but they require inverting nonlinear operators (in the general case of
a nonlinear diffusion), which is a computationally expensive and analytically complicated
procedure.

In all the numerical examples shown below, we preferred the second approach—to solve
systems of ODEs by means of the explicit embedded integration third-order RK method
recently introduced by Medovikov [37] (his original code, DUMKA3, was used). This high-
order differencing produces accurate results, and its larger stability domains (in comparison
with the standard RK methods) allow us to use larger time steps; the explicit form retains
simplicity, and the embedded formulas permit an efficient stepsize control. In practice these
methods preserve all the advantages of explicit methods and work as fast as implicit methods
(see [37] for details).

Remark. Below, we abbreviate by FD1 and SD1 the Rusanov first-order fully and
semi-discrete schemes. We also use FD2 and SD2 notation for our second-order fully and
semi-discrete schemes. As previously, LxF and NT stand for the Lax–Friedrichs and the
Nessyahu–Tadmor schemes.

6.1. One-Dimensional Scalar Linear Hyperbolic Equation

EXAMPLE 1 (Linear Steady Shocks). First, consider thesimplest linearequation with
the zero flux,f (u)= 0,

ut = 0, (6.2)

subject to the discontinuous initial data,

u(x, 0)=
{

1, −0.5< x< 0.5,
0, otherwise.

(6.3)
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FIG. 6.3. Problem (6.2)–(6.3).N= 100, T = 2; first-order methods.

Notice that due to theirdissipativenature, neither the LxF scheme nor the NT scheme
provides a reasonable approximation to this problem. But using the Rusanov scheme and
our second-order fully discrete scheme, which are, in some sense, the least dissipative
central schemes, we achieve the perfect resolution of the discontinuities (the same result is
obtained by the corresponding semi-discrete schemes).

In Figs. 6.3 and 6.4 the solutions computed by our schemes are compared with the
(staggered) LxF and NT schemes. It also can be easily checked analytically that both the
FD1 scheme and the FD2 schemes solve problem (6.2)–(6.3) exactly.

FIG. 6.4. Problem (6.2)–(6.3).N= 100, T = 2; second-order methods.



262 KURGANOV AND TADMOR

TABLE 6.1

Initial Value Problem (6.4), L1- and L∞-Norms of the Errors

L1-error L∞-error

N NT Rate FD2 Rate NT Rate FD2 Rate

40 2.920e-03 — 8.716e-03 — 3.151e-03 — 7.818e-03 —
80 4.583e-04 2.67 1.876e-03 2.22 9.963e-04 1.66 2.598e-03 1.59

160 1.115e-04 2.04 3.892e-04 2.27 3.704e-04 1.43 9.262e-04 1.49
320 2.360e-05 2.24 7.943e-05 2.29 1.263e-04 1.55 2.881e-04 1.68
640 5.273e-06 2.16 1.659e-05 2.26 4.463e-05 1.50 1.028e-04 1.49

1280 1.249e-06 2.08 3.430e-06 2.27 1.690e-05 1.40 3.593e-05 1.52

EXAMPLE 2 (Accuracy Test). Let us consider thelinear equation subject to periodic
initial data

ut + ux = 0, u(x, 0)= sinx. (6.4)

This problem admits the global smooth solution that was computed at timeT = 1 with the
varying number of grid points,N.

In Table 6.1 we compare the accuracy of our second-order fully discrete scheme, FD2,
with the accuracy of the NT scheme. These results show that for the FD2 scheme the absolute
error is larger, but the rate of convergence is slightly higher than for the NT scheme.

6.2. One-Dimensional Scalar Hyperbolic Conservation Laws

EXAMPLE 3 (Burgers’ Equation: Pre- and Post-shock Solutions). In this example we
approximate solutions to the inviscid Burgers’ equation,

ut +
(

u2

2

)
x

= 0. (6.5)

Let us start with the case of smooth periodic initial data, e.g.,

u(x, 0) = 0.5+ sinx. (6.6)

The well-known solution of (6.5)–(6.6) develops a shock discontinuity at the critical time
Tc= 1. Table 6.2 shows theL1- andL∞-norms of the errors at the pre-shock timeT = 0.5

TABLE 6.2

Initial Value Problem (6.5)–(6.6),L1- and L∞-Norms of the Errors at T = 0.5

L1-error L∞-error

N NT Rate FD2 Rate NT Rate FD2 Rate

40 1.011e-02 — 9.101e-03 — 6.782e-03 — 6.283e-03 —
80 2.116e-03 2.26 1.843e-03 2.30 2.951e-03 1.20 2.333e-03 1.43

160 4.705e-04 2.17 4.272e-04 2.11 9.918e-04 1.57 7.481e-04 1.64
320 1.095e-04 2.10 9.334e-05 2.19 3.727e-04 1.41 2.603e-04 1.52
640 2.517e-05 2.12 2.163e-05 2.11 1.248e-04 1.58 9.508e-05 1.45

1280 5.926e-06 2.09 4.867e-06 2.15 4.433e-05 1.49 3.132e-05 1.60
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FIG. 6.5. Problem (6.5)–(6.6).N= 100, T = 2; the FD2 scheme.

when the solution is still infinitely smooth. Unlike the linear case (Example 2), both the ab-
solute errors and the convergence rates of the FD2 scheme are better than the corresponding
errors and rates of the NT scheme. This indicates a certain advantage of our fully discrete
second-order scheme over the NT scheme while applied to nonlinear problems.

In Figs. 6.5 and 6.6 we present the approximate solutions at the post-shock timeT = 2,
when the shock is well developed. Second-order behavior is confirmed by the measuring
Lip´-errors, [39], which are recorded in Table 6.3. Again, the solution obtained by the FD2
scheme is slightly more accurate than the solution computed by the NT scheme.

FIG. 6.6. Problem (6.5)–(6.6).N= 100,T = 2; the NT scheme.
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TABLE 6.3

Initial Value Problem (6.5)–(6.6), Lip′-Norm of the Errors at T = 2

N NT Rate FD2 Rate

40 1.233e-02 — 7.779e-03 —
80 1.904e-03 2.70 1.982e-03 1.97

160 4.809e-04 1.99 4.905e-04 2.01
320 1.253e-04 1.94 1.222e-04 2.01
640 3.415e-05 1.88 3.047e-05 2.00

1280 1.000e-05 1.77 7.558e-06 2.01

EXAMPLE 4 (Nonconvex Flux). In this example we show results of applying our fully
discrete second-order scheme to the following Riemann problem:

ut +
[
(u2− 1)(u2− 4)

4

]
x

= 0, u(x, 0) =
{

2, if x< 0,

−2, if x> 0.
(6.7)

The solutions to this initial value problem are depicted at timeT = 1.2. Figure 6.7 demon-
strates the clear advantage of our new FD2 scheme over the NT scheme; in particular, the
latter seems to give a wrong solution (even after the grid refinement.3 We note, however,
that when a more restrictive minmod limiter was used (corresponding toθ = 1 in (6.1)), the
NT solution did converge to the entropy solution at the expense of additional smoothing on
the edges of the Riemann fan, which can be noticed in Fig. 6.8.

6.3. One-Dimensional Systems of Hyperbolic Conservation Laws

EXAMPLE 5 (Euler Equations of Gas Dynamics). Let us consider the one-dimensional
Euler System

∂

∂t

 ρm
E

+ ∂

∂x

 m

ρu2+ p

u(E + p)

 = 0, p = (γ − 1) ·
(

E − ρ
2

u2

)
,

whereρ, u,m= ρu, p, and E are the density, velocity, momentum, pressure, and total
energy, respectively. Here, the conserved quantities areEu= (ρ,m, E)T , and the flux vector
function is f (Eu)= (m, ρu2+ p, u(E+ p))T . We solve this system subject to Riemann
initial data,

Eu(x, 0) =
{ EuL , x< 0,

EuR, x> 0.

We apply our scalar-designed schemes to this problem in a straightforward manner. We now
prefer the alternative approximation to the flux derivatives, needed in (3.6). The minmod
limiter, (6.1), is employed directly on the corresponding values off (Eu) to avoid an expensive
computation of the Jacobian,∂ f

∂u .

3A similar failure of convergence towards the entropy solution by upwind approximation of nonconvex equations
was reported in [5].
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FIG. 6.7. Riemann IVP (6.7).N= 100.

We compute the solution to two different Riemann problems:

• The first Riemann problem was proposed by Sod [46]. The initial data are given
by

EuL = (1, 0, 2.5)T , EuR = (0.125, 0, 0.25)T .

The approximations to the density, velocity, and pressure obtained by the FD2 scheme are
presented in Figs. 6.9–6.14.

FIG. 6.8. Riemann IVP (6.7).N= 100.
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FIG. 6.9. Sod problem—density.N= 200,T = 0.1644.

FIG. 6.10. Sod problem—density.N= 400,T = 0.1644.

FIG. 6.11. Sod problem—velocity.N= 200,T = 0.1644.
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FIG. 6.12. Sod problem—velocity.N= 400,T = 0.1644.

FIG. 6.13. Sod problem—pressure.N= 200,T = 0.1644.

FIG. 6.14. Sod problem—pressure.N= 400,T = 0.1644.
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FIG. 6.15. Lax problem—density.N= 200,T = 0.16.

• The second Riemann problem was proposed by Lax [29]. The initial values are
given by

EuL = (0.445, 0.311, 8.928)T , EuR = (0.5, 0, 1.4275)T .

The results computed by the FD2 scheme are shown in Figs. 6.15–6.20.

Our numerical results for this system are comparable with the results obtained in
[38]. We would like to stress again that as in the case of the original NT scheme the
characteristic decomposition is not required; i.e., our new schemes still can be applied
componentwise.

Remark. In all the above 1D hyperbolic examples we have presented the numerical
results obtained by our fully discrete scheme. We also tested the corresponding

FIG. 6.16. Lax problem—density.N= 400,T = 0.16.
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FIG. 6.17. Lax problem—velocity.N= 200,T = 0.16.

FIG. 6.18. Lax problem—velocity.N= 400,T = 0.16.

FIG. 6.19. Lax problem—pressure.N= 200,T = 0.16.
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FIG. 6.20. Lax problem—pressure.N= 400,T = 0.16.

semi-discrete scheme on the same examples. The results are very similar, but the semi-
discrete scheme is slightly more dissipative than the fully discrete one.

As we have already mentioned, the main advantage of the semi-discrete approach can be
seen while we apply our scheme to (degenerate) parabolic convection–diffusion equations.
Below, we show several examples of such problems.

6.4. One-Dimensional Convection–Diffusion Equations

EXAMPLE 6 (Burgers-Type Equation with Saturating Dissipation). We begin with the
convection–diffusion equation with bounded dissipation flux proposed in [28]. Consider
Eq. (1.3) with f (u)= u2 subject to the Riemann initial data,

u(x, 0) =
{

1.2, x< 0,
−1.2, x> 0.

(6.8)

It was proved in [12] that the solution to this initial value problem contains a subshock
located atx= 0. This is why solving (1.3), (6.8) numerically is quite challenging problem.

Our second-order semi-discrete scheme, SD2, provides a very good resolution of the
discontinuity (Fig. 6.21) while the fully discrete NT scheme fails to resolve it (Fig. 6.22;
see also numerical results in [28]). The SD2 scheme was tested on all the examples from
[12]. The numerical results are highly satisfactory, and using this semi-discrete approach
no operator splitting is needed (consult [12] for details).

EXAMPLE 7 (Buckley–Leverett Equation). Next, let us consider the scalar convection–
diffusion Buckley–Leverett equation (1.2) withQ(u, s)= ν(u)s,

ut + f (u)x = ε(ν(u)ux)x, εν(u)≥ 0. (6.9)

This is a prototype model for oil reservoir simulations (two-phase flow). Typically,ν(u)
vanishes at some values ofu, and (6.9) is a degenerate parabolic equation. Usually, the
operator splitting technique is used (see [6, 8, 20, 22, 23]) to solve it numerically, but the
limitations of such an approach are well known.
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FIG. 6.21. Sharp resolution by the SD2 scheme.N= 400,T = 1.5.

We takeε to be 0.01,f (u) to have ans-shaped form,

f (u) = u2

u2+ (1− u)2
, (6.10)

andν(u) to vanish atu= 0, 1,

ν(u) = 4u(1− u). (6.11)

FIG. 6.22. Smeared discontinuity by the NT scheme.N= 400,T = 1.5.
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FIG. 6.23. Initial-boundary value problem (6.9)–(6.12).T = 0.2.

The initial function is

u(x, 0) =
{

1− 3x, 0≤ x≤ 1
3,

0, 1
3 < x≤ 1,

(6.12)

the boundary value ofu(0, t)= 1 is kept fixed.
The numerical solution computed by the SD2 scheme for different numbers of grid

points is presented in Fig. 6.23. No exact solution to problem (6.9)–(6.12) is available, but
if compared with the numerical solutions reported in [20], our solutions seem to converge
to the correct entropy solution.

EXAMPLE 8 (Gravitational Effects). We now consider the Buckley–Leverett equation,
(6.9), with the sameε= 0.01, the same diffusion coefficient, (6.11), and the flux function
f (u) including gravitational effects:

f (u) = u2

u2+ (1− u)2
(1− 5(1− u)2). (6.13)

This equation is more complicated than the previous one since we should handle the flux
(6.13) wheref ′(u) changes sign. The numerical solutions to this equation and to Eqs. (6.9)–
(6.11) subject to the Riemann initial data,

u(x, 0) =
{

0, 0≤ x< 1− 1√
2
,

1, 1− 1√
2
≤ x≤ 1,

are shown in Fig. 6.24. It can be observed that our semi-discrete scheme provides the same
high quality of numerical solutions for both of these problems.
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FIG. 6.24. Riemann problem for the Buckley–Leverett equation with and without gravitation.T = 0.2.

EXAMPLE 9 (Glacier Growth Model). In this example we consider a one-dimensional
model for glacier growth (see [9, 21]). Let a glacier of heighth(x, t) rest upon a flat
mountain. Its evolution is described by the nonhomogenious convection–diffusion equation

ht + f (h)x = ε(ν(h)hx)x + S(x, t, h). (6.14)

Let ε= 0.01. The typical flux and diffusion coefficient are

f (h) = h+ 3h6

4
, ν(h) = 3h6. (6.15)

We first look at the Riemann problem with

h(x, 0) =
{

1, x< 0,

0, x> 0,

that describes an outlet into a valley disregarding seasonal variations. To complete this simple
model we use the sourceS(x, t, h)= S0(x) if h(x, t)>0, andS(x, t, h)=max{S0(x), 0}
if h(x, t)= 0, where

S0(x) =


0, x<−0.4,
1
2(x + 0.4), −0.4≤ x≤−0.2,

− 1
2x, x>−0.2.

The numerical simulations for different number of grid points and at different times are
presented in Figs. 6.25–6.27. These solutions, obtained by our SD2 scheme, seem to be
more accurate than the solutions obtained by the operator splitting method in [21].
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FIG. 6.25. Moving glacier atT = 1.

FIG. 6.26. Moving glacier atT = 2.

FIG. 6.27. Moving glacier atT = 4.
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FIG. 6.28. Growing glacier atT = 7.5.

Second, we look at the growth of a new glacier (h(x, 0)≡ 0). Let the glacier be restricted
to the interval [−5, 5]. Then an appropriate source term is

S(x, t) =
{

0, x≤−5,
−0.01x + 0.05 sin(2π t), x>−5.

Here the second, trigonometric term models seasonal variations.
Figures 6.28–6.33 illustrate the glacier growth computed by the Rusanov first-order and

by our second-order semi-discrete schemes, SD1 and SD2, with different numbers of grid

FIG. 6.29. Growing glacier atT = 10.5.



276 KURGANOV AND TADMOR

FIG. 6.30. Growing glacier atT = 15.

points. The SD2 scheme provides more accurate resolution of the upstream front, but admits
some oscillations on the glacier downstream. The amplitude of these oscillations remains
small but does not diminish with the grid refinement. Moreover, they tend to propagate up
to the top of the glacier asN increases. At the same time, applying the SD1 scheme with a
large number of grid points gives a very accurate, nonoscillatory solution, comparable with
the one reported in [21].

EXAMPLE 10 (Hyperbolic–Parabolic Equation). We conclude this subsection with an
example of strongly degenerate parabolic (or, hyperbolic–parabolic) convection–diffusion

FIG. 6.31. Growing glacier atT = 22.5.
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FIG. 6.32. Growing glacier atT = 30.

equation. Consider Eq. (6.9) withε= 0.1, f (u)= u2, and

ν(u) =
{

0, |u| ≤0.25,

1, |u|> 0.25.
(6.16)

This ν(u) is a discontinuous function, and the equation is therefore of hyperbolic nature
whenu∈ [−0.25, 0.25] and parabolic elsewhere.

FIG. 6.33. Growing glacier atT = 37.5.
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FIG. 6.34. Initial value problem (6.9), (6.16), (6.17).T = 0.7.

We apply our SD2 scheme to Eqs. (6.9), (6.16) subject to the initial data,

u(x, 0) =


1, − 1√

2
− 0.4< x<− 1√

2
+ 0.4,

−1, 1√
2
− 0.4< x< 1√

2
+ 0.4,

0, otherwise.

(6.17)

The results for two different number of grid points is shown in Fig. 6.34. We would like
to point out the high resolution of discontinuities and the accurate transition between the
hyperbolic and parabolic regions.

6.5. Two-Dimensional Problems

EXAMPLE 11 (Two-Dimensional Burgers-Type Equations). Consider the two-dimen-
sional extension of the equation from Example 10,

ut + (u2)x + (u2)y = ε(ν(u)ux)x + ε(ν(u)uy)y. (6.18)

The numerical results obtained by our SD2 scheme are presented in Figs. 6.35 and 6.36.
In these examplesε= 0.1; ν(u) is given by (6.16) (strongly degenerate parabolic problem)

FIG. 6.35. Pure hyperbolic problem—solution at timeT = 0.5 on a 60∗ 60 grid.
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FIG. 6.36. Degenerate parabolic problem—solution at timeT = 0.5 on a 60∗ 60 grid.

orν(u)= 0 (hyperbolic problem). The initial data are equal to−1 and 1 inside two circles of
radius 0.4 centered at (0.5, 0.5) and (−0.5,−0.5), respectively, and zero elsewhere inside the
square [−1.5, 1.5]× [−1.5, 1.5]. As in the one-dimensional examples, our scheme performs
well in both hyperbolic and hyperbolic–parabolic cases even with relatively small number
of grid points.

EXAMPLE 12 (Two-Dimensional Buckley–Leverett Equation). Finally, we solve the
two-dimensional convection–diffusion equation

ut + f (u)x + g(u)y = ε(uxx + uyy), (6.19)

with ε= 0.01, the flux function of the form

f (u) = u2

(u2+ (1− u)2)
,

(6.20)
g(u) = f (u)(1− 5(1− u)2),

and the initial data

u(x, y, 0) =
{

1, x2+ y2< 0.5,

0, otherwise.
(6.21)

Note that the above model includes gravitational effects in they-direction.

FIG. 6.37. Problem (6.19)–(6.21)—solution at timeT = 0.5 on a 200∗ 200 grid.



280 KURGANOV AND TADMOR

FIG. 6.38. Problem (6.19)–(6.21)—solution at timeT = 0.5 on a 100∗ 100 grid.

The solution, computed in the domain [−1.5, 1.5]× [−1.5, 1.5] by the SD2 scheme, is
shown in Figs. 6.37 and 6.38. Our scheme also provides a highly satisfactory approximation
to this model with a nonlinear, degenerate diffusion.
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