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Summary. We construct a new third-order semi-discrete genuinely mul-
tidimensional central scheme for systems of conservation laws and related
convection-diffusion equations. This construction is based on a multidimen-
sional extension of the idea, introduced in [17] — the use of more precise
information about thdocal speeds of propagatiorand integration over
nonuniform control volumes, which contain Riemann fans.

As in the one-dimensional case, the small numerical dissipation, which
is independent o) (4, ), allows us to pass to a limit ast |. 0. This results
in a particularly simple genuinely multidimensional semi-discrete scheme.
The high resolution of the proposed scheme is ensured by the new two-
dimensional piecewise quadratic non-oscillatory reconstruction. First, we
introduce a less dissipative modification of the reconstruction, proposed in
[29]. Then, we generalize it for the computation of the two-dimensional
numerical fluxes.

Our scheme enjoys the main advantage of the Godunov-type central
schemes simplicity, namely it does not employ Riemann solvers and char-
acteristic decomposition. This makes ita universal method, which can be eas-
ily implemented to a wide variety of problems. In this paper, the developed
scheme is applied to the Euler equations of gas dynamics, a convection-
diffusion equation with strongly degenerate diffusion, the incompressible
Euler and Navier-Stokes equations. These numerical experiments demon-
strate the desired accuracy and high resolution of our scheme.
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1 Introduction

We are interested in Godunov-type schemes for solving the multidimen-
sional system of conservation laws

(1.1) ug 4+ Vy- f(u) =0, xe R?,

and the closely related convection-diffusion equations
1.2) ug + Vy - f(u) = ViQ(u, Viu), x e IRY,
subject to the initial data

(1.3) u(x,0) = up(x).

Here () satisfies the weak parabolicity conditionQ(u,s) > 0 for all
(u,s).

Godunov-type schemes are projection-evolution methods, which atevery
time step consist of three consecutive stagesenstructionevolutionand
projection First, a piecewise polynomial interpolant is reconstructed from
the piecewise constant data (the cell-averages), computed at the previous
time step. Then, the interpolant is evolved in time according to (1.1). Finally,
the solution is projected onto a space of piecewise constants. Depending on
the projection step, we distinguish two kinds of Godunov-type schemes —
central and upwind.

The Godunov-type central schemes are based on exact evolution and
averaging over Riemann fans. Therefore, in contrast to the Godunov-type
upwind schemes, no characteristic decomposition or Riemann solvers are
involved. This makes the central schemes simple, and they can be imple-
mented as a ‘black box solver’ for the general multidimensional systems
(1.1) and (1.2).

Inthe one-dimensional case, examples of such schemes are the first-order
(staggered) Lax-Friedrichs scheme [19,7], the second-order Nessyahu-
Tadmor scheme [31], and their higher-order generalizations [29,4,21].
Second-order multidimensional central schemes were introduced in [11,
2], and their higher-order extensions were developed in [22,23]. The advan-
tage of the higher-order schemes is that they reduce the excessive numerical
viscosity, typical for the Lax-Friedrichs scheme, and give much sharper
resolution of the shocks and rarefactions.

We would also like to mention the central schemes for the Hamilton-
Jacobi equations, recently developed in [25, 26, 18], the central schemes for
incompressible flows in [12-14,16,24], and their applications to various
systems, for example, [6,1,33].

Unfortunately, the aforementioned staggered central schemes may not
provide a satisfactory resolution when small time steps are enforced by sta-
bility restrictions (e.g., this may occur when one applies these schemes to
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the (degenerate) parabolic systems (1.2)). Another disadvantage of these
schemes is that they cannot be used for steady-state computations, or equiv-

alently, they do not admit semi-discrete form. The reason is in the accumu-

2r
lation of numerical dissipation, which is of ordéx (AA‘”Z ), Wherer is the

formal order of the scheme.

These problems have beenrecently resolved in[17], where a new second-
order Godunov-type central scheme is introduced. The proposed scheme has
smaller dissipation~ (At)Q’"_l), and thus it can be efficiently used with
time steps as small as required. In the new construction, the evolution step is
performed by integrating over non-equal control volumes, whose sizes are
proportional to théocal speeds of propagatioihe evolved solution is then
projected back onto the original grid in a more complicated manner, which
requires an additional piecewise polynomial reconstruction. In this way, a
non-staggeredully-discrete central scheme is derived. It can be naturally
reduced to a particularly simple semi-discrete form (for details see [17]).
The same ideawas used in [16] to develop a third-order semi-discrete central
scheme.

Both in [17] and [16], the multidimensional semi-discrete schemes were
obtained by using a ‘dimension-by-dimension’ approach — the one-dimen-
sional numerical flux was straightforwardly applied in all coordinate direc-
tions. In this paper, we present new high-ordenuinely multidimensional
semi-discrete central schemes. They are based on a multidimensional gen-
eralization of the one-dimensional construction, used in [17,16], namely we
first integrate over non-equal volumes to derive a fully-discrete scheme, and
then we pass to a semi-discrete limit (we &t | 0, keepingAx fixed).

Semi-discrete central schemes consist of three independent building
blocks — a piecewise polynomial reconstruction, a spatial flux discretization
and an ODE solver. Our genuinely multidimensional recipe provides the
numerical fluxes. For the other two blocks one can pickramy-oscillatory
reconstruction and an efficient ODE solver.

For second-order schemes one uses a piecewise linear reconstruction —
a library of such (essentially) non-oscillatory reconstructions is available
(seee.g.[8,9,15,20,31,32]). To achieve a third-order accuracy, a piecewise
guadratic approximation is needed. However, to builthied-order non-
oscillatoryinterpolant is a highly nontrivial problem. In the one-dimensional
case, one of the possibilities is to use the essentially non-oscillatory (ENO)
reconstruction [9,35], or its weighted generalizations [28,10, 21,23]. Mul-
tidimensional ENO-type reconstructions were introduced in [22,23]. A dis-
advantage of this approach is that it employs smoothness indicators, which
require a certain a-priori information about the solution.

Alternative one-dimensional non-oscillatory piecewise quadratic recon-
structions were proposedin[27,29]. They both satisfy the number of extrema
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diminishing (NED) property and do not require the use of smoothness indi-

cators. In this work, we present a less dissipative one-dimensional modifica-
tion of the reconstruction from [29]. We also generalize the one-dimensional

reconstruction for the computation of the two-dimensional numerical fluxes

in our scheme.

The paper is organized as follows. In Sect. 2, we briefly describe the re-
cent development of Godunov-type central schemes. Next, in Sect. 3.1, we
present the one-dimensional modification of the non-oscillatory piecewise
guadratic reconstruction from [29]. In Sects. 3.2 and 3.3, we develop our
new genuinely multidimensional central scheme, which employs the multi-
dimensional third-order reconstruction, introduced in Sect. 3.4. The results
from our numerical experiments are shown in Sect. 4. We apply our third-
order scheme to a variety of one- and two-dimensional problems, including
the compressible Euler equations of gas dynamics, a convection-diffusion
equation with a nonlinear degenerate diffusion, the incompressible Euler
and Navier-Stokes equations. These numerical examples demonstrate the
expected third-order accuracy and the high resolution of our scheme.

2 Godunov-type central schemes — an overview

In this section, we discuss Godunov-type central schemes. In Sect. 2.1, we
recall the construction of staggered central schemes. Then, in Sect. 2.2,
we review the recently proposed [17,16] semi-discrete central schemes.
Finally, in Sect. 2.3, we briefly describe the one-dimensional non-oscillatory
piecewise parabolic reconstruction from [29].

For the sake of simplicity, we will consider only uniform grids. Through-
out this paper, we will use the following notation. Lst:= jAz, Tjpl =
(j £1/2)Az, t" == nAt, uj := u(z;,t"), where Az and At are small
spatial and time scales, respectively.

2.1 Central schemes for conservation laws

We begin with the definition of the sliding averageuwdf, ¢),

2.1) a(x,1) izAlm/U(é,t)df, I(z)={§:\§—:p[<%},
I(x)

We then integrate (1.1) ové(z) x [¢,t + At], and arrive at the equivalent
formulation of the system (1.1),

u(x,t + At) = a(z,t) — s
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LAt t+ At
(2.2) [/f dT—/f SL‘—T))dT].

This is the starting point for the construction of Godunov-type schemes,
which consists of three stepgeconstructiopevolutionandprojection

Reconstruction. At time level ¢t = t" a piecewise polynomial function
u(z, t"),

(2.3) u(z,t") = pi(x), Ti1 <T<Tia, v,

is reconstructed from the datgf := u(z;,t"), computed at the previous

time step. Here{p’' } are algebraic polynomials, and therefaie, t") may
be discontinuous onIy at. L The reconstruction is required to satisfy two

basic properties —
e conservatiorof the given cell averges :

Ti+s
/ de, ) de = al, Vi

j—

Nl

e accuracy(for smoothu(z, t)):
w(z, t") = u(z, t") + O((Ax)"),

wherer is the (formal) order of the scheme to be constructed.

Evolution. The piecewise polynomial(-, t") is evolved exactly according
to the integral equation (2.2), and the solution at time t"+! is obtained
in terms of its sliding averages.

Projection. An evaluation of these sliding averages at particular grid points
provides the approximate cell averages of the solution at the next time level,
{an+1}.

Choosingr = x; in (2.2) results in an upwind Godunov-type scheme.
In this case, the solution of the initial value problem (1.1),(1.3) with initial
dataug(x) = u(x,t™), prescribed at = ¢, may be non-smooth in the
neighborhood of the point«ﬁxﬁ%}. Therefore, the evaluation of the flux
integrals in (2.2) requires the use of a computationally expensive (approxi-
mate) Riemann solver and chraracteristic decomposition.

An alternative staggered grid approach, namely the chom:e:ofv

in (2.2), was proposed by Nessyahu and Tadmor [31]. In this case (2 2)
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leads to the Godunov-typentralscheme

X .
i+% Tj+1

_ 1
tn+1 tn+1

(2.4) —A)\t[/f(U(:ch,t))dt /f(u(xj»t))dt]’ A= %

In contrast to the upwind schemes, the RHS of (2.4) can be easily evaluated.
The spatial integrals can be computed exactly for a given reconstruction
{p} }. Also, due to the finite speed of propagation, the solution of (1.1),(1.3)
with ug(z) = u(x,t™) is smooth in(xz; — &, z; +¢) x [t",¢"T1), under
an appropriate CFL restriction ad¢. Hence, the flux integrals in (2.4)
can be approximated by a quadrature formula of okeler Notice that the
function values, needed in the quadrature, may be computed either by Taylor
expansion, or by a Runge-Kutta method ([29, 4]).

For example, if we use the second-order reconstruction

o1
ity

pj(x) = uj + sj(z — z;),
and the midpoint quadrature rule

tn+1
/ flulzy, 1) dt = Atf(u(z;, t*1/%)) + O((At)?),
tn
we arrive at the Nessyahu-Tadmor (NT) staggered central scheme

1 n+% nti

_ 1, _
Uﬁé = §(U?+U?+1)_§(3?_5?+1)_/\ f(uj+1)_f(uj DI

+1 .
Whereu;1 2 are evaluated, for example, by the Taylor expansion

1 -n At n
U = Uy *?(fa:)j'

To ensure the non-oscillatory nature of the NT scheme, one should apply
a nonlinear limiter while computing the sIopés;L}. In the original NT
scheme [31] the so-calleshinmodlimiter [20,8,32] is used, namely, the
slopes are determined by

no_ o J J
(2.5) s7 = minmod < e As > )

where
sgn(a) + sgn(b)

2

minmod(a, b) := min(|al, |b]).
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2.2 Semi-discrete central schemes

As mentioned in the Introduction, the staggered central schemes do not admit
semi-discrete formulation. This makes them inappropriate for steady state
computations or for solving the diffusion dominated convection-diffusion
systems (1.2). The encountered difficulties were recently resolved by the
non-staggered central schemes, proposed in [17]. Next, we give a brief
overview of these schemes.

We begin with a piecewise polynomial reconstruct{qm@i}, which may
be discontinuous at the interface poipﬁﬁsj%}. This discontinuities prop-

agate with different speeds, whose upper bounds are

no_ of
aj"'% o wel(u” m@x ) <8u( )>
+

ity

Here,C'(u" +,)is the curve in the phase space that conne’tfs

17
pj(z,1) aNde+1 = p(7;,1),andp (%) is the spectral radlus ofthe
2 b1 2

Jacobia f: For example, in the genuinely nonlinear or linearly degenerate
case, we have

o) o)

The main idea in the constrtuction of the schemes in [17] is based on
utilizing these CFL relatetbcal speeds of propagation. We consider the
domains

x [t", "] and [2"

1
j+%,l’x?+%,r] [, 1,

(2.6155?7%771, x?+%’l]

with x — Ata” jrl andz" =T + Ata e where

= xr.
l J+2 +
the solutlon of (1.1),(1.3) Wlthlo( ) = ( ) is smooth and nonsmooth
respectively.
Given the reconstructiofp (z) }, we integrate over these domains and

obtain the cell averages

2.7) - [ (rtel ) - falaly 1) dt],
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n n n n n n
Xj-3i2,r Xj-a2)  Xj2r Xj+1/2) Xj+1/2r Xj+3/2)
I I I I I I

Xj-1 Xj-12 Xj Xj+ 12 Xj+1 Xj+3/2

Fig. 2.1. Modified central differencing

and
$j+% m;lJrg r
1
—n+1l _
w;:'% N X +1 —1'7?+1 I [ / p?(x) do / p?+1($) e
27 JT3, $?+%,l :cﬁL%
tn+1

(28) - / (f(u(x;l+%7r7t)) - f(u(l.;:_%’l?t))) dt]

tn

over the corresponding non-equal spatial cells (see Fig. 2.1).

The spatial integrals in (2.7) and (2.8) can be computed explicitly. For
the approximation of the flux integrals an appropriate quadrature rule can
be used, since the solution is smooth along the vertical lines 9”?+§,l

andx = x;l . for t" < t < t"*1. Further, for the construction of a

fully-discrete 2)scheme, we need to project the computed intermediate data
{w"™*1} onto the original grid. To keep the high order of accuracy, we use
another non-oscillatory piecewise polynomial reconstruction, this time over
the nonuniform grid (for details see [17,16]).

We would like to emphasize that the resulting fully-discrete scheme is
still Godunov-type central scheme, which does not employ any Riemann
solver or characteristic decomposition. Moreover, it admits an extremely
simple semi-discrete formulation, which can be achieved in the following
way. We substitut@}“rl from the fully-discrete scheme in
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d aftt —ap

ot = 1 J
gt = Jim =

and take a limit asAt — 0, with Ax fixed. This was done in [17] and

[16] for the second- and the third-order schemes, respectively. Actually, in

a similar way, we derive theth-order semi-discrete scheme

d _ HjJr%(t)_ij%(t)
(2.9) %Uj(t) =— Ar )
with the numerical flux
Flul (D) + flu, ( )
My (1) =~
a; 1(t)
(2.10) —”TQ [u;%(t) — u;%(t)].

The intermediate valuesﬁrl are given by
2

+ . - o—
(2.11) j+% = pj+1(xj+%), uH% = pj(ﬁcg‘%),

where{p,} is therth-order piecewise polynomial reconstruction at tiime
We leave for the reader the details of the calculations.

Remark 2.1The semi-discrete scheme (2.9)—(2.11) is a system of time de-
pendent ODEs, which can be solved by an ODE solver of an appropriate
order (see the discussion in [17]).

In contrast to the staggered central schemes, described in the previous
section, the semi-discrete central schemes cagffi@entlyapplied to the
convection-diffusion equations (1.2). The resulting scheme is

j_%(t) n Qj.;_%(t) - Qj_%(t)
Az Az ’

whereQ . il is areasonable approximation to the diffusion flux at T
(for example one may use a standard central differencing, see [16]).

(2.12) %aj(t) _

Thistechnique can also be directly applied to multidimensional problems
if one uses the so-called ‘dimension-by-dimension’ approach (see [17,16]).
For instance, in the two-dimensional case, the corresponding semi-discrete
scheme for the system

(2.13) ur + f(u)g + g(u)y =0
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is
@ gyt — - e Tl
dt Ax
HY . (t)—HY ()
k+1 k-1
2.14 -2 S
(214) A

Here, the numerical fluxes are a straightforward generalization of the one-
dimensional numerical flux (2.10),

Pty 0+ £, ()

;Jr%,k(t) = 9
a® . (t)
]+*7k + —
(2.15) — [uj+%’k(t) - uﬁ%’k(t)] ,
and
y 90,y () + gl (1)
Hypy (8):= 2
)
a?, 1 (t)
Jk+35 + _
(2.16) —E [uj7k+% () = (t)} :

For more details, we refer the reader to [17] and [16].

In this paper (Sect. 3.2), we present an alternag@euienly multidi-
mensionalextension of the scheme (2.9)—(2.11), which is different from
(2.14)—(2.16) for third- and higher-order schemes. Our numerical experi-
ments demonstrate the advantage of our genuienly multidimensional con-
struction over the straightforward ‘dimension-by-dimension’ approach.

2.3 A piecewise guadratic non-oscillatory reconstruction

In this section, we give a brief description of the third-order non-oscillatory
reconstruction of Liu and Tadmor [29]. Later on, in Sect. 3.1, we propose a
new, less dissipative modification of this reconstriction.

Let us denote by and Dy the one-sided and the central divided dif-
ferences
_ v(z £ Az) —v(x)
Div(z) =+ e ,
v(x 4+ Az) —v(x — Azx)

2Ax '

Dov(z) :=
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We start with the basic piecewise quadratic reconstruction

n =1 (A:L‘)Q —nNn —Mn
qj (v) = (uj — 54 Dy D_u3) + Douj (x — x)
1 —n
(2.17) +5 D4 D} (z - zi)%,

which obeys the requirements cdnservatiorandaccuracy Moreover, it
satisfies ahape-preservingroperty, namely
e ¢;'(x) is monotone orfz; 1T, 1) ifand only if the sequence]_,, a7,

a}‘H iS monotone,
e ¢;(z) has extremum in the interior ¢ ; _ 1T, 1) ifand only if 4} is a

local extremum.
This property implies that in the process of reconstruction no new extrema
are created at the interior of the mtervzahs 1, T 1). The only places
where any new extrema may appear are the mterface p{ojngg }. Toavoid

2

this, one should use new quadratic ponnomi{a;t?}, which are convex
combination of the basic parabolgsand the cell averageg;, this is

(2.18) pi(x) = (1—00)a} + 07q} (x), 0<0; <1

Here,@;? are determined from the formula

MTLJFl — a;b m? - a;b
min { —22 72 1S <at < a?
Mn . an ) mn _an ) 9 J_l J j+17
J J J J
07'1 = n -n n —-n
J - M — " — "
min =y Mg T 1o, if @ , >a?>a?
Mr—ar ot —ay [ T T A
1, otherwise
(2.19)
where

and
n 1 n
Mj:l:% :maX{§(u +Uj:|:1),q]‘:|:1( G )}
|
m?i% :mm{§<u?+u?i1>,q]i1(xji%)}
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As it was proved in [29], such a choice of the limitt ensures that in
smooth regiong — 67 ~ (Az)3. Thus, the reconstructiofp’ } is a third-

order accurate. The polynomiglg } also inherit the conservation and the
shape-preserving properties{qufl}. Moreover, the limiter§’ are designed

to prevent oscillations at the interface points in the sense that new extrema
are created neither at the interior of the inter\(aijs_%,:cﬁ%), nor at their

endpoints. We refer the reader to [29] for details.

3 New genuine multidimensional semi-discrete central scheme

In this section, we introduce a new semi-discrete central scheme, which is a
genuine multidimensional extension of the scheme (2.9)—(2.11). It employs
amultidimensional generalization (Sect. 3.4) of the new piecewise quadratic
reconstruction (Sect. 3.1).

3.1 A new one-dimensional reconstruction

Asin Sect. 2.3 (see also [29]), we use the basic piecewise quadratic function
{g}}, defined in (2.17). The new reconstructighis obtained as a convex
combination of7;" and the piecewise linear interpolafit (—vs. the convex
combination ofg;" and the piecewise constant functiofiin (2.18)),

31  pia)=(1-0})L}(z)+07q (z), 0<0} <1,

where

(3.2) L} (x) = u} + s%(x — x;).

The non-oscillatory property of the new piecewise quadratic reconstruc-
tion {p7} is ensured by an appropriate choice {f'} and by a non-
oscillatory property of{L}‘} (which depends on the choice of the slopes
{s?}). We take{ey} to be

(33) 07 =4 {Mf_é — L}z,
min (

1, otherwise
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where

and
1
M]ﬁi% = max {5 (L;‘L(mjj:%) + L?il(xji%))aqyil(xjj:%>}a
ol
m;‘i% = min {i(Ly(:cji%) + L;-‘il(:nji%)>,q§li1($jié)}.

In this paper, we use the non-oscillatory TVﬁ)‘nmodinterpoIant{L;L},
defined in (3.2),(2.5). This guarantees that the number of local extrema of
{p}} does not exceed the number of extremdwf} (NED property). The

proof of the NED property is the same as in [29], and we omit the details.
One can also easily check that our new reconstruction (3.1)—(3.3) possesses
all the properties of the basic parabofag } — conservation, accuracy and
shape-preserving.

Remark 3.1The new reconstruction (3.1)—(3.3) is a less dissipative gener-
alization of (2.17)—(2.19). This fact allows us to achieve a better resolution,
as illustrated in the numerical examples in Sect. 4. At the same time, the
modified reconstruction (3.1)—(3.3) is only slightly more computationally
expensive than the original one.

Notice, thatif one sets all slope$ to be zero, then (3.1)—(3.3) is reduced
to (2.17)—(2.19).

In summary, the resulting piecewise parabolic reconstruction has the form

7 =N n (A:L‘)Q —Nn n —=Nn n n
on
(3.4) X(x —xj5) + ?]D+D_a?(:v — x;)?,

whered? ands are given by (3.3) and (2.5), respectively.

3.2 A genuinely multidimensional approach — fully-discrete set up

In this section, we generalize the idea of the one-dimensional construc-
tion, described in Sect. 2.1 (see Fig. 2.1) for the multidimensional case. For
simplicity, we will discuss only the two-dimensional system of hyperbolic
conservation laws (2.13).
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. A

Letz; := jAz, y, = kAy, Tjpl = T + %, ksl = Uk + F
Assume that at timeé = t" we have already constructed a conservative
piecewise polynomial interpolant of an appropriate order

W2, y) = > Ph(E )X a(T,y),
7.k

with possible discontinuities along the interface lines- Tip1 andy =
2
Ypa L Later on, in Sect. 3.4, we present a new piecewise quadratic recon-

struction, especially designed for the purposes of this scheme. We denote
the corresponding point values by

Wik =D, Uk)s Wy, o= Pk, Y ),

W = 05k 1), wh = Ph(Eg ),

Uik = D (T5- 15 ), uik = D Tiy L Ypy 1),

wn = P 1Y) w5k = Pl ),
(3.5) Ui\l::v = p?,k(xj—%7yk;_%)7

and the cell average by

i+l Yerd

Uj ke 2= Amy/ /pjkwydwdy

z; 1yk_

As in the one-dimensional case, our construction employs the CFL related
maximal local speeds of propagation of the discontinuities, and we denote
these speeds bﬁa;.”j:l ot and{ajykil}. They are not easy to compute, but

PR =2

in practice one may use, for example, the values

e (L0 o250}
(3.6) ag’k_ki = max {p(%(uik+1))mg<%( ]k))}

2

=

X
a”
i+3,

[

Further, we consider the nonuniform domains

Dj . x [t "], D1y x [t", ",

Djjr1 X [t7, 7+, Dji1 et ¥ [t7, ¢+,
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‘
j-12 j Xir12 X1

Fig. 3.1. Two-dimensional modified central differencing

outlined in Fig. 3.1. They are determined by the corresponding local speeds,

P xX xr
y Yy
X[Yry s —aJ,’k lAt, Yt 2 —i—a,m%At],
Djypi=lrjps - +2,kAt Tjpi Ay, Al
)
X[yp—g + 45 jd kot A eyt — A AL,
Dj+§,k+— [xj+§ A+2,kz+§At Liyl +A+2,k+;Aﬂ
$[yps = AL 1 AL gy F AT A,
where
X
At _max{ Di+lk j+2,k+1}
Yy N
Aj+%,k;+% = max{aj’k+%,aj+17k+%}.

Under an appropriate CFL restriction, the solution of the system (2.13),
subject to the initial data(x,y,0) = u"(x,y), is smooth inD, ; (which
is, in general, aonrectangulaidomain inside théj, k)-cell, see Fig. 3.1),
and may be nonsmooth in the other domains.

Given the reconstruction™, we integrate the system (2.13) over these
domains, and obtain the corresponding cell averages

1
wn—i—l

. 1
i3 ogy At(Ax—(A+ e H AT
27

J.k+

( // o) dirdy

Jk+2

Jk+

)At)

l\’)\)—l

1
27
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v At
gt Ve b Ty v —AT At
ity T itgkty
B R dydt —
tn T=XT A77+AI 1 1At
ety J,k+%At ’ 2kt
., 1-—A% At
Al it i+l eyl
e y’“+1+ J,k+2At
en - | [ st drdt ),
n z = —a? At
¢ zr%JrA‘f%,H%At Y V4 5 7% L
—n+1 __ 1
W=
ek e Ay <Ay (AY AV 1)At>
]+27 ]+27k+ ]+27k_§
// (z,y)dzdy —
—AY At
tntl yk+% J+g kg z., 1+a® At
itz i+
-/ [ s dydt —
=r. 1—a% At
e ykf%JrA;J'%,kf%At AT BN

At
tn+1 ] At

+g J 5 yk+%—Ag+%yk+%
(38) - / / g(u(x,y,t» drdt ),

— Y
_ Y=Y, _ 1+A 1 | At
+3 7+§, Jtgk—g

—n—+1
W'
J+5.k+3

1
T A A7 // M@ y) dwdy -

J+ik+i ]+§$+1

]+g,k+g

¥, 1+AY | 1 At

tntl TRy it gkt v 1 +AT A
IT3 Jit+35,kt+35
- flu(z,y,1)) dy dt —

n y z=x.  1—-A" ;| | At

Urtd j+%,k+%At 2 tpkty

T

Y
yk+%+Aj+%,k+% At

(3.9)— / / g(u(z, y,1)) da dt

= —AY A
1 At LR IS T RIS R
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The computation o{u’“rl is more complicated, but it can be handled in a
similar way. The spatlal integrals in (3.7)—(3.9) can be computed exactly
and for the flux integrals one may use an appropriate quadrature formula
(following the approach in [11,22]).

As in the one-dimensional case, we complete the construction of the
fully-discrete scheme in two steps. We first build a new piecewise polynomial
reconstruction

~n+1 1~
wn+ (x7y) = Z |: n+ X]k+w kX]+27k’+w k+1X.] k’+,
7,k

~n—+1
+w. +2,k+1XJ+ k+1 :|

where thex’s are the characteristic functions of the corresponding.
Then, we projectb™ ! back onto the original grid and obtain the new cell
averages

i1 Yyl

(3.10) ultt = e Ay / / 0" (x,y) dady.

The explicit form of the resultmg fuIIy-dlscrete scheme is extremely com-
plicated, and is of no practical use. Fortunately, all the computations, which
have been omitted in this section, are drastically simplified if they are made
in a semi-discrete context (a& — 0).

3.3 A genuinely multidimensional third-order semi-discrete scheme

In this section, we derive our new genuinely multidimensional semi-discrete
scheme. We proceed as in Sect. 2.2 (see also [17,16]). Using (3.10), we
obtain

Ti+s Vet

1 S )
vl / / "z, y) dady — Ujy,
2 2

The following notation for the intersections of the cedl; 1,T501 1] X
[yk_%,ykﬁ} with the D-domains is usedﬁ'jiiyki% for the four corners,

Sjt1 ks S -1 for the four side domains anB; . for the center. Notice,

1
3.11 = lim —
( ) A%I—I:O At
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that since the size of thé-domains is proportional t6At)2, and the size
of the S-domains~ At, we have

(3.12) W1 e (@y) =00+ O((A1)7),
@”Il k(x y) = w”Il , T O0(A1),
(3.13) w;;il (z,y) = w”jl + O(At),

and due to the conservation property of the reconstruction

n+1 n+1
(3.14) |ng’ // (z,9) d$dy—w i

The substitution of (3.12)—(3.14) in (3.11) yields

d 7n+1
3 k() = Jim AtAxAy(Z / / jaLpet 424y

g:tlk:tl

—I—Z // ”;:il dxdy

]kil

+§S// o’ dmdy)

FE=

1Djkl ni1 -

A:cAyw;k ~ Gk |

The first sum in (3.15) tends to zero a8 — 0, since[C),1,.1| =

O((At)?). To pass to the limit in the second sum, we use the fact that
| hatl = ayk L AtAz + O((At)?), and obtain
2

19 4 fm

1 a? k+3
3. n+ _ EPIE E 7n+1'
(3.16) fim A A, AtAa:Ay / / Wiy dody = =4 = lm @5

Jk+g

It follows from (3.7) that the value o1hm0 w"Z}ri is

Z .
i+s

1
20z [./ {pzkﬂ(x’ymé)+p§ik(3€,yk+%)

i—

Nl
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Y

Jk+1

a i

We then apply the Simpson’s quadrature formula to the above integral, and
using (3.16), we arrive at

n+1
Ateo AtA$Ay // Jk+3 1 dxdy

Jk+2
a]y'k-‘r g
; w NE
~ 12Ay2 [ ]k+1+u]k + 4(u yk+1+u]k)+ujk+1+u
1

o L9058 — 92) + o) — g2})

B.17) +g(uihyy) — Q(UEE)}

A similar treatment of the third sum in (3.15) leads to

lim n+1 d
At AtAxAy / / Wip1p dvdy

.’ﬂ
@il
~ 12533 [U?ﬂk‘*‘%k + 4( ]+1k+uyk)+u3+1k+u3k]
1
o [P ) = D) + 40w ) = £ ()

(318) +f(u¥ ) - ).

Finally, we consider the lastterm in (3.15). Note, that in the limit\as— 0,

the domainDJ r becomesectangular up to small corners of a negligible
size O((At)?) (see Fig. 3.1), and thus one can easily integrate equation
(2.13) overD; ;. x [t",t" 4+ At]. This observation together with Simpson’s
rule give

|D]7k” wn+1 ﬂn ]

AtS0 At AzAy Ik gk

a® 1 a® 1
i+3k [ NE E SE J=3k [ NW W SW

N 6A2 [“k g +“J>’“} ~ 6As [“’f g +“J¥’€}
Jk+ NW N NE a? k=3 [ sw S SE

2 ) 2

" 64y [ uik A+ “j,k} " 64y {“j,k +dujy + “j,k}

1

- [ — ) Al ) - @)
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1
HAER) = F@E] = 5 [ = 9l + 49
(3819)-g(uy)) + 9(F) — g(uSD)]

At the end, plugging (3.17)—(3.19) into (3.15), we arrive at our new
semi-discrete scheme, which can be presented in the conservative form

d_ Hf%,k(t) - H;—%,k(t)
HY (t)—HY (b
7k‘—"_l ]7k_l
2 PR3 2

with the numerical fluxes

H () = {f( up (1) + a5k (1) + 40 (u (D) + f(ufx (1))

a’ 1, (t)
RSN ) + 1 <>>}/{12}—”;§

[N 6) = WP (8) + A () — (1)
(3.21) ST () - ujs.f,g(w} ,

and

Hy 1 ()= {g(ujs,ygvﬂ(t)) + g (i (1) + 49 (uf 1 () + g(uji(t)))

+9(uj k1 (8) + g(uji (t)) 12 12

x [ () = w2 (1) + A s (8) = e(0)
(3.22) S (1) — u;f};l(t)} .

Here,a” i k(t) (t) are given in (3.6), and th&s are determined by

the correspondlng values of the piecewise quadratic reconstrugtior
at timet, see (3.5).

Remark 3.2 1. We would like to point out that the scheme (3.20)—(3.22)
has been constructed as a genuinely two-dimensional Godunov-type central
scheme. Our numerical experiments demonstrate that it has sharper reso-
lution, in comparison to the ‘dimension-by-dimension’ third-order central
semi-discrete scheme in [16].
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At the same time, our new scheme enjoys all the main advantages of
central schemes, the most important of whickimaplicity. Namely, it does
not involve Riemann solvers and does not require any information about
the eigenstructure of the Jacobidffsand 22 beyond the CFL-related local
speeds{a] }and{a k+1}

2. 1fin the derlvatlon of (3.20)—(3.22), we use piecewise linear recon-
struction and the second-order midpoint rule (instead of Simpson'’s rule),
we arrive exactly at the scheme (2.14)—(2.16), obtained in [17], where the
‘dimension-by-dimension’ approach was used.

3. The scheme (3.20) can be generalized for the convection-diffusion
equation

Ut + f(u)I + g(u)y = QJT(U’ ux,uy)x + Qy(uauza Uy)y»

as follows
Doy =i Mg Miwey ~ My
dt 3R\ = Az Ay
(3.23) Ltk @i 1n L kes kg
. Az Ay .

Here, the numerical convection fluxés®, HY are given by (3.21),(3.22)
and, as in the one-dimensional caé;—i’;?url L and Q?ml are appropriate
27 ’ 2
approximations to the diffusion fluxes.
4. Our semi-discrete approach can be easily extended to the multidimen-
sional caseqd > 3.

3.4 A new two-dimensional reconstruction
via “dimension-by-dimension” approach

We generalize the idea from Sect. 3.1 for the two-dimensional case — we
construct a piecewise quadratic reconstrucfipfy } as a convex combina-
tion of the basic paraboldg’, } and the linear function§L?, }. The basic
parabolas are given by

Qj,k(xvy):(uj,k_ 24 D U — 24 DyD— ]k)

+Dgugy(r — x5) + Dyugy(y — ve)

1
+7Dx Tu jk(l‘_x]) +D(€Dgu]k( j)(y_yk’)

(324) Dy Dy ]kz(y yk) )
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where the corresponding divided differences are
v(z £ Az, y) — v(z,y)

Div(z,y) ==+ ¥ 7
DY u(,y) = 1Y E AAy; —v(@y).
Div(a, y) = LT AT y;;;(x ~Ary)
Div(z,y) == v(z, y+Ay)2;;(x y—4y)

One can easily check that, as in the one-dimensional case, these parabolas
satisfy the requirements of conservation and accuracy.
The piecewise linear functions have the form

(3.25) Te(@y) =l + s (e —a5) + 87 (v — Y,

where the sIope@.sx,C, i Y. } may be computed, for example, using the min-
mod limiter

7 7 ikl ikl
z ; L e P £ W
57, = minmod ,
]7 x

Az ’ A
a”, —un um —
Yoo J.k Jik—=1 Tgk+1 Jsk
(3.26) ik = minmod < Ay , Ay > .

Then the reconstruction is

pik(@,y) = (1 =070 ) L7 (2, y) + 07445k (2, y),
(3.27) 0< 07 <1.

In general, the purpose of the I|m|te{r@“k} is to guarantee a non-oscillatory
nature of the reconstruction (3.27). Unfortunately in the two-dimensional
case, we do not know how suéls can be chosen. Moreover, it is not even
clear what the definition of a non-oscillatory propery should be.

Notice, that we do not need to recover the whole reconstruction — only
the eight point values.,, u%;, uf ., w)uly, upV, w5, andus) in
each(j, k)-cell are required to compute the numerical fluxes in (3.21)—
(3.22). These values may be computed using the ‘dimension-by-dimension’
approach, applied in two steps.

First, we use the reconstruction (3.24)—(3.27) with

(3.28) ik = min{0F,, 9?,1@},

to compute the point values in the coordinate direction?k, ?k fk and
uly 1. (see Fig. 3.2). The limiter§d7, } and {Gyk} are determined by (3.3)
with

Li() = LinCouk)s  ai() = G ur),
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X.
]

Fig. 3.2. Reconstruction ir- andy-directions

Fig. 3.3. Reconstruction in the diagonal directions

and
L3() = Liglan ), qf() = Liglan, ).

The choice of 67, } is based on the one-dimensional non-oscillatory recon-
struction, descrlbed in Sect. 3.1. This guarantees the third-order accuracy
and the lack of oscillations in the- andy-directions.

To ensure that there are no oscillations in the diagonal directions, the
point valuesu} 1, u}\", u5} andu$) should be computed by another re-
construction (see F|g 3. 3) This addltlonal reconstruction is determined as a
convex combination of different basic parabo{g$, } and linear functions

{f,ﬁk}, adjusted to the diagonal directio#s andd™,

P, y) = (L= 07 L (2, y) + 07487 (x, ),
(3.29) 0< 07 <1
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The adjusted basic parabolas are

e (- 207 025~ 2ot o )
+D¢" @ [22 (v - yk)—F%(x—xj)}
+Dd" _71@{22 (v — k) — %(m—xj)}
+D§" Dg [4(32)2<y—yk>2—®<x_xj)z]

dt ndt -n A A o 2
D b= J’f[m =)+ 550 =)

@30) D DTS- - po e o)

whereA := /(Ax)? + (Ay)?, and the divided differences in the diagonal
directions are

-Di ’U(.I‘ y) iv@:l:Am,y:l:Ay)—v(x,y)

A b
Dgﬁv(:t,y) . v(r + Az, y + Ay)2—AU(CC — Ax,y — A?J)7
DY () = £ METFATY iAAy) —v@y)

- v(r — Az,y + Ay) —v(z + Az,y — A
D u(, ) = 2 ’ y)m( —

The corresponding linear functions are given by

n —n A A
Lj,k(xay)zuj,kJr J’“[2A (y — yk)+ﬂ(fv—%’)]

(331) 455 [y - - g -],

where the slopes are computed using the minmod limiter, applied in the
diagonal directions, that is,

a, —ul u”? —a”
A . k —1,k—1 1,k+1 k
(3.32) S;_k = mlnmod< L JoLbl gL L

A A
a, — u —
P . k 7+1,k—1 7—1,k+1 7.k
3.33) §., = minmod | -2 .
(3:33) S A ’ A

The paramete@;{,C in (3.29) is determined by

(3.34) A;{k - min{éjfk, éjjk},
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Whereé;fk andéjjk are designed to prevent oscillations in the diagonal di-

rectionsd™ andd, respectively. Thé's are computed similarly to (3.3),
namely

+ Tn
Moy kpr = Lin(@iaet ey 1)
o
Mj5 = L4250 1, Yy 1)
+ _Tn
M1 o1~ Lkt Y1)

:I: ATL ) 9
Mk — Lj,k(xjﬂFé’ yk—%)

I

1 T T T
if oy g <y < UG gy

3.35) 6t = + 5
( ) Ik Mj;%,k,%_ ;L,k(qu:%7yk—%)

+ _7n
M5, = L3 (@1 Y1)

—Ln .
Mt et~ Lokt Ui t)

min

Y

) )

+ Tn
UOVE Y P CITERS /NEY)

H i3 il il
ifafo) g > Uy > Uiy s

otherwise

where

_ N N
Mng = max {qj,k(x]’i%a ykJr%)? qj,k:(mj$%ayk7l)}a

2

— 3 AT N
My = mun {qj,k(xj:t%7yk+%)7 qj,k('%‘q:%?%;—%)}?

M jEiktl - max{ (L ,k(xji%vyki%) + L;L:I:l,k:l:l(xji%a yki%))’
(

~T
D1,k T ls Ypt 1 )}

n

. 1/. A
m;_ﬂ: et :mm{2< i@ il Ypal >+L?i1,ki1(xji%7yki%))y
(

~n
941 k+1 %i%vyki%)}a
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~Nn
q5x1 k+1 (ij:F% ) yk:l:%)}'

Remark 3.3 1. Direct calculations show that the reconstruci$n(z, y)
conserves the original cell averages, that is

Tird Yerd

1 ATy —n

j,% Yp_1

-2

2. We would like to emphasize that we have actually used two differ-
ent piecewise quadratic reconstructions, (3.24)—(3.28) and (3.29)—(3.35),
in order to compute the eight point values along the inner boundary of
the (4, k)-cell. In the derivation of our genuinely two-dimensional scheme
(3.20)—(3.22) we use Simpson’s rule, which is applied to a single smooth
function, defined on théj, k)-cell. For example, this smooth function can
be viewed as the following convex combination,

(1 — o(z,9)pjr(w, y) + o(z,9)P] k(2 y),
where the weight functiop can be any smooth function satisfying
@(mjj:%ayk’) = gp(mjaykj:l) 1
P(rj51,Y21) =0, 0<p(z,y) <

N S B W
In summary, the values;,, u3,, u;); anduy, are computed as the
corresponding point values of

pik(z,y)

( Pk D =ik = Uik 24 DyD* J’“)

+< ]kDOujk+ (1- 9%)%@)(%_%)

+<Jk:D0ugk: (1- H?,k)sik)(y_yk)

k _
]2 DYDTuf(z — ;) + 07 Do Do (v — 25)(y — k)
on
(3:36) +-5° DYDY} (y — ),

_]7

whereeyk, STk and syk are given by (3.28) and (3.26), respectively. To
evaluate the corner valua§IE ul WV, WS andul)Y, we use
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= ("a?k ]k?8 (DL DT + DL DT ya )

+% (e;fk(Do — D§)ajy + (1 - 67,55, — g;k)>($ ;)
+22y (é;ﬁk(pg+ +D§)ufy + (1= 07,) (35, + §;k)> (v — ur)
+5§fk8(2x)2(DfDdf —2pd"' D¢ + DL DL ) " (x — )
0 kA Af; (DL D2 = DE DL Yagy (o — )y — )

(3.37) +67,, (Di*Dd_*+2D Dy + D% DT ) (v — uk)?,

A
8(Ay)?

with Gyk sjk andéjfk, given by (3.34), (3.32) and (3.33), respectively.

4 Numerical examples

In this section, we present a number of numerical experiments that have been
performed using the one-dimensional scheme (2.9)—(2.11) together with
the new reconstruction (3.4), and our genuinely two-dimensional scheme
(3.20)—(3.22), coupled with the new piecewise quadratic reconstruction
(3.36), (3.37).

The third-order semi-discrete methods, presented in this paper, require
at least a third-order time discretization scheme. In the numerical exam-
ples, shown below, we have used the third-order TVD Runge-Kutta method,
proposed in [34,36]. Our choice is based on the stability properties of this
method, each time step of which can be viewed as a convex combination of
small forward Euler steps.

To solve problem (1.2), we may use either an implicit or an explicit
time discretization for the parabolic term. To ensure stability of the explicit
method, an additional restriction on the time step is imposed by the parabolic
term, namelyAt must be proportional toAz)?. One may accelerate the
computations by using an implicit, or explicit-implicit ODE solver. These
methods are unconditionally stable, but they require inverting of nonlinear
operators (in the case of nonlinear diffusion), which is a computationally
expensive and analytically complicated procedure. Alternatively, the accel-
eration may be achieved by employing an efficient explicit Runge-Kutta type
ODE solver with larger stability domain (in comparison with the standard
Runge-Kutta methods), see [30] and the references therein.

In all the numerical experiments below, the CFL number is equal to
0.475.
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4.1 Linear accuracy tests

Exampé 1 — One-dimensional transport equatidrirst, we test the accu-
racy of the scheme (2.9)—(2.11) with the reconstruction (3.4) on the initial
boundary value problem (IBVP) for the linear transport equation

(4.1) {ut—i—ux:(), x € [0, 27],

u(z,0) = sinz,

with periodic boundary conditions. This problem has a global classical so-
lution, which is computed at tim& = 1. We considerN grid points,

N = 40,80,...,1280, and measure th&'- and L>-errors, respectively.

To calculate the errors, we use the computed va{ug$ at the final time,

and the sliding averaggsi(x;, 1)} of the exact solution of (4.1), namely

| — a(- 1)l = Az Y |y — a(x;, 1),
J
|la — (-, 1)||pe := m]ax lu; —u(xj;,1)|.

The results of these computations are presented in Table 4.1. They clearly
demonstrate that the scheme is third-order.

Example 2 — Two-dimensional transport equati®econd, we apply our
two-dimensional scheme (3.20)—(3.22) with the reconstruction (3.36)—
(3.37) to the IBVP for the two-dimensional linear transport equation

4.2) {“t tugtuy =0, (z,y) €[0,2] x [0,1],

u(zx,y,0) = sin[r(x + 2y)],

subject to periodic boundary conditions. We again calculaté thandZ>°-

errors at timel" = 1, using the cell averages of the computed and the exact
solutions of (4.2). As in the one-dimensional case, the results, presented in
Table 4.2, indicate the third-order convergence rate.

Table 4.1. Accuracy test for the linear advection problem (4151

N L*-error rate L°-error rate

40 1.355e-03 - 3.384e-04 -

80 1.699e-04 3.00 4.245e-05 3.00
160 2.125e-05 3.00 5.313e-06 3.00
320 2.658e-06 3.00 6.645e-07 3.00
640 3.323e-07 3.00 8.307e-08 3.00
1280 4.154e-08 3.00 1.038e-08 3.00
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Table 4.2. Accuracy test for the linear advection problem (4231

Grid L-error rate L*-error rate

16 x 16 1.206e-01 - 9.400e-02 -

32 x 32 1.623e-02 2.89 1.272e-02 2.89

64 x 64 2.056e-03 2.98 1.614e-03 2.98
128 x 128 2.577e-04 3.00 2.024e-04 3.00
256 x 256 3.224e-05 3.00 2.532e-05 3.00

4.2 One-dimensional problems

Exampé 3 — Burgers’ equationln this example, we solve the IBVP for the
one-dimensional Burgers’ equation

2

(4.3) Ut (%)m =0, xz€l0,2n],

u(z,0) = 0.5+ sinz,

with periodic boundary conditions. It is known that the unique entropy so-
lution of (4.3) develops a shock discontinuity at time: 1. In Fig. 4.1 we
present the approximate solution at the post-shock fime 2, computed

by the scheme (2.9)—(2.11) with the reconstruction (3.4).

Notice, that even though the method provides a high resolution of the
shock, one can observe the over- and undershootings near the discontinuity.
This happens because the limitgr, defined in (3.3), is switched off (i.e.,

07 = 1) at the local extrema.

It is possible to reduce these oscillations with the following recipe —we

choosed}' to be

n _ gnja+3
07 =max<{ min (1 — |qj (l‘jJr%) % | ,
J (A.’E)a

g (x;_1) —a}|**
(4.4) 1— -2 ](Z )a] 08, a>1,
xr

whena? > a?, ), oruj < ujy,. The modified reconstruction (3.4),(4.4)
is still third-order in smooth regions, and at the same time, it reduces the
oscillations near the discontinuities.

In general, anyy > 1 can be used in (4.4). Our numerical experiments
have not indicated which value afis optimal. Our experience shows that
largera’s lead to smaller oscillations, butincrease the numerical dissipation.
In this example (see Fig. 4.2) and in the examples below, we have used
a = 10.
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Fig. 4.1. Burgers equation (4.3); using reconstruction (3.4)
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Fig. 4.2. Burgers equation (4.3); using reconstruction (3.4),(4.4)

Exampek 4 — One-dimensional Euler equations of gas dynantitere we
consider the one-dimensional Euler system,

o)
(4'5)§ m
L E

0
+ —

m
pu* +p
u(E +p)

0,

wherep, u, m = pu, p and E are the density, velocity, momentum, pres-
sure and the total energy, respectively, ang 1.4. We solve this system

with the initial data

(4.6)

u(z,0) =

uz = (1,0,2500)",
uy = (1,0,0.025)", 0.1<z<0.9,
ug = (1,0,250)",

0<x<O.

09<x<

L,

L,
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0 0‘.1 0‘.2 o.‘s 0‘4 0‘5 0‘6 D‘.7 0‘.8 0‘.9 1
Fig. 4.3. Problem (4.5)—(4.6), density @&t0.01; using reconstruction (3.4)
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Fig. 4.4. Problem (4.5)—(4.6), density &t=0.01; using reconstruction (3.4), (4.4)

and solid boundary conditions, applied to both ends. The example describes
the interaction of blast waves and was proposed by Woodward and Colella
in [37].

To compute the approximate solution of (4.5)—(4.6), we use the scheme
(2.9)—(2.11) with the reconstruction (3.4). The computations are done, using
N = 400 grid points, and the solution is plotted together with a reference
solution, obtained by the same method wih= 1600.

Figures 4.3, 4.5, and 4.7 show the density, the velocity, and the pressure
at time7 = .01. Notice, that if we usd00 grid points, the second density
spike has a height of 5.75, which is better in comparison with the heights
of ~ 5.2 obtained by the third-order staggered central scheme in [29], and
~ 3.7, obtained by the second-order Nessyahu-Tadmor scheme in [31].
This illustrates the higher resolution and smaller numerical dissipation of
our method.
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Fig. 4.5. Problem (4.5)—(4.6), velocity &=0.01; using reconstruction (3.4)
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Fig. 4.6. Problem (4.5)—(4.6), velocity a=0.01; using reconstruction (3.4), (4.4)

Figures 4.4, 4.6, and 4.8 show the solution of the same problem, com-
puted again by the scheme (2.9)—(2.11), but this time coupled with the mod-
ified reconstruction (3.4),(4.4). The height of the second density spike here
is ~ 5.5 which, as we have mentioned above, is due to the more dissipative
nature of the modified reconstruction. The advantage of this approach is that
it reduces the oscillations, as one can see on Figs. 4.15 and 4.16.

We also perform the computations at tirhe= 0.03. The results are
presented in Figs. 4.9-4.16. We would like to point out that4far grid
points the maximum value of the density~s23 (see Fig. 4.9), and it is
~ 21 (see Fig. 4.9), if we apply the limiter (4.4) at local extrema. Notice,
that for the more dissipative third-order staggered central scheme in [29]
this height is~ 20.

Finally, we compute the solution of (4.5)—(4.6) at tiffie= 0.038, shown
in Figs. 4.17-4.22. Here, the value of the second density spikei§ (see
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Fig. 4.7. Problem (4.5)—(4.6), pressure®&t0.01; using reconstruction (3.4)
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Fig. 4.8. Problem (4.5)—(4.6), pressuret0.01; using reconstruction (3.4), (4.4).

Fig. 4.17), and-~ 5.2, if we apply (4.4) (see Fig. 4.18). The corresponding
number from [29] is~ 5.

4.3 Two-dimensional problems

Exampé 5 — To-dimensional convection-diffusion problefVe consider
the two-dimensional Burgers-type equation

ut + (U)g + (u?)y = e(V(W)ug)z + (v (u)uy)y,
4.7) (z,y) € [~1.5,1.5] x [~1.5,1.5],

with astronglydegenerate diffusion coefficient

V() = 0, lu| <0.25,
=1, Jul > 0.25.
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Fig. 4.9. Problem (4.5)—(4.6), density @=0.03, using reconstruction (3.4)

25

20

T
N=1600 —
N=400 X

0

0

0.1

0.2

03

04

05

0.6

07

08

0.9 1

Fig. 4.10. Problem (4.5)—(4.6), density &t0.03 using reconstruction (3.4), (4.4)
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Fig. 4.11. Problem (4.5)—(4.6), velocity &t=0.03, using reconstruction (3.4)
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Fig. 4.12. Problem (4.5)—(4.6), velocity &=0.03, using reconstruction (3.4), (4.4)
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Fig. 4.13. Problem (4.5)—(4.6), pressure®&t0.03, using reconstruction (3.4)
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Fig. 4.14. Problem (4.5)—(4.6), pressuret0.03 using reconstruction (3.4), (4.4)
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Fig. 4.15. Problem (4.5)—(4.6), pressure &0.03 using reconstruction (3.4); zoom at
[0.65,0.75]
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Fig. 4.16. Problem (4.5)—(4.6), pressure®at0.03; using reconstruction (3.4), (4.4); zoom
at[0.65,0.75)
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Fig. 4.17. Problem (4.5)—(4.6), density @t=0.038 using reconstruction (3.4)
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Fig. 4.18. Problem (4.5)—(4.6), density @&t0.038 using reconstruction (3.4), (4.4).
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Fig. 4.19. Problem (4.5)—(4.6), velocity at=0.038 using reconstruction (3.4)
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Fig. 4.20. Problem (4.5)—(4.6), velocity at=0.038 using reconstruction (3.4), (4.4)
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Fig. 4.21. Problem (4.5)—(4.6), pressure&t0.038 using reconstruction (3.4)
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Fig. 4.22. Problem (4.5)—(4.6), pressure&t0.038 using reconstruction (3.4), (4.4)

This equation is of hyperbolic nature when € [—0.25,0.25], and is
parabolic elsewhere.
We solve (4.7), subject to the initial data

—1, if (x—0.5)%+ (y —0.5)2 <0.16,
u(z,y,0) =< 1, if (z+0.5)2+ (y+0.5)% <0.16,
0, otherwise.

The numerical experiments are performeddoe 0.1, and fore = 0. In

the first case we use the scheme (3.23), and in the second, pure hyperbolic
case, we apply the scheme (3.20)—(3.22), coupled with the reconstruction
(3.36)—(3.37).

Figures 4.23 and 4.24 show the computed solutions atfime0.5 in the
hyperbolic and the hyperbolic-parabolic case, respectively. We would like
to emphasize, that in both cases the resolution of the shock discontinuities is
very high, and the transition between the hyperbolic and parabolic regions
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Fig. 4.23. Pure hyperbolic problem (4.7) with= 0, T=0.5; 60 x 60 grid

y

Fig. 4.24. Degenerate parabolic problem (4.7) witk= 0.1, T=0.5; 60 x 60 grid
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Fig. 4.25. Cross-section along the line=
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Fig. 4.26. Equation (4.8), densityf=0.5, 128 x 64 grid, 30 contours

is accurate. This can be clearly seen on the one-dimensional cross-section
along the diagona) = z (see Fig. 4.25).

Exampé 6 — Wwo-dimensional Euler equations of gas dynamiesthis
example, we consider the two-dimensional compressible Euler equations

o) o | ity o |

O lpu| O | piPt+p | 0| pw | _

ot | pv + oz puv + oy | pv?+p 0
E u(E +p) v(E + p)

(48) p=(—1)- |[E- L0 +0?),

wherep, u, v, p and E are the density, the- andy-velocities, the pressure
and the total energy, respectively. We solve (4.8) for an ideal gas (

1.4) in the domain[0, 2] x [0,0.5] U [0, 1] x [0.5, 1], with the initial data
corresponding to a vertical left-moving Mach 1.65 shock, positioned-at
1.375. The initial shock propagates and then diffracts around a solid corner.
We compute the solution at tinie = 0.5, using the scheme (3.20)—(3.22)
together with the reconstruction (3.36)—(3.37). Figures 4.26, 4.27, and 4.28
are contour plots of the density fd28 x 64, 256 x 128, and512 x 256 grid
points, respectively. The speedu? + v2, and the pressure, computed for
512 x 256 grid points, are shown in Figs. 4.29 and 4.30.

We would like to point out the remarkable resolution, achieved by our
genuinely two-dimensional third-order central scheme, where none of the
characteristic decomposition, dimensional splitting or evolution of noncon-
servative quantities is used.
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Fig. 4.27. Equation (4.8), densityf=0.5, 256 x 128 grid, 30 contours
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Fig. 4.28. Equation (4.8), densityf=0.5, 512 x 256 grid, 30 contours
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Fig. 4.29. Equation (4.8), speed=0.5, 512 x 256 grid, 20 contours

4.4 Two-dimensional incompressible Euler and Navier-Stokes equations
In this example, we consider the two-dimensional equation

(4.9) wi + (uw)y + (vw)y = vAw,
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Fig. 4.30. Equation (4.8), pressur&=0.5, 512 x 256 grid, 30 contours

wherew := v, —u, is the vorticity, and the velocity fielgk, v) is divergence-
free, that is
(4.10) Uy + vy = 0.

The system (4.9)—(4.10) is a vorticity formulation of the incompressible
Euler (forv = 0) or Navier-Stokes (forr > 0) equations. The equation
(4.9) can be viewed as the two-dimensional conservation law

(4.11) wt + f(w)z + 9(w)y = vAw,

with a global flux(f, g) := (uw, vw).
Our scheme (3.23), applied to (4.11), has the form

d _ H;E_i_%’k(t) _Hf_%’k(t)
%wj’k(t)__ Az
HY (t)—HY (1)
K+1 Jo—1
(4.12) g Qi)

with the numerical convection fluxes

T . NW NE W E
HY o= {“j+;,k+; (Wit T wje) + 4w 1 (Wit p +wjy)

SW SE Uil
11 (W5 e T @ik) 120 - =5

NW NE W E SW SE
(4.13) X [wj+1,k — Wik T AW e —wik) T @iie — Wik

and

Y — SW NwW S N
Hj,kJr% = {”j—;,k+;(wj,k+1 i) A1 (@WFk +wy)



Genuinely multidimensional central scheme 725

Y
a’, 1
SE NE Jk+3
H0 gy LWk + Wi )}/{12} BT
NE

SW NwW S N SE
(4.14) x [wa’,kﬂ — Wik AWk — Wik) T Wik — Wik |-

The local speeds can be chosen, for example, as

(4.15) = |u

. Yy .

Goga = Mgl @y = gl
and the diffusion flux?; ;. can be approximated by the fourth-order central
differencing,
—Wj2k + 160541 — 300,k + 16W5—1k — Dj—ok

12(Ax)?
—Wj k2 + 160; k11 — 30w; k. + 160 k1 — W) x—2

12(Ay)? '

The intermediate values of the velocities, which appear in (4.13) and (4.14),
are computed by the fourth-order formula

Qjr =

(4.16) +

Uik Uk + YUk — w1k
Uitk = 16 !

—Vj k+2 + 9Uj7k+1 + 9Uj7k — Vj k-1

16 )
To perform these computations, we need to recover the values of the veloc-
ities at the grid point§u; , v, . } from the known vorticity{w; ;. } at every
time step. There are a lot of methods of the velocity recovery (see, e.g., [24]
and the references therein). In this example, we use the stream-function
¥, whereu = ¢, v = —1),, andy is a solution of the Poisson equation
Ay = —w. We solve the nine-points Laplaciafw);, = —w,x, and we
substitute the computed values of the stream-function in

_ ~Uikv2 + 8Yjke1 — 8Yjk1 + Pjk2

(4.17) Vil =

Uik 124y
Yijok — 8Vjr1k +8%j_1k — Vj—2k
4.18 = R ’ 7 43
(4.18) Uik 124z

We now apply our scheme (4.12)—(4.18), coupled with the reconstruction
(3.36)—(3.37), to the Navier-Stokes equation (4.9)—(4.10)) with 0.05,
subject to the smooth periodic initial data (taken from [5]),

(4.19) w(z,y,0) = —coszsiny, v(z,y,0) = sinz cosy,

The exact solution to this problem is given by

—2uvt

u(z,y,t) = —e cos x sin y, v(x,y,t) = e *!sinzcosy.
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Table 4.3. Accuracy test for the Navier-Stokes equation (4.9)—(4.10),(4495 0.05;
errors atl’ = 2

Nz x Ny L*®-error rate L'-error rate L*-error rate
32 x 32 2.104e-03 - 2.762e-02 - 5.625e-03 -
64 x 64 2.788e-04 2.92 3.653e-03 2.92 7.404e-04 2.93
128 x 128 3.556e-05 2.97 4.634e-04 2.98 9.391e-05 2.98
256 x 256 4.444e-06 3.00 5.811e-05 3.00 1.176e-05 3.00

M%

X

X

Fig. 4.32. Incompressible Euler equation (4.9)—(4.10),(4.2310, 128 x 128 grid

The purpose of this numerical experiment is to check the accuracy of our
scheme. The approximate solution is computed atfime 2, and the errors

for the vorticity are measured in tHe°-, L'- andL?-norms. The results are
presented in Table 4.3. We would like to point out that due to the genuinely
multidimensional nature of our scheme, the convergence rate is higher than
the convergence rate reported in [16], where the ‘dimension-by-dimension’
approach was used.
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Fig. 4.34. Incompressible Euler equation (4.9)—(4.10),(4.2310, 128 x 128 grid

Next, the scheme (4.12)—(4.18) together with the reconstruction (3.36)—
(3.37) is implemented for the periodic double shear-layer model problem
(taken from [3]). We solve the Euler equation, (4.9)—(4.10) witk= 0,
subject to the27, 27)-periodic initial data,

tanh(L(y —7/2)), y <,
(4.20) u(z,y,0)= v(z,y,0) =4 -sinz.
tanh(%(Bﬂ/Q -y)),y >,

We use the value /15 for the "thick” shear-layer width parametgr and

the value0.05 for the perturbation parametér Figures 4.31 and 4.32 are

the contour plots of the solution at tifie= 10 with 64 x 64 and128 x 128

grid points, respectively. The three-dimensional plots of the same results
are shown in Figs. 4.33 and 4.34. The performed numerical experiments
demonstrate that our scheme provides sharper resolution than the third-
order ‘dimension-by-dimension’ central scheme in [16]. This is due to the
genuinely multidimensional nature of our method.
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