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Finite-Volume-Particle Methods for Models of
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Alina Chertock,1 Alexander Kurganov,2 and Guergana Petrova3

Received September 22, 2004; accepted (in revised form) September 27, 2004; Published online January 10, 2006

We present a new hybrid numerical method for computing the transport of a
passive pollutant by a flow. The flow is modeled by the Saint-Venant system of
shallow water equations and the pollutant propagation is described by a trans-
port equation. The idea behind the new finite-volume-particle (FVP) method is
to use different schemes for the flow and the pollution computations: the shal-
low water equations are numerically integrated using a finite-volume scheme,
while the transport equation is solved by a particle method. This way the spe-
cific advantages of each scheme are utilized at the right place. This results in a
significantly enhanced resolution of the computed solution.

KEY WORDS: Saint-Venant system of shallow water equations; transport of
pollutant; finite-volume schemes; particle methods; central-upwind schemes;
balance laws.

1. INTRODUCTION

Prediction of a pollution transport in flows is an important problem in
many industrial and environmental projects. Different mathematical mod-
els are used to describe the propagation of the pollutant and to obtain its
accurate location and concentration.

In this paper, we consider the transport of a passive pollutant by a
flow modeled by the one-dimensional (1D) Saint-Venant system
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⎧
⎪⎨

⎪⎩

ht + (hu)x =S,
(hu)t +

(

hu2 + gh2

2

)

x

=−ghBx. (1.1)

Here h and u are the depth and the velocity of the water, respectively,
g is the gravity constant, and S is a source term. The function B(x) rep-
resents the bottom topography. The system (1.1) is a simple model, intro-
duced in [15], and is commonly used to describe flows in rivers and coastal
areas. For a detailed description of a more realistic shallow water model,
derived from the Navier–Stokes equations, we refer the reader to [6].

The propagation of the pollutant is modeled by the transport equation,

(hT )t + (uhT )x =TSS, (1.2)

which describes the motion of the pollutant concentration T , where TS is
a given concentration of the pollutant at the source. Equations (1.2) and
(1.1) are coupled through the source terms.

Designing an accurate, efficient and reliable numerical method for this
model is a challenging task. Solutions of the system (1.1)–(1.2) are typi-
cally nonsmooth: they may contain both nonlinear shock and rarefaction
waves, and linear discontinuities in the pollution concentration. Moreover,
the interaction with a nonflat bottom may result in very complicated wave
structures and nontrivial equilibria, which are hard to preserve numeri-
cally. In addition, dry states (arising, for example, in dam break problems)
need special attention, since (even small) numerical oscillations may lead
to nonphysical negative values of the water depth there.

In order to overcome these difficulties, a high-resolution shock-cap-
turing numerical method is required. Such methods for hyperbolic systems
of balance laws, and in particular for (1.1), are readily available (to cite a
few of them, see e.g. [2, 5, 8, 12, 14]). One of the simplest and the most
efficient approaches is to use the central-upwind schemes [8, 9]. They can
be relatively easily extended to solve (1.1)–(1.2), but the resolution of the
computed contact waves in the pollution concentration is not sufficiently
sharp. There are some other alternatives (see e.g. [1]), but we are not aware
of any method which completely resolves this issue.

Here, we propose such a method. It is a hybrid finite-volume-particle
(FVP) method, whose core idea is to use central-upwind schemes to solve
the system of balance laws (1.1) and a particle method [13] to solve the
transport Eq. (1.2). The new method takes an advantage of the nondissip-
ativeness of the particle method, and thus guarantees almost perfect reso-
lution of the contact waves. In [3], the FVP method has been generalized
for the two-dimensional (2D) extension of the system (1.1)–(1.2).
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The paper is organized as follows. In Secs. 2.1 and 2.2, we give a
brief overview of central-upwind schemes and particle methods. Our new
method is described in Sec. 2.3, and the numerical computations are car-
ried out in Sec. 3.

2. HYBRID FINITE-VOLUME-PARTICLE METHOD

2.1. Central-Upwind Schemes—An Overview

In this section, we briefly describe the central-upwind schemes for
1D hyperbolic systems of conservation and balance laws. For a complete
description of the schemes and their derivation, we refer the reader to [9].

We first consider a 1D system of conservation laws, ut + f (u)x = 0,
which can be rewritten in the equivalent integral form:

ū(x, t+∆t)= ū(x, t)− 1
∆x

[∫ t+∆t

τ=t

{
f
(
u(x+∆x

2 , τ )
)
−f
(
u(x−∆x

2 , τ )
)}
dτ

]

,

(2.1)

where ū(x, t) := 1
∆x

∫

I (x)
u(ξ, t) dξ , and I (x) :=

{
ξ : |ξ −x|<∆x/2

}
.

For simplicity, we consider a uniform grid, tn :=n∆t, xj = j∆x. If at
time level tn the cell averages, ūnj := ū(xj , tn), are available, we use them to
reconstruct a nonoscillatory piecewise polynomial,

ũ(x, tn)=pnj (x), x
j− 1

2
<x<x

j+ 1
2
, ∀j, (2.2)

and evolve it according to (2.1). The nonoscillatory behavior of the
central-upwind schemes depends on an appropriate choice of a piece-
wise polynomial reconstruction—various such reconstructions are avail-
able. Note that ũ(·, tn) is, in general, discontinuous at the interface
points {x

j+ 1
2
}. The discontinuities propagate with right- and left-sided local

speeds, which, for example, can be estimated by

a+
j+ 1

2
=max

{

λN

(∂f

∂u
(u−
j+ 1

2
)
)
, λN

(∂f

∂u
(u+
j+ 1

2
)
)
,0
}

,

a−
j+ 1

2
=min

{

λ1

(∂f

∂u
(u−
j+ 1

2
)
)
, λ1

(∂f

∂u
(u+
j+ 1

2
)
)
,0
}

.

(2.3)

Here λ1 < · · ·< λN are the N eigenvalues of the Jacobian ∂f
∂u

, and
u+
j+ 1

2
:=pn

j+1(xj+ 1
2
) and u−

j+ 1
2

:=pnj (xj+ 1
2
) are the corresponding right and

left values of the reconstruction. New cell averages are obtained from
(2.1) by integrating over nonuniform rectangular domains, which after an
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intermediate reconstruction are projected back onto the original grid. This
results in a fully-discrete central-upwind scheme, which can be found in [9].
Passing to the limit as ∆t→0, we obtain the semi-discrete central-upwind
scheme:

d

dt
ūj (t)=−

H
j+ 1

2
(t)−H

j− 1
2
(t)

∆x
,

where the numerical fluxes H
j+ 1

2
are given by

H
j+ 1

2
(t) :=

a+
j+ 1

2
f (u−

j+ 1
2
)−a−

j+ 1
2
f (u+

j+ 1
2
)

a+
j+ 1

2
−a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
−a−

j+ 1
2

[
u+
j+ 1

2
−u−

j+ 1
2

]
.

(2.4)

In [8], the scheme (2.1)–(2.4) has been generalized for the 1D system
of balance laws, ut +f (u)x =R(u(x, t), x, t). The generalization is

d

dt
ūj (t)=−

H
j+ 1

2
(t)−H

j− 1
2
(t)

∆x
+ R̄j (t), (2.5)

where R̄j (t) is an appropriate quadrature for 1
∆x

∫ xj+ 1
2

x
j− 1

2
R(u(x, t), x, t) dx,

and the numerical fluxes, H
j+ 1

2
, are still given by (2.4). However, it should

be pointed out that the local speeds, a±
j+ 1

2
, which correspond to the largest

and the smallest speeds of the nonlinear waves that appear in the solution
of the local generalized Riemann problem, centered at x = x

j+ 1
2
, can be

affected by the presence of the source term, and thus formula (2.3) may
require an adjustment.

Remarks.

1. The semi-discretization (2.4)–(2.5) is a system of time dependent
ODEs, which should be solved by a sufficiently accurate and sta-
ble ODE solver.

2. The (formal) order of the resulting method is determined by the
order of the piecewise polynomial reconstruction (2.2) and by the
order of the ODE solver.

2.2. Particle Methods—An Overview

Here, we briefly describe the second main ingredient of our new
method—the particle method. We consider the initial value problem for
the linear transport equation with variable coefficients:
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ϕt + (ξϕ)x =f, ϕ(x,0)=ϕ0(x). (2.6)

First, the initial condition is approximated by a sum of Dirac distri-
butions,

ϕ0(x)≈ϕN(x,0)=
N∑

i=1

wi(0)δ(x−xpi (0)), (2.7)

with x
p
i (0) being the initial location and wi(0) being the initial weight of

the ith particle (wi(0) is an integral of ϕ0(x) over a neighborhood of the
point xpi (0)). Then, an approximate solution ϕN to (2.6) is sought in the
form

ϕN(x, t)=
N∑

i=1

wi(t)δ(x−xpi (t)), (2.8)

where the evolution of the weights wi and the locations xpi is described by
the system of ODEs:

dx
p
i (t)

dt
= ξ(xpi , t),

dwi(t)

dt
=βi(t), (2.9)

with initial values (xpi (0),wi(0)). Here, βi reflects the contribution of the
source term f (see e.g. [13]). In general, (2.9) is to be solved numerically,
and at final time tfin, the solution ϕ(x, tfin) is recovered from the computed
approximation ϕN(x, tfin) (the details are discussed in Sec. 2.3).

2.3. A New Finite-Volume-Particle Method

The new numerical method for (1.1)–(1.2) is a hybrid of the meth-
ods in Secs. 2.1 and 2.2: we apply the semi-discrete central-upwind scheme
to (1.1), while (1.2) is solved by the particle method. We now present a
detailed description of the method.

Following [8, 14], we first rewrite the Saint-Venant system (1.1) in
terms of the water surface, w := h+B,

{
wt + (hu)x =S,
(hu)t +

[
(hu)2

w−B + g
2 (w−B)2

]

x
=−g(w−B)Bx. (2.10)

The central-upwind scheme (2.4)–(2.5) is then applied to this system.

To this end, the quadratures R̄j :=
(
R̄
(1)
j , R̄

(2)
j

)T
that appear on the right-

hand side of (2.5) should be specified. The quadrature in R̄(1)j depends on
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the type of the source S. An example of a spatially localized source is con-
sidered in Sec. 3, Example 2. To compute R̄(2)j , one should use the special
quadrature,

R̄
(2)
j =−g

B(x
j+ 1

2
)−B(x

j− 1
2
)

∆x
·

(
w−
j+ 1

2
−B(x

j+ 1
2
)
)

+
(
w+
j− 1

2
−B(x

j− 1
2
)
)

2
,

where, as before, w±
j+ 1

2
denotes the right/left value of the piecewise poly-

nomial reconstruction of w at x
j+ 1

2
. Using the above quadrature guaran-

tees the preservation of the stationary steady-state solution (w≡Const, u≡
0, S ≡ 0), which corresponds to the “lake at rest” state. This property is
especially important when quasi-stationary solutions are concerned (see [8]
for details).

Next, we consider the transport equation (1.2) and solve it using the
aforementioned particle method with ϕ :=hT , ξ :=u, and f :=TSS. Note
that the method, described in Sec. 2.2 for linear transport equations, can
be applied directly to (1.2), since it is, in fact, decoupled from system
(2.10). To do that, we need to know the values of the velocity u(xpi (t), t)
and the functions βi in (2.9). The velocity u can be calculated from the
piecewise polynomial approximation of w=h+B and hu, obtained when
solving (2.10). The functions βi depend on the type of the source term in
(1.2). A particular example is considered in Sec. 3, Example 2.

Remark. We use two different grids in our hybrid method. The grid
for the central-upwind scheme, {xj }, is fixed, while the particle locations,
{xpi (t)}, change in time according to the flow.

Recall that after applying the particle method to equation (1.2), only
the locations {xpi (tfin)} of the particles and their weights {wi(tfin)} will be
available. Then, the solution hT (·, tfin) at the final time should be recov-
ered by regularizing the particle solution. Such a regularization is per-
formed by a convolution with a “cut-off function”, which is taken as a
smooth approximation of the δ-function, see [13]. Usually, this procedure
works perfectly to recover smooth solutions. However, here we mostly deal
with discontinuous solutions, whose discontinuities will be overly smeared
by the use of smooth cut-off functions, especially in practice, when a rel-
atively small number of particles is used.

To recover nonsmooth solutions, we implement a different technique.
We interpret the weights of the particles, wi(tfin), as an integral of the

solution hT (·, tfin) over the interval Ii :=
[
x
p

i−1(tfin)+xpi (tfin)

2 ,
x
p
i (tfin)+xpi+1(tfin)

2

]

,
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and thus the cell averages hT i over Ii are

hT i = wi(tfin)

|Ii | = 2wi(tfin)

x
p

i+1(tfin)−xpi−1(tfin)
. (2.11)

This will not smear the discontinuities, but may lead to an oscillatory
approximation of the solution. When such oscillations appear, we apply
the nonlinear filter, proposed in [4], to {hT i}. To this end, we first recon-
struct a piecewise linear interpolant from the cell-averages (2.11), and use
it for computing the point values of hT at the original uniform grid points
{x
j+ 1

2
}. We then utilize a filter algorithm similar to Algorithm 2.3 in [4].

Notice, that the nonlinear filter is applied only once, as a post-processing,
not after every time step as in [4], and only if oscillations are observed.
For instance, in Examples 1 and 2 in Sec. 3, we do not apply the filter
since the solutions, recovered by formula (2.11), are nonoscillatory.

3. NUMERICAL EXAMPLES

In this section, we illustrate the performance of the new FVP method
by a number of numerical examples. We also compare these results
with the corresponding solutions computed by the central-upwind scheme,
applied to both (2.10) and (1.2). This is a finite-volume method, which will
be referred to as FV method.

In our examples, we use the second-order central-upwind scheme
that employs the generalized minmod piecewise linear reconstruction [10,
11, 16] and the third-order strong stability-preserving (SSP) Runge–Kutta
method for the time evolution (see [7] and the references therein).

We briefly recall that if one has a set of cell averages, {ψ̄j }, then the
generalized minmod reconstruction is given by Lnj (x)= ψ̄j + sj (x − xj ),

with the slopes

sj =minmod

(

θ
ψ̄j − ψ̄j−1

∆x
,
ψ̄j+1 − ψ̄j−1

2∆x
, θ
ψ̄j+1 − ψ̄j

∆x

)

.

Here, θ ∈ [1,2], and the multivariate minmod function is defined by

minmod(x1, x2, ...) :=

⎧
⎪⎨

⎪⎩

minj {xj }, if xj >0 ∀j,
maxj {xj }, if xj <0 ∀j,
0, otherwise.

Notice that larger θ ’s correspond to less dissipative but, in general,
more oscillatory limiters. In the presented examples, we took θ =2.
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Fig. 1. Pollutant concentration computed by the FVP and FV methods.

Example 1. —Advection of Pollutant. In this example, we assume that
the initial water level is constant, w(x,0) ≡ 1, the initial discharge is
h(x,0)u(x,0)= 0.1, the gravitational constant g= 1, the pollution source
has been already turned off, S≡0, the bottom topography is given by

B(x)=
{

0.25(cos(10π(x−0.5))+1), if 0.4�x�0.6,
0, otherwise,

and the only initially polluted area is [0.4,0.5], where T (x,0)=1.

In time, the initial pollution moves to the right, and we numerically
track its propagation. The pollutant concentration at times t=0,2 and 4,
computed by the FVP method with 20 “polluted” particles and the FV
method, is shown in Fig. 1 (in both methods we take ∆x= 0.005 for the
central-upwind scheme). One can clearly see the superiority of the results
obtained by the FVP method.

Example 2. —Emission of Pollutant. This example is taken from [1].
Here, w(x,0)≡2, h(x,0)u(x,0)=0.5, g=1, and

B(x)=
{

0.2−0.05(x−10)2, if 8�x�12,
0, otherwise.

We assume that the water is initially clean, but at time t = 100 a
source of polluted water S=0.01 with a concentration of pollutant TS=10
is turned on at the point x= 45. Later on, at time t = 300, the pollution
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Fig. 2. Pollutant concentration computed by the FVP and FV methods.

source is turned off. The source is, in fact, given by S(x, t)= 0.01·δ(x −
45) for 100� t�300, and therefore its discretization, required by the cen-
tral-upwind scheme (2.4)–(2.5), is straightforward. Let the point x=45 be
located inside the j0th cell. Then we have R̄(1)j0

=0.01/∆x and R̄
(1)
j =0 for

all j �= j0.
As for the particle method for (1.2), the presence of the source will

result in the dynamical generation of particles at x = 45 according to
the following algorithm. A total number of particles N is prescribed in
advance, they appear every ∆τ := (min{tfin,300}−100)/(N−1), starting at
t = 100, and their weights are wi = 0.1∆τ . Since the source is localized at
one point, the weights of the particles in (2.8) will not change after they
are flown away from the source.

In Fig. 2, we present the pollutant concentration computed by the
FVP method with 20 “polluted” particles and the FV method at times
t = 300 and t = 800. In both methods, ∆x = 10/3 for the central-upwind
scheme. Again, one can clearly see that the FVP method outperforms the
FV method by far.

Example 3. —Dam Break. This is an example (also taken from [1]) of
a dam break on a flat bottom, where the pollutant has different concentra-
tions on each side of the dam. The initial data correspond to the Riemann
problem with (h, u, T )= (1.0,0,0.7) if x < 0 and (h, u, T )= (0.5,0,0.5) if
x >0, the gravitational constant g=9.8, and S≡0.

We apply the FVP method with initially uniformly distributed “pol-
luted” particles, and the FV method. We use ∆x = 10 for both the cen-
tral-upwind scheme and the initial distribution of the particles. We first
show (Fig. 3) an oscillatory approximation of hT and T at time t = 240,
computed by the “unfiltered” FVP method. The oscillations, caused by the
recovering procedure (2.11), can be successfully removed by the nonlinear
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Fig. 3. hT and T at t=240 computed by the “unfiltered” FVP method.
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Fig. 4. hT and T at t = 240 computed by the FVP and FV methods (a, b). Zoom at the
discontinuous areas (c, d).

filter, as shown in Fig. 4, where we also compare the solutions, obtained
by the FVP and the FV methods. Once again, the advantage of the FVP
method can be clearly seen.
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15. de Saint-Venant, A. J. C. (1871). Théorie du mouvement non-permanent des eaux, avec
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