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s, Tulane University, 6823 Saint Charles Avenue, NewOrleans, LA 70118, USA kurganov�math.tulane.edu1 Introdu
tionWe study numeri
al methods for one-dimensional hyperboli
 systems of bal-an
e laws (x 2 R;u 2 RN ; N � 1) with very sti� sour
e terms:ut + f(u)x = 1"S(u); 0 < " << 1: (1)In parti
ular, we are interested in an invis
id, 
ompressible, rea
ting 
ow,des
ribed by the rea
tive Euler equations:0BB� ��uE�z1CCAt +0BB� �u�u2 + pu(E + p)�uz 1CCAx = 1" 0BB� 000��zK(�)1CCA : (2)Here, the dependent variables �; u; E, and z are the density, velo
ity, totalenergy, and the fra
tion of unburnt gas, respe
tively. The pressure is givenby the following equation of state (EOS),p = (
 � 1) � hE � �u22 � q0�zi; (3)where the parameter q0 
orresponds to 
hemi
al heat release, and 
 = Const:On the right-hand side of (2), � := p=� is the temperature and " is therea
tion time. Finally, the Arrhenius kineti
s term, [9℄, isK(�) = e��
=� ; (4)where �
 is the ignition temperature.Typi
ally, 
hemi
al rea
tion time s
ales are mu
h faster than the 
uiddynami
al ones. Therefore, in order to fully (numeri
ally) resolve detonationwaves, one has to take both temporal (�t) and spatial (�x) grid s
ales tobe proportional to ". This may be extremely 
omputationally expensive, or,in the 
ase of higher spatial dimensions, pra
ti
ally impossible. This is thereason why we are interested in underresolved numeri
al methods, where�t;�x >> ".
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h a 
ase, the 
hemi
al rea
tion may be 
onsidered in�nitely fast,and thus the Arrhenius kineti
s term, (4), may be repla
ed with (even sti�er)Heaviside kineti
s term, [19℄,K(�) = H(� � �
) := � 1; if � � �
;0; otherwise: (5)Designing an a

urate underresolved numeri
al method for a very sti�system (2){(3),(5) or, in general, for the system (1) with a very small ", isa rather 
hallenging problem. Sin
e the system is sti�, it is natural that onemay wish to use an operator splitting (fra
tional step) method. Then, thestep of solving the ODE, ut = 1"S(u);redu
es to the proje
tion of the 
omputed solution onto an equilibrium state:u 7! Pu, where S(Pu) � 0, while the 
orresponding homogeneous system ofhyperboli
 
onservation laws, ut + f(u)x = 0; (6)
an be solved by any (stable) sho
k-
apturing method.However, if the so-
alled deterministi
 proje
tion operator is used, thisapproa
h may lead to a spurious weak detonation wave that travels with anunphysi
al propagation speed of one grid 
ell per time step. This o

urs sin
esho
k-
apturing methods smear sho
k pro�les, and as soon as the unphysi
alvalue of the temperature in this numeri
al sho
k layer is above the ignitiontemperature, a 
ertain part of the gas gets burnt prematurely. This pe
uliarnumeri
al phenomenon was �rst observed by Colella, Majda and Roytburd[8℄ in 1986, and sin
e then it has attra
ted lots of attention (see, e.g., [5, 7, 12,16, 17℄). In order to �x this numeri
al problem, the ignition temperature wasarti�
ially in
reased in [6℄, or repla
ed with uniformly distributed randomvariable (random proje
tion method by Bao and Jin, [2, 3℄). Other, more
ompli
ated, but rather su

essful approa
hes have been proposed in [10, 13,18℄.In this paper, we introdu
e an a

urate deterministi
 proje
tion(ADP) method for balan
e laws with sti� sour
e terms, whi
h may be 
on-sidered as a simple and robust alternative to the aforementioned approa
hes.The key idea is to evolve u a

ording to the homogeneous system (6) (thiswill guarantee the 
orre
t propagation speed!), while using the proje
ted val-ues of eu := Pu only whenever they are required (for example, for 
omputingp in the EOS, (3), when the system (2){(3),(5) is 
onsidered).The paper is organized as follows. In x2, we introdu
e the ADP approa
hfor a model s
alar problem. In x3, we apply the ADP method to the rea
tiveEuler equations.
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alar ProblemWe 
onsider the following s
alar hyperboli
 balan
e law with a sti� sour
eterm, studied in [16, 2, 4, 11℄,ut + f(u)x = 1" (u� �)(1� u2); �1 < � < 1; (7)subje
t to a "prepared", pie
ewise 
onstant initial data,u(x; 0) =: u0(x) = � 1; if x � x0;�1; if x > x0: (8)Here, 0 < " � 1 is a small parameter, f is a 
onvex 
ux fun
tion, andx0 is a given point. This is a "toy model", where one 
an easily see themajor diÆ
ulty we en
ounter while dealing with hyperboli
 problems withsti� sour
e terms.The sour
e in (7) admits three equilibria: two of them, u = �1, arestable, and the third one, u = �, is unstable. The exa
t solution is the sho
kdis
ontinuity, u(x; t) = � 1; if x � x0 + st;�1; if x > x0 + st; (9)where the sho
k speed, determined by the Rankine-Hugoniot 
ondition, iss = f(1)� f(�1)2 : (10)Note that the speed is independent of �, and that the solution of the initialvalue problem (IVP) (7){(8) is identi
al to the solution of the 
orrespondinghomogeneous equation, ut + f(u)x = 0; (11)with the same initial data (8).Let us now 
onsider the operator splitting method for the IVP (7){(8).We denote by SC(�) the solution operator, asso
iated with the homogeneous
onve
tion equation (11), and by the SR(�) the solution operator of the sti�(rea
tion) ODE, ut = 1" (u� �)(1� u2): (12)Assume that the solution of (7){(8) at time level t = tn, u(x; tn), is given.A

ording to the operator splitting te
hnique, the solution at time tn+1 =tn +�t, u(x; tn+1), is then approximated byun+1(x) = SR(�t)SC(�t)u(x; tn):In fa
t, if one uses the exa
t solution operators, SR and SC , this approxima-tion will be exa
t, that is un+1(x) � u(x; tn+1).



4 Alexander KurganovHowever, in pra
ti
e one has to use approximate solution operators in-stead of the exa
t ones. Let eSC(�t) 
orresponds to one step of a sho
k-
apturing method. In the studied 
ase of the underresolved numeri
al method(" << �t), the se
ond approximate solution operator, eSR(�t), will be re-du
ed to the following proje
tion operator:eSR(�t)w � P�w := � 1; if w > �;�1; if w � �; 8w 2 R: (13)When eSC(�t) is applied to the solution �unj � u(xj ; tn)	Jj=1, 
omputedat time tn, the resulting sho
k pro�le, u� = eSC(�t)un, will be smeared. Ifthe proje
tion operator is applied to u�, it will result in the following stepfun
tion (assuming, for simpli
ity, that the approximate solution operator eSCis monotone): un+1j = � 1; if u�j > �;�1; if u�j � �; 8j:Let us 
ompare �unj � u(xj ; tn+1)	Jj=1 with �unj � u(xj ; tn)	Jj=1. Dependingon � and on the values of u�j in the numeri
al sho
k layer, the sho
k lo
ationmay be shifted by several grid 
ells to the right (or to the left), or it mayremain at the same lo
ation as at time tn. Next time step of su
h a \standard"deterministi
 proje
tion method will result in exa
tly the same move of thesho
k, and so on. As a result, we obtain a sho
k that propagates with anarti�
ial speed of several 
ells per time step, whi
h is, in general, not equalto the physi
ally 
orre
t speed given by (10).We propose a very simple ADP method that allows to 
apture the lo
ationof the dis
ontinuity a

urately (within the a

ura
y of a sho
k-
apturings
heme used). Our approa
h 
an be s
hemati
ally presented in the followingoperator form: uN = P� eSC(T )u0; (14)where T = N�t is a �nal time, and eSC(T ) = eSC(�t)Æ : : : Æ eSC(�t)Æ eSC(�t).If eSC(�) 
orresponds to a 
onvergent method for the homogeneous IVP(11),(8), then the intermediate solution, u� := eSC(T )u0, will be a (smeared)approximation to the exa
t solution, (9), where the width of the numeri
alsho
k layer is typi
ally of size O(�x). The proje
tion, P�u�, will then resultin a step fun
tion with a dis
ontinuity, lo
ated within O(�x) from the exa
tlo
ation (x = x0 + sT ).In Figures 1a,b, we present both a

urate solutions, 
omputed by the pro-posed ADP method, (14), and ina

urate solutions, 
omputed by the \stan-dard" deterministi
 proje
tion method,un+1 = P� eSC(�t)un;with the same approximate solution operator eSC . In these examples, the 
uxis f(u) = u + u2=2, and � is taken to be 0.5 and �0:75, respe
tively. The
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urate Deterministi
 Proje
tion Method 5initial dis
ontinuity is pla
ed at x0 = 0:3; �x = 0:02, �t = 0:01, the �naltime is T = 0:6 (60 time steps), the 
orre
t sho
k speed is 1=2.These numeri
al examples 
learly demonstrate the a

ura
y and robust-ness of the ADP method for the 
onsidered s
alar problem.
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Fig. 1. The solutions of the IVP (7){(8) with (a) � = 0:5, (b) � = �0:753 Detonation WavesIn this se
tion, we develop the ADP method for the rea
tive Euler equations.First, note that system (2) 
an be viewed as the homogeneous system,0� ��uE 1At +0� �u�u2 + pu(E + p)1Ax = 0; (15)
oupled (through the EOS (3)) with the inhomogeneous equation, des
ribingthe propagation of the interfa
e between the burnt and unburnt spe
ies,(�z)t + (�uz)x = �1"�zK(�): (16)Thus, when solving system (15){(16), the operator splitting (and hen
e, aproje
tion step) should be applied only to equation (16). It is known, [8℄,that the \standard" proje
tion may lead to spurious, unphysi
al sho
k wavestraveling with an arti�
ial speed (similarly to the s
alar 
ase in x2). Utilizingthe ADP method allows one to avoid su
h an undesirable situation.3.1 The ADP Method for Sti� Detonation WavesUnfortunately, the method, des
ribed in x2, 
annot be applied to the rea
-tive Euler equations straightforwardly, sin
e at every time step we need to
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ted values of z (whi
h have to be equal to either 0 or 1) for
omputing p in the EOS (3)). In this 
ase, the a

urate proje
tion pro
edure
an be implemented as follows.Assume that we have 
omputed a solution at time level t = tn. Afterthe 
onve
tion step, we obtain �z�j	Jj=1, whi
h are then proje
ted by thedeterministi
 proje
tion operator:ezn+1j = P�
(z�j ) := � 1; if �nj � �
;0; if �nj < �
: (17)These values (not the smeared values of z�j , 
omputed by the sho
k-
apturingmethod!) are to be used in the EOS, and thus, for the evolution of �; �u;and E by solving (15). At the same time, in order to avoid appearan
e ofnonphysi
al waves, the non-proje
ted values,zn+1j := z�j ;should be used for the evolution of �z via the 
orresponding homogeneousequation, (�z)t + (�uz)x = 0: (18)Remark 1. Note that at every time level we keep two sets of values of z:�znj 	Jj=1 and �eznj 	Jj=1.Remark 2. The ADP method for the rea
tive Euler equations resembles thelevel set method, used in multi
uid 
omputations (see, e.g., the review paper[1℄ and the referen
es therein): we use equation (18) to tra
k the interfa
ebetween the burnt and unburnt spe
ies. However, unlike the multi
uid situ-ation, here both z and u are dis
ontinuous at the interfa
e.Remark 3. In fa
t, due to the spe
i�
 stru
ture of the sti� system (15){(16),the ADP method for the rea
tive Euler equations 
an be simpli�ed even fur-ther. Note that the values of zn+1j � z�j are used neither in the homogeneoussystem (15), nor in the EOS (3) that 
ouples system (15) with equation (18).Indeed, one may 
ompletely avoid solving equation (18), sin
e the proje
tion,
arried out in (17), also does not employ smeared (and thus, unphysi
al) val-ues of z�j . The latter ensures that the 
omputed lo
ation of the interfa
e willalways be O(�x) away from the exa
t one, provided a numeri
al method,used for solving the homogeneous system (15), 
onverges to its 
orre
t en-tropy solution.Remark 4. The proposed method 
an be implemented with one's favoritehyperboli
 solver. In the presented numeri
al examples (both in x2 and x3.2),we have used the se
ond-order 
entral-upwind s
heme from [15℄.
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 Proje
tion Method 73.2 Numeri
al ExamplesIn this se
tion, we demonstrate the performan
e of the proposed ADP methodby applying it in a rather 
ompli
ated situation, where a detonation wave
ollides with a sho
k, a 
onta
t dis
ontinuity, and a rarefa
tion wave. Thisexample is taken from [14, 3℄.The parameters are:
 = 1:2; q0 = 50; �
 = 3; 1" = 230:75:The initial data are:(�; u; p; z)(x; 0) =8<: (�l; ul; pl; 0); if x � 10;(�m; um; pm; 1); if 10 < x � 40;(�r; ur; pr; 1); if x > 40;where �l = 3:64282; ul = 6:2489; pl = 54:8244; �m = 1; um = 0; pm = 1; and�r = 4; ur = 0; pr = 10: These data 
orrespond to a right moving detonation,a left moving sho
k, a stationary 
onta
t, and a right moving rarefa
tion. Aseries of 
ollisions o

ur after the detonation 
at
hes up with the other waves.We 
ompare the solutions, 
omputed by the ADP method and by the\standard" deterministi
 proje
tion method. In both 
ases, we take �x =0:125 and �t = 0:005. The referen
e solution is 
omputed using the fullyresolved 
al
ulation with �x = 0:005 and �t = 0:00025.In Figure 2, we show the 
omputed solutions (density, pressure, temper-ature, and fra
tion of unburnt gas) at time T = 2 (before 
ollisions). At thistime, both methods provide rather a

urate approximations.The results at a later time T = 4 (after the 
ollision with the sho
k,but before the 
ollision with the rarefa
tion wave) are shown in Figure 3. Atthis time, only the density is suÆ
iently a

urately 
aptured by the \stan-dard" deterministi
 proje
tion method, while an unphysi
al sho
k wave hasalready appeared in the other 
omponents. At the same time, the lo
ationand amplitude of dis
ontinuities, obtained by the ADP method, are 
orre
t.Finally, in Figure 4, we present the results obtained at time T = 8 (afterall 
ollisions). The 
omputations with the \standard" method are now 
om-pletely wrong, while the resolution, a
hieved by the ADP method, is as highas at the smaller times.Remark 5. We have also tested the ADP method on a variety of examplestaken from [2, 3℄. The physi
ally 
orre
t solutions have been a

urately 
ap-tured in all the performed numeri
al experiments.A
knowledgement. The author thanks the parti
ipants of the applied and 
ompu-tational mathemati
s seminar at Tulane University for a number of stimulatingdis
ussions. This work was supported in part by the NSF Grant DMS-0073631.
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Fig. 2. T = 2
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Fig. 3. T = 4
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