
An Aurate Deterministi Projetion Methodfor Hyperboli Systems with Sti� Soure TermAlexander Kurganov1Department of Mathematis, Tulane University, 6823 Saint Charles Avenue, NewOrleans, LA 70118, USA kurganov�math.tulane.edu1 IntrodutionWe study numerial methods for one-dimensional hyperboli systems of bal-ane laws (x 2 R;u 2 RN ; N � 1) with very sti� soure terms:ut + f(u)x = 1"S(u); 0 < " << 1: (1)In partiular, we are interested in an invisid, ompressible, reating ow,desribed by the reative Euler equations:0BB� ��uE�z1CCAt +0BB� �u�u2 + pu(E + p)�uz 1CCAx = 1" 0BB� 000��zK(�)1CCA : (2)Here, the dependent variables �; u; E, and z are the density, veloity, totalenergy, and the fration of unburnt gas, respetively. The pressure is givenby the following equation of state (EOS),p = ( � 1) � hE � �u22 � q0�zi; (3)where the parameter q0 orresponds to hemial heat release, and  = Const:On the right-hand side of (2), � := p=� is the temperature and " is thereation time. Finally, the Arrhenius kinetis term, [9℄, isK(�) = e��=� ; (4)where � is the ignition temperature.Typially, hemial reation time sales are muh faster than the uiddynamial ones. Therefore, in order to fully (numerially) resolve detonationwaves, one has to take both temporal (�t) and spatial (�x) grid sales tobe proportional to ". This may be extremely omputationally expensive, or,in the ase of higher spatial dimensions, pratially impossible. This is thereason why we are interested in underresolved numerial methods, where�t;�x >> ".



2 Alexander KurganovIn suh a ase, the hemial reation may be onsidered in�nitely fast,and thus the Arrhenius kinetis term, (4), may be replaed with (even sti�er)Heaviside kinetis term, [19℄,K(�) = H(� � �) := � 1; if � � �;0; otherwise: (5)Designing an aurate underresolved numerial method for a very sti�system (2){(3),(5) or, in general, for the system (1) with a very small ", isa rather hallenging problem. Sine the system is sti�, it is natural that onemay wish to use an operator splitting (frational step) method. Then, thestep of solving the ODE, ut = 1"S(u);redues to the projetion of the omputed solution onto an equilibrium state:u 7! Pu, where S(Pu) � 0, while the orresponding homogeneous system ofhyperboli onservation laws, ut + f(u)x = 0; (6)an be solved by any (stable) shok-apturing method.However, if the so-alled deterministi projetion operator is used, thisapproah may lead to a spurious weak detonation wave that travels with anunphysial propagation speed of one grid ell per time step. This ours sineshok-apturing methods smear shok pro�les, and as soon as the unphysialvalue of the temperature in this numerial shok layer is above the ignitiontemperature, a ertain part of the gas gets burnt prematurely. This peuliarnumerial phenomenon was �rst observed by Colella, Majda and Roytburd[8℄ in 1986, and sine then it has attrated lots of attention (see, e.g., [5, 7, 12,16, 17℄). In order to �x this numerial problem, the ignition temperature wasarti�ially inreased in [6℄, or replaed with uniformly distributed randomvariable (random projetion method by Bao and Jin, [2, 3℄). Other, moreompliated, but rather suessful approahes have been proposed in [10, 13,18℄.In this paper, we introdue an aurate deterministi projetion(ADP) method for balane laws with sti� soure terms, whih may be on-sidered as a simple and robust alternative to the aforementioned approahes.The key idea is to evolve u aording to the homogeneous system (6) (thiswill guarantee the orret propagation speed!), while using the projeted val-ues of eu := Pu only whenever they are required (for example, for omputingp in the EOS, (3), when the system (2){(3),(5) is onsidered).The paper is organized as follows. In x2, we introdue the ADP approahfor a model salar problem. In x3, we apply the ADP method to the reativeEuler equations.



An Aurate Deterministi Projetion Method 32 Salar ProblemWe onsider the following salar hyperboli balane law with a sti� soureterm, studied in [16, 2, 4, 11℄,ut + f(u)x = 1" (u� �)(1� u2); �1 < � < 1; (7)subjet to a "prepared", pieewise onstant initial data,u(x; 0) =: u0(x) = � 1; if x � x0;�1; if x > x0: (8)Here, 0 < " � 1 is a small parameter, f is a onvex ux funtion, andx0 is a given point. This is a "toy model", where one an easily see themajor diÆulty we enounter while dealing with hyperboli problems withsti� soure terms.The soure in (7) admits three equilibria: two of them, u = �1, arestable, and the third one, u = �, is unstable. The exat solution is the shokdisontinuity, u(x; t) = � 1; if x � x0 + st;�1; if x > x0 + st; (9)where the shok speed, determined by the Rankine-Hugoniot ondition, iss = f(1)� f(�1)2 : (10)Note that the speed is independent of �, and that the solution of the initialvalue problem (IVP) (7){(8) is idential to the solution of the orrespondinghomogeneous equation, ut + f(u)x = 0; (11)with the same initial data (8).Let us now onsider the operator splitting method for the IVP (7){(8).We denote by SC(�) the solution operator, assoiated with the homogeneousonvetion equation (11), and by the SR(�) the solution operator of the sti�(reation) ODE, ut = 1" (u� �)(1� u2): (12)Assume that the solution of (7){(8) at time level t = tn, u(x; tn), is given.Aording to the operator splitting tehnique, the solution at time tn+1 =tn +�t, u(x; tn+1), is then approximated byun+1(x) = SR(�t)SC(�t)u(x; tn):In fat, if one uses the exat solution operators, SR and SC , this approxima-tion will be exat, that is un+1(x) � u(x; tn+1).



4 Alexander KurganovHowever, in pratie one has to use approximate solution operators in-stead of the exat ones. Let eSC(�t) orresponds to one step of a shok-apturing method. In the studied ase of the underresolved numerial method(" << �t), the seond approximate solution operator, eSR(�t), will be re-dued to the following projetion operator:eSR(�t)w � P�w := � 1; if w > �;�1; if w � �; 8w 2 R: (13)When eSC(�t) is applied to the solution �unj � u(xj ; tn)	Jj=1, omputedat time tn, the resulting shok pro�le, u� = eSC(�t)un, will be smeared. Ifthe projetion operator is applied to u�, it will result in the following stepfuntion (assuming, for simpliity, that the approximate solution operator eSCis monotone): un+1j = � 1; if u�j > �;�1; if u�j � �; 8j:Let us ompare �unj � u(xj ; tn+1)	Jj=1 with �unj � u(xj ; tn)	Jj=1. Dependingon � and on the values of u�j in the numerial shok layer, the shok loationmay be shifted by several grid ells to the right (or to the left), or it mayremain at the same loation as at time tn. Next time step of suh a \standard"deterministi projetion method will result in exatly the same move of theshok, and so on. As a result, we obtain a shok that propagates with anarti�ial speed of several ells per time step, whih is, in general, not equalto the physially orret speed given by (10).We propose a very simple ADP method that allows to apture the loationof the disontinuity aurately (within the auray of a shok-apturingsheme used). Our approah an be shematially presented in the followingoperator form: uN = P� eSC(T )u0; (14)where T = N�t is a �nal time, and eSC(T ) = eSC(�t)Æ : : : Æ eSC(�t)Æ eSC(�t).If eSC(�) orresponds to a onvergent method for the homogeneous IVP(11),(8), then the intermediate solution, u� := eSC(T )u0, will be a (smeared)approximation to the exat solution, (9), where the width of the numerialshok layer is typially of size O(�x). The projetion, P�u�, will then resultin a step funtion with a disontinuity, loated within O(�x) from the exatloation (x = x0 + sT ).In Figures 1a,b, we present both aurate solutions, omputed by the pro-posed ADP method, (14), and inaurate solutions, omputed by the \stan-dard" deterministi projetion method,un+1 = P� eSC(�t)un;with the same approximate solution operator eSC . In these examples, the uxis f(u) = u + u2=2, and � is taken to be 0.5 and �0:75, respetively. The



An Aurate Deterministi Projetion Method 5initial disontinuity is plaed at x0 = 0:3; �x = 0:02, �t = 0:01, the �naltime is T = 0:6 (60 time steps), the orret shok speed is 1=2.These numerial examples learly demonstrate the auray and robust-ness of the ADP method for the onsidered salar problem.
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Fig. 1. The solutions of the IVP (7){(8) with (a) � = 0:5, (b) � = �0:753 Detonation WavesIn this setion, we develop the ADP method for the reative Euler equations.First, note that system (2) an be viewed as the homogeneous system,0� ��uE 1At +0� �u�u2 + pu(E + p)1Ax = 0; (15)oupled (through the EOS (3)) with the inhomogeneous equation, desribingthe propagation of the interfae between the burnt and unburnt speies,(�z)t + (�uz)x = �1"�zK(�): (16)Thus, when solving system (15){(16), the operator splitting (and hene, aprojetion step) should be applied only to equation (16). It is known, [8℄,that the \standard" projetion may lead to spurious, unphysial shok wavestraveling with an arti�ial speed (similarly to the salar ase in x2). Utilizingthe ADP method allows one to avoid suh an undesirable situation.3.1 The ADP Method for Sti� Detonation WavesUnfortunately, the method, desribed in x2, annot be applied to the rea-tive Euler equations straightforwardly, sine at every time step we need to



6 Alexander Kurganovknow the projeted values of z (whih have to be equal to either 0 or 1) foromputing p in the EOS (3)). In this ase, the aurate projetion proedurean be implemented as follows.Assume that we have omputed a solution at time level t = tn. Afterthe onvetion step, we obtain �z�j	Jj=1, whih are then projeted by thedeterministi projetion operator:ezn+1j = P�(z�j ) := � 1; if �nj � �;0; if �nj < �: (17)These values (not the smeared values of z�j , omputed by the shok-apturingmethod!) are to be used in the EOS, and thus, for the evolution of �; �u;and E by solving (15). At the same time, in order to avoid appearane ofnonphysial waves, the non-projeted values,zn+1j := z�j ;should be used for the evolution of �z via the orresponding homogeneousequation, (�z)t + (�uz)x = 0: (18)Remark 1. Note that at every time level we keep two sets of values of z:�znj 	Jj=1 and �eznj 	Jj=1.Remark 2. The ADP method for the reative Euler equations resembles thelevel set method, used in multiuid omputations (see, e.g., the review paper[1℄ and the referenes therein): we use equation (18) to trak the interfaebetween the burnt and unburnt speies. However, unlike the multiuid situ-ation, here both z and u are disontinuous at the interfae.Remark 3. In fat, due to the spei� struture of the sti� system (15){(16),the ADP method for the reative Euler equations an be simpli�ed even fur-ther. Note that the values of zn+1j � z�j are used neither in the homogeneoussystem (15), nor in the EOS (3) that ouples system (15) with equation (18).Indeed, one may ompletely avoid solving equation (18), sine the projetion,arried out in (17), also does not employ smeared (and thus, unphysial) val-ues of z�j . The latter ensures that the omputed loation of the interfae willalways be O(�x) away from the exat one, provided a numerial method,used for solving the homogeneous system (15), onverges to its orret en-tropy solution.Remark 4. The proposed method an be implemented with one's favoritehyperboli solver. In the presented numerial examples (both in x2 and x3.2),we have used the seond-order entral-upwind sheme from [15℄.



An Aurate Deterministi Projetion Method 73.2 Numerial ExamplesIn this setion, we demonstrate the performane of the proposed ADP methodby applying it in a rather ompliated situation, where a detonation waveollides with a shok, a ontat disontinuity, and a rarefation wave. Thisexample is taken from [14, 3℄.The parameters are: = 1:2; q0 = 50; � = 3; 1" = 230:75:The initial data are:(�; u; p; z)(x; 0) =8<: (�l; ul; pl; 0); if x � 10;(�m; um; pm; 1); if 10 < x � 40;(�r; ur; pr; 1); if x > 40;where �l = 3:64282; ul = 6:2489; pl = 54:8244; �m = 1; um = 0; pm = 1; and�r = 4; ur = 0; pr = 10: These data orrespond to a right moving detonation,a left moving shok, a stationary ontat, and a right moving rarefation. Aseries of ollisions our after the detonation athes up with the other waves.We ompare the solutions, omputed by the ADP method and by the\standard" deterministi projetion method. In both ases, we take �x =0:125 and �t = 0:005. The referene solution is omputed using the fullyresolved alulation with �x = 0:005 and �t = 0:00025.In Figure 2, we show the omputed solutions (density, pressure, temper-ature, and fration of unburnt gas) at time T = 2 (before ollisions). At thistime, both methods provide rather aurate approximations.The results at a later time T = 4 (after the ollision with the shok,but before the ollision with the rarefation wave) are shown in Figure 3. Atthis time, only the density is suÆiently aurately aptured by the \stan-dard" deterministi projetion method, while an unphysial shok wave hasalready appeared in the other omponents. At the same time, the loationand amplitude of disontinuities, obtained by the ADP method, are orret.Finally, in Figure 4, we present the results obtained at time T = 8 (afterall ollisions). The omputations with the \standard" method are now om-pletely wrong, while the resolution, ahieved by the ADP method, is as highas at the smaller times.Remark 5. We have also tested the ADP method on a variety of examplestaken from [2, 3℄. The physially orret solutions have been aurately ap-tured in all the performed numerial experiments.Aknowledgement. The author thanks the partiipants of the applied and ompu-tational mathematis seminar at Tulane University for a number of stimulatingdisussions. This work was supported in part by the NSF Grant DMS-0073631.
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Fig. 2. T = 2
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Fig. 3. T = 4
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