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Abstract. We introduce new Godunov-type semidiscrete central schemes for hyperbolic systems
of conservation laws and Hamilton–Jacobi equations. The schemes are based on the use of more
precise information about the local speeds of propagation and can be viewed as a generalization
of the schemes from [A. Kurganov and E. Tadmor, J. Comput. Phys., 160 (2000), pp. 241–282;
A. Kurganov and D. Levy, SIAM J. Sci. Comput., 22 (2000), pp. 1461–1488; A. Kurganov and
G. Petrova, A third-order semidiscrete genuinely multidimensional central scheme for hyperbolic
conservation laws and related problems, Numer. Math., to appear] and [A. Kurganov and E. Tadmor,
J. Comput. Phys., 160 (2000), pp. 720–742].

The main advantages of the proposed central schemes are the high resolution, due to the smaller
amount of the numerical dissipation, and the simplicity. There are no Riemann solvers and character-
istic decomposition involved, and this makes them a universal tool for a wide variety of applications.

At the same time, the developed schemes have an upwind nature, since they respect the directions
of wave propagation by measuring the one-sided local speeds. This is why we call them central-upwind
schemes.

The constructed schemes are applied to various problems, such as the Euler equations of gas
dynamics, the Hamilton–Jacobi equations with convex and nonconvex Hamiltonians, and the incom-
pressible Euler and Navier–Stokes equations. The incompressibility condition in the latter equations
allows us to treat them both in their conservative and transport form. We apply to these problems
the central-upwind schemes, developed separately for each of them, and compute the corresponding
numerical solutions.
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1. Introduction. We consider Godunov-type schemes for the multidimensional
(multi-D) systems of conservation laws

ut +∇x · f(u) = 0, x ∈ R
d,(1.1)

and the multi-D Hamilton–Jacobi equations

ϕt +H(∇xϕ) = 0, x ∈ R
d.(1.2)

Godunov-type schemes for the system (1.1) are projection-evolution methods.
Starting with cell averages at time level tn, one reconstructs a piecewise polynomial
interpolant of degree r − 1 (where r is the formal order of the scheme), which is
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evolved to the next time level tn+1, and then it is projected onto a space of piecewise
constants. Depending on the projection step, we distinguish two kinds of Godunov-
type schemes: central and upwind. The Godunov-type central schemes are based on
exact evolution and averaging over Riemann fans. In contrast to the upwind schemes,
they do not employ Riemann solvers and characteristic decomposition, which makes
them simple, efficient, and universal.

In the one-dimensional (1-D) case, examples of such schemes are the first-order
(staggered) Lax–Friedrichs scheme [28, 14], the second-order Nessyahu–Tadmor scheme
[40], and the higher-order schemes in [39, 8, 30]. Second-order multi-D central schemes
were introduced in [3, 4, 5, 6, 19, 34], and their higher-order extensions were developed
in [31, 32]. We would also like to mention the central schemes for incompressible flows
in [33, 22, 20, 21], and their applications to various systems, for example, [2, 13, 44, 49].

Unfortunately, these staggered central schemes may not provide a satisfactory
resolution when small time steps are enforced by stability restrictions, which may
occur, for example, in the application of these schemes to convection-diffusion prob-
lems. Also, they cannot be used for steady-state computations. These disadvantages

are caused by the accumulation of numerical dissipation, which is of order O( (∆x)2r

∆t ),
where r is the formal order of the scheme.

The aforementioned problems have been recently resolved in [26], where new
high-order Godunov-type central schemes are introduced. The proposed construction
is based on the use of the CFL related local speeds of propagation and on integration
over Riemann fans of variable sizes. In this way, a nonstaggered fully discrete cen-
tral scheme is derived and is naturally reduced to a particularly simple semidiscrete
form (for details see [26]). The same idea was used in [24] to develop a third-order
semidiscrete central scheme, and in [25], where its genuinely multi-D extension was
introduced.

The purpose of the first part of this paper is to present new semidiscrete central
schemes for the conservation law (1.1), which we call central-upwind schemes. They
are based on the one-sided local speeds of propagation. For example, in the 1-D case,
these one-sided local speeds are the largest and smallest eigenvalues of the Jacobian
∂f
∂u (in contrast to the less precise local information, used in [26, 24, 25]—the spectral

radius ρ(∂f∂u )).

The new schemes are Godunov-type central schemes, because the evolution step
employs integration over Riemann fans and does not require a Riemann solver and
a characteristic decomposition. They also have an upwind nature, since one-sided
information is used to estimate the width of the Riemann fans. This more precise
estimate makes our schemes less dissipative generalizations of the semidiscrete central
schemes in [26, 24, 25].

The second part of this paper is devoted to the Hamilton–Jacobi equations, (1.2),
which are closely related to (scalar) conservation laws. For example, in the 1-D case,
the unique viscosity solution of the Hamilton–Jacobi equation, ϕt + H(ϕx) = 0, is
the primitive of the unique entropy solution of the corresponding conservation law,
ut + H(u)x = 0, where u = ϕx. However, in the multi-D case, this one-to-one
correspondence no longer exists, but the gradient ∇xϕ satisfies (at least formally) a
system of (weakly) hyperbolic conservation laws.

This relation allows one to apply techniques, developed for conservation laws, to
the derivation of the numerical methods for Hamilton–Jacobi equations. Examples of
such methods can be found in [1, 10, 11, 35, 36, 42, 48]. One of the approaches [35, 36]
is Godunov-type schemes. As in the case of conservation laws, they are projection-
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evolution methods. The differences are that here one starts with point values (not
cell averages) at time tn, builds a continuous piecewise polynomial reconstruction of
degree r, and evolves it to the next time level tn+1. The pointwise projection (not the
cell averages) of this evolved solution is used as initial data for the next time step.

Godunov-type central schemes for Hamilton–Jacobi equations were first intro-
duced in [35, 36]. Semidiscrete Godunov-type central schemes for the multi-D equa-
tions (1.2) were developed in [27], where the same idea of local speeds of propagation
was used to separate between smooth and nonsmooth parts of the evolved solution.

In the second part of this work, we present a new second-order semidiscrete
central-upwind scheme for the Hamilton–Jacobi equations (1.2). It is a less dissipative
generalization of the scheme in [27], which uses more precise one-sided information of
the local propagation speeds.

The paper is organized as follows. In section 2, we give a brief overview of the
Godunov-type central schemes for conservation laws and Hamilton–Jacobi equations
in one space dimension. We also describe the nonoscillatory piecewise quadratic re-
construction from [25], which is later used in the numerical examples. Next, in section
3, we introduce our new Godunov-type central-upwind schemes for the conservation
laws and Hamilton–Jacobi equations, both in one and in two spatial dimensions. The
results of our numerical experiments are presented in section 4. We apply the proposed
scheme to a variety of test problems: the one- and two-dimensional compressible Euler
equations, a 1-D Hamilton–Jacobi equation with a nonconvex Hamiltonian, the two-
dimensional (2-D) eikonal equation of geometric optics. Finally, the incompressible
Euler and Navier–Stokes equations are solved using two different approaches, based
on either their conservative or transport form. The performed numerical experiments,
especially in the case of incompressible flow simulations (see section 4.3), demonstrate
the advantage of our new central-upwind approach.

2. Godunov-type central schemes—brief description. In this section, we
review Godunov-type central schemes in one spatial dimension. We will consider only
uniform grids and use the following notation: let xj := j∆x, xj± 1

2
:= (j ± 1/2)∆x,

tn := n∆t, un
j := u(xj , t

n), ϕn
j := ϕ(xj , t

n), where ∆x and ∆t are small spatial and
time scales, respectively.

2.1. Central schemes for conservation laws. The starting point for the con-
struction of Godunov-type schemes for conservation laws is the equivalent integral
formulation of the system (1.1),

ū(x, t+∆t)

= ū(x, t)− 1

∆x

[∫ t+∆t

τ=t

f

(
u

(
x+

∆x

2
, τ

))
dτ −

∫ t+∆t

τ=t

f

(
u

(
x− ∆x

2
, τ

))
dτ

]
,

(2.1)

where by

ū(x, t) :=
1

∆x

∫
I(x)

u(ξ, t) dξ, I(x) =

{
ξ : |ξ − x| < ∆x

2

}
(2.2)

we denote the sliding averages of u(·, t) over the interval (x − ∆x
2 , x + ∆x

2 ). At time
level t = tn we consider problem (2.1) with the piecewise polynomial initial condition

ũ(x, tn) = pnj (x), xj− 1
2
< x < xj+ 1

2
∀j,(2.3)
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obtained from the cell averages ūn
j := ū(xj , t

n), computed at the previous time step.
This piecewise polynomial reconstruction should be conservative, accurate of order r,
and nonoscillatory.

Second-order schemes require a piecewise linear reconstruction (see the exam-
ples in [15, 16, 23, 29, 40, 43]). Third-order schemes employ a piecewise quadratic
approximation, and one of the possibilities is to use the essentially nonoscillatory
(ENO) reconstruction. In the 1-D case, we refer the reader to [16, 46]. The weighted
ENO interpolants are proposed in [38, 18, 30, 32], and the multi-D ENO-type recon-
structions can be found in [31, 32]. The ENO-type approach employs smoothness
indicators. They require certain a priori information about the solution, which may
be unavailable and then spurious oscillations or extra smearing of discontinuities may
appear.

1-D nonoscillatory piecewise quadratic reconstructions, which do not require the
use of smoothness indicators, were proposed in [37, 39, 25]. 2-D generalizations of
these reconstructions were presented in [25, 41].

The reconstructed piecewise polynomial ũ(x, tn) is then evolved exactly according
to (2.1), and the solution at time t = tn+1 is obtained in terms of its sliding averages,
ū(x, tn+1). An evaluation of these sliding averages at particular grid points provides
the approximate cell averages of the solution at the next time level.

The choice of x = xj in (2.1) results in an upwind scheme. The solution then may
be nonsmooth in the neighborhood of the points {xj+ 1

2
}, and the evaluation of the

flux integrals in (2.1) requires the use of a computationally expensive (approximate)
Riemann solver and characteristic decomposition.

If x = xj+ 1
2
in (2.1), we obtain Godunov-type central schemes, namely,

ūn+1
j+ 1

2

=
1

∆x

[∫ x
j+ 1

2

xj

pnj (x) dx+

∫ xj+1

x
j+ 1

2

pnj+1(x) dx

]

− λ

∆t

[∫ tn+1

tn
f(u(xj+1, t)) dt−

∫ tn+1

tn
f(u(xj , t)) dt

]
, λ :=

∆t

∆x
.(2.4)

In contrast to the upwind framework, the solution is smooth in the neighborhood of
the points {xj}. Therefore, a discretization of the flux integrals in (2.4) can be done,
using an appropriate quadrature formula. The corresponding function values can be
computed either by Taylor expansion or by a Runge–Kutta method [39, 8].

2.2. Central schemes for Hamilton–Jacobi equations. In this section, we
describe second-order Godunov-type central schemes for Hamilton–Jacobi equations.
We follow the approach from [36] and construct a 1-D second-order staggered central
scheme.

Assume that we have computed the point values of ϕ at time t = tn. We then
start with a continuous piecewise quadratic interpolant,

ϕ̃(x, tn) := ϕn
j +

(∆ϕ)n
j+ 1

2

∆x
(x− xj) +

(∆ϕ)′
j+ 1

2

2(∆x)
2 (x− xj)(x− xj+1),

x ∈ [xj , xj+1],(2.5)

where

(∆ϕ)nj+ 1
2
:= ϕn

j+1 − ϕn
j .(2.6)
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Here, (∆ϕ)′
j+ 1

2

/(∆x)
2
is an approximation to the second derivative ϕxx(xj+ 1

2
, tn). An

appropriate nonlinear limiter employed in this approximation guarantees the nonoscil-
latory nature of ϕ̃(x, tn). Examples of such limiters, developed in the context of hy-
perbolic conservation laws, may be found in [15, 16, 23, 40, 43]. In this paper we use
a one-parameter family of the minmod limiters [29, 15, 43]

(∆ϕ)′j+ 1
2
= minmod

(
θ
[
(∆ϕ)nj+ 3

2
− (∆ϕ)nj+ 1

2

]
,
1

2

[
(∆ϕ)nj+ 3

2
− (∆ϕ)nj− 1

2

]
,

θ
[
(∆ϕ)nj+ 1

2
− (∆ϕ)nj− 1

2

])
,(2.7)

where θ ∈ [1, 2], and the multivariable minmod function is defined by

minmod(x1, x2, . . .) :=


minj{xj} if xj > 0 ∀j,
maxj{xj} if xj < 0 ∀j,
0 otherwise.

(2.8)

Notice that larger θ’s in (2.7) correspond to less dissipative, but still nonoscillatory
limiters [29, 15, 43].

Given a reconstruction (2.5), we consider the Hamilton–Jacobi equation (1.2),
subject to the initial data ϕ(x, 0) = ϕ̃(x, tn). Under an appropriate CFL condition,
due to the finite speed of propagation, the solution of this initial value problem is
smooth in the neighborhood of the line segment {(x, t) : x = xj+ 1

2
, tn ≤ t ≤ tn+1}.

Therefore, from the Taylor expansion of the solution about the point (xj+ 1
2
, tn), we

obtain

ϕn+1
j+ 1

2

=
ϕn
j + ϕn

j+1

2
−
(∆ϕ)′

j+ 1
2

8
−∆tH

(
(∆ϕ)n

j+ 1
2

∆x

)
+
(∆t)2

2

[
H ′
(
(∆ϕ)n

j+ 1
2

∆x

)]2

·
(∆ϕ)′

j+ 1
2

(∆x)2
.

(2.9)
Remarks.
1. The derived scheme (2.9) is different from the one in [36]. There, the evo-

lution step is executed by integration of (1.2) over [tn, tn+1], followed by the
application of the midpoint rule to the resulting integrals. For details, see
[36, 27].

2. A 2-D staggered central scheme for (1.2) can be found in [36].

3. Central-upwind semidiscrete schemes. In this section, we develop new
semidiscrete central-upwind schemes for conservation laws and Hamilton–Jacobi equa-
tions, following the approach presented in [26, 24, 25] and [27], respectively.

3.1. Semidiscrete central-upwind schemes for 1-D conservation laws.
We consider the 1-D system (1.1) of N strictly hyperbolic conservation laws. We
start with a piecewise polynomial reconstruction (2.3) with possible discontinuities at
the interface points {xj+ 1

2
}. These discontinuities propagate with right- and left-sided

local speeds, which can be estimated by

a+
j+ 1

2

:= max
ω∈C

(
u−
j+ 1

2

,u+

j+ 1
2

){λN

(∂f
∂u

(ω)
)
, 0
}

and

a−
j+ 1

2

:= min
ω∈C

(
u−
j+ 1

2

,u+

j+ 1
2

){λ1

(∂f
∂u

(ω)
)
, 0
}
,
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respectively. Here, λ1 < · · · < λN are the N eigenvalues of the Jacobian ∂f
∂u , and

C(u−
j+ 1

2

, u+
j+ 1

2

) is the curve in the phase space that connects

u+
j+ 1

2

:= pj+1(xj+ 1
2
) and u−

j+ 1
2

:= pj(xj+ 1
2
).(3.1)

For example, in the genuinely nonlinear or linearly degenerate case, we have

a+
j+ 1

2

= max

{
λN

(∂f
∂u

(
u−
j+ 1

2

))
, λN

(∂f
∂u

(
u+
j+ 1

2

))
, 0

}
,

a−
j+ 1

2

= min

{
λ1

(∂f
∂u

(
u−
j+ 1

2

))
, λ1

(∂f
∂u

(
u+
j+ 1

2

))
, 0

}
.(3.2)

In fact, these one-sided local speeds are related to the CFL number. Note that in
the schemes from [26, 24] only the spectral radius of ∂f

∂u is used, and for its computation
one actually needs to know both λ1 and λN .

Further, we utilize these one-sided local speeds of propagation in the following
way. We consider the nonequal rectangular domains

[xn
j− 1

2 ,r
, xn

j+ 1
2 ,l

]× [tn, tn+1] and [xn
j+ 1

2 ,l
, xn

j+ 1
2 ,r

]× [tn, tn+1],(3.3)

with xn
j+ 1

2 ,l
:= xj+ 1

2
+∆ta−

j+ 1
2

and xn
j+ 1

2 ,r
:= xj+ 1

2
+∆ta+

j+ 1
2

, where the solution of

(1.1) with the initial data ũ(x, tn) is smooth and nonsmooth, respectively.

The cell averages

w̄n+1
j =

1

xn
j+ 1

2 ,l
− xn

j− 1
2 ,r

[∫ xn

j+ 1
2
,l

xn

j− 1
2
,r

pnj (x) dx−
∫ tn+1

tn

(
f(u(xn

j+ 1
2 ,l

, t))−f(u(xn
j− 1

2 ,r
, t))

)
dt

]
,

(3.4)
and

w̄n+1
j+ 1

2

=
1

xn
j+ 1

2 ,r
− xn

j+ 1
2 ,l

[∫ x
j+ 1

2

xn

j+ 1
2
,l

pnj (x) dx+

∫ xn

j+ 1
2
,r

x
j+ 1

2

pnj+1(x) dx

−
∫ tn+1

tn

(
f(u(xn

j+ 1
2 ,r

, t))− f(u(xn
j+ 1

2 ,l
, t))

)
dt

]
(3.5)

are obtained by integrating (1.1) over the corresponding domains in (3.3); see Figure
3.1.

Given the polynomials {pnj }, the spatial integrals in (3.4) and (3.5) can be com-
puted explicitly. To discretize the flux integrals there, one may use an appropriate
quadrature formula, since the solution is smooth along the line segments (xn

j+ 1
2 ,l

, t),

tn ≤ t < tn+1 and (xn
j+ 1

2 ,r
, t), tn ≤ t < tn+1.

Next, from the cell averages, w̄n+1
j+ 1

2

, w̄n+1
j , given by (3.4)–(3.5), we reconstruct

a nonoscillatory, conservative, third-order, piecewise polynomial interpolant, denoted
by

w̃n+1(x) =
∑
j

(
w̃n+1

j (x)χ[
xn

j− 1
2
,r
, xn

j+ 1
2
,l

] + w̃n+1
j+ 1

2

(x)χ[
xn

j+ 1
2
,l
, xn

j+ 1
2
,r

]).(3.6)
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x j-1 jx

n
u j

n+1
u j

j-1/2
n+1

w

n+1
j+1w

n+1
j+1/2w

n
j+1u

x j+3/2,l
n

x
n
j-1/2,l

n+1
jw

j-1
n+1

w

x x x xj+1/2j-1/2 j+1 j+3/2

x x
n n

n
u

j-1/2,rj-3/2,r

j-1

n
j+1/2,lx j+1/2,rx

n

Fig. 3.1. Central-upwind differencing.

Here, the χ’s are the characteristic functions, and {w̃n+1
j+ 1

2

(x), w̃n+1
j (x)} are the quadratic

pieces, associated with the corresponding intervals. In fact, we do not need any high-
order reconstruction w̃n+1

j (x) since it will be averaged out (consult Figure 3.1).

Remark. Notice that even for a nonuniform grid, a particular piecewise quadratic
reconstruction can be written explicitly. Since these formulae are rather messy and
irrelevant for the semidiscrete scheme, we omit them.

The construction of our scheme is then completed by projecting w̃n+1 back onto
the original grid, namely, we compute the cell averages

ūn+1
j =

1

∆x

∫ x
j+ 1

2

x
j− 1

2

w̃n+1(x) dx(3.7)

at the next time level. This leads to a fully discrete Godunov-type central-upwind
scheme, which can be derived explicitly. Its derivation is similar to the derivation of
the central schemes from [26, 24]. We omit here the details of these rather messy
computations and continue within a much simpler semidiscrete framework.

The time derivative of ūj(t) is expressed with the help of (3.7) as

d

dt
ūj(t) = lim

∆t→0

ūn+1
j − ūn

j

∆t
= lim

∆t→0

1

∆t

[
1

∆x

∫ x
j+ 1

2

x
j− 1

2

w̃n+1(x) dx− ūn
j

]
.(3.8)

Now, let us suppose that the slopes of w̃n+1
j± 1

2

are uniformly bounded, independently of
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∆t. Since the width of the Riemann fans is bounded by (a+
j+ 1

2

− a−
j+ 1

2

)∆t, we obtain

w̃n+1
j± 1

2

(x) = w̄n+1
j± 1

2

+O(∆t) ∀x ∈ [xn
j± 1

2 ,l
, xn

j± 1
2 ,r

].(3.9)

The conservation property of the reconstruction gives

1

(xn
j+ 1

2 ,l
− xn

j− 1
2 ,r

)

∫ xn

j+ 1
2
,l

xn

j− 1
2
,r

w̃n+1
j (x) dx = w̄n+1

j .(3.10)

From (3.8)–(3.10) and the definition of xn
j− 1

2 ,r
and xn

j+ 1
2 ,l

, we derive

d

dt
ūj(t) =

a+
j− 1

2

∆x
lim

∆t→0
w̄n+1

j− 1
2

+ lim
∆t→0

1

∆t

(
xn
j+ 1

2 ,l
− xn

j− 1
2 ,r

∆x
w̄n+1

j −ūn
j

)
−
a−
j+ 1

2

∆x
lim

∆t→0
w̄n+1

j+ 1
2

.

(3.11)

The three limits in (3.11) are computed separately. Using (3.4) and (3.5), we obtain

lim
∆t→0

1

∆t

(
xn
j+ 1

2 ,l
− xn

j− 1
2 ,r

∆x
w̄n+1

j −ūn
j

)
=

a−
j+ 1

2

u−
j+ 1

2

− a+
j− 1

2

u+
j− 1

2

∆x
−
f(u−

j+ 1
2

)− f(u+
j− 1

2

)

∆x
,

(3.12)
and

lim
∆t→0

w̄n+1
j+ 1

2

=
a+
j+ 1

2

u+
j+ 1

2

− a−
j+ 1

2

u−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

−
f(u+

j+ 1
2

)− f(u−
j+ 1

2

)

a+
j+ 1

2

− a−
j+ 1

2

,(3.13)

where, similarly to (3.1), u±
j+ 1

2

stand for the corresponding right and left values of the

piecewise polynomial interpolant {pj}, reconstructed at time t.
Finally, a substitution of (3.12) and (3.13) in (3.11) results in our new semidiscrete

central-upwind scheme, which can be written in the following conservative form:

d

dt
ūj(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
.(3.14)

Here, the numerical fluxes Hj+ 1
2
are given by

Hj+ 1
2
(t) :=

a+
j+ 1

2

f(u−
j+ 1

2

)− a−
j+ 1

2

f(u+
j+ 1

2

)

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
u+
j+ 1

2

− u−
j+ 1

2

]
.(3.15)

Remarks.
1. The new semidiscrete scheme (3.14)–(3.15) is a Godunov-type central scheme,

since it is based on integration over Riemann fans. It does not require char-
acteristic decompositions and Riemann solvers, and therefore it preserves the
main advantage of the central schemes—simplicity.

2. As with the semidiscrete schemes, proposed in [26], the numerical viscosity of
(3.14)–(3.15) is independent of O(1/∆t), and thus it can be used for steady-
state computations. Moreover, due to a more accurate estimate of the widths
of the Riemann fans, the numerical dissipation in (3.14)–(3.15) is even smaller
than the numerical viscosity of the schemes from [26, 24]. Notice that if
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one takes a+
j+ 1

2

= −a−
j+ 1

2

= aj+ 1
2
:= maxω∈C(un−

j+ 1
2

,un+

j+ 1
2

) ρ(
∂f
∂u (ω)), then the

numerical flux (3.15) reduces to

Hj+ 1
2
(t) :=

f(u+
j+ 1

2

) + f(u−
j+ 1

2

)

2
−

aj+ 1
2

2

[
u+
j+ 1

2

− u−
j+ 1

2

]
,

which is the numerical flux of the schemes from [26, 24].
3. We would like to point out that the first-order version of our scheme is exactly

the semidiscrete version of the scheme in [17, 12]. Moreover, if the flux f is
monotone, it reduces to the standard upwind scheme. That is why we call
our new schemes central-upwind. For example, if f ′(u) ≥ 0, then a−

j+ 1
2

= 0

∀j, and the first-order scheme simplifies to

u̇j(t) = −f(un
j )− f(un

j−1)

∆x
.

4. A fully discrete, 2-D, third-order accurate scheme using the Harten–Lax–van
Leer approximate Riemann solver [17, 12] was implemented and tested in [41].

5. It can be proved that a scalar second-order version of (3.14)–(3.15), together
with the minmod reconstruction,

ũn
j (x) = ūn

j + snj (x− xj),

snj = minmod

(
θ
ūn
j − ūn

j−1

∆x
,
ūn
j+1 − ūn

j−1

2∆x
, θ

ūn
j+1 − ūn

j

∆x

)
,(3.16)

is a TVD scheme (for 1 ≤ θ ≤ 2), that is, ‖u(·, t)‖BV ≤ ‖u(·, 0)‖BV . The proof
is analogous to the proof of Theorem 4.1 in [26], and we leave the details to
the reader.

6. The semidiscrete scheme (3.14)–(3.15) is a system of time-dependent ODEs,
which can be solved by any stable ODE solver which retains the spatial accu-
racy of the semidiscrete scheme. In the numerical examples below, we have
used the TVD Runge–Kutta method, proposed in [47, 45].

7. The scheme (3.14)–(3.15) can be easily generalized and applied to convection-
diffusion equations in a straightforward manner. For details, we refer the
reader to [26, 24].

3.2. Semidiscrete central-upwind schemes for multi-D conservation laws.
The semidiscrete central-upwind schemes, presented in section 3.1, can be generalized
to the multi-D case. Without loss of generality, we consider the 2-D system

ut + f(u)x + g(u)y = 0.(3.17)

Given the grid points xj := j∆x, yk := k∆y and the intermediate points xj± 1
2
:=

xj ± ∆x
2 , yk± 1

2
:= yk ± ∆y

2 , we start at time t = tn with a conservative piecewise
polynomial reconstruction of an appropriate order:

ũn(x, y) :=
∑
j,k

pnj,k(x, y)χj,k,

where χj,k is the characteristic function of the cell [xj− 1
2
, xj+ 1

2
]× [yk− 1

2
, yk+ 1

2
]. In the

numerical examples in this paper, we have used the third-order piecewise quadratic
reconstruction, described in [25].
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We use the notation

uj,k := pnj,k(xj , yk), uN
j,k := pnj,k(xj , yk+ 1

2
), uS

j,k := pnj,k(xj , yk− 1
2
),

uE
j,k := pnj,k(xj+ 1

2
, yk), uW

j,k := pnj,k(xj− 1
2
, yk), uNE

j,k := pnj,k(xj+ 1
2
, yk+ 1

2
),(3.18)

uNW
j,k := pnj,k(xj− 1

2
, yk+ 1

2
), uSE

j,k := pnj,k(xj+ 1
2
, yk− 1

2
), uSW

j,k := pnj,k(xj− 1
2
, yk− 1

2
)

for the corresponding point values and

ūj,k :=
1

∆x∆y

∫ x
j+ 1

2

x
j− 1

2

∫ y
k+ 1

2

y
k− 1

2

pnj,k(x, y) dx dy

for the cell averages.
The piecewise polynomial interpolant ũn may have discontinuities along the lines

x = xj± 1
2
and y = yk± 1

2
, which propagate with different right- and left-sided local

speeds. To estimate them is a nontrivial problem, but in practice one may use

a+
j+ 1

2 ,k
:= max

{
λN

(∂f
∂u

(uW
j+1,k)

)
, λN

(∂f
∂u

(uE
j,k)

)
, 0
}
,

b+
j,k+ 1

2

:= max
{
λN

(∂g
∂u

(uS
j,k+1)

)
, λN

(∂g
∂u

(uN
j,k)

)
, 0
}
,

a−
j+ 1

2 ,k
:= min

{
λ1

(∂f
∂u

(uW
j+1,k)

)
, λ1

(∂f
∂u

(uE
j,k)

)
, 0
}
,

b−
j,k+ 1

2

:= min
{
λ1

(∂g
∂u

(uS
j,k+1)

)
, λ1

(∂g
∂u

(uN
j,k)

)
, 0
}
,(3.19)

respectively. As in [25], we consider the nonuniform domains, outlined in Figure 3.2
and defined by

Dj,k+ 1
2
:= [xj− 1

2
+A+

j− 1
2 ,k+ 1

2

∆t, xj+ 1
2
+A−

j+ 1
2 ,k+ 1

2

∆t]×[yk+ 1
2
+b−

j,k+ 1
2

∆t, yk+ 1
2
+b+

j,k+ 1
2

∆t],

Dj+ 1
2 ,k

:= [xj+ 1
2
+a−

j+ 1
2 ,k

∆t, xj+ 1
2
+a+

j+ 1
2 ,k

∆t]×[yk− 1
2
+B+

j+ 1
2 ,k− 1

2

∆t, yk+ 1
2
+B−

j+ 1
2 ,k+ 1

2

∆t],

Dj+ 1
2 ,k+ 1

2
:= [xj+ 1

2
+A−

j+ 1
2 ,k+ 1

2

∆t, xj+ 1
2
+A+

j+ 1
2 ,k+ 1

2

∆t]

×[yk+ 1
2
+B−

j+ 1
2 ,k+ 1

2

∆t, yk+ 1
2
+B+

j+ 1
2 ,k+ 1

2

∆t],

Dj,k := [xj− 1
2
, xj+ 1

2
]× [yk− 1

2
, yk+ 1

2
] \

⋃
±

[Dj,k± 1
2
∪Dj± 1

2 ,k
∪Dj± 1

2 ,k± 1
2
],

where

A+
j+ 1

2 ,k+ 1
2

:= max
{
a+
j+ 1

2 ,k
, a+

j+ 1
2 ,k+1

}
, B+

j+ 1
2 ,k+ 1

2

:= max
{
b+
j,k+ 1

2

, b+
j+1,k+ 1

2

}
,

A−
j+ 1

2 ,k+ 1
2

:= min
{
a−
j+ 1

2 ,k
, a−

j+ 1
2 ,k+1

}
, B−

j+ 1
2 ,k+ 1

2

:= min
{
b−
j,k+ 1

2

, b−
j+1,k+ 1

2

}
.
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xj-1 x x xj-1/2 j+1/2 j+1xj

k+1/2
y

y

y

y

k+1

k-1/2

k-1

y
k Dj,k

D

Dj+1/2,k

j,k+1/2 Dj+1/2,k+1/2

Fig. 3.2. 2-D central-upwind differencing.

Similarly to the 1-D case, under an appropriate CFL condition, the solution of
system (3.17) with initial data ũ(x, y) is smooth in the domain Dj,k and may be
nonsmooth in the other domains. Notice that, in general, Dj,k is a nonrectangular
domain inside the (j, k)-cell; see Figure 3.2.

An integration of the system (3.17) over the domains

Dj,k × [tn, tn+1], Dj± 1
2 ,k

× [tn, tn+1], Dj,k± 1
2
× [tn, tn+1], Dj± 1

2 ,k± 1
2
× [tn, tn+1]

results in new cell averages {w̄n+1
j,k+ 1

2

}, {w̄n+1
j+ 1

2 ,k
}, {w̄n+1

j+ 1
2 ,k+ 1

2

}, and {w̄n+1
j,k }. They are

used for an intermediate piecewise polynomial reconstruction,

w̃n+1(x, y) :=
∑
j,k

[
w̃n+1

j,k χ̃j,k + w̃n+1
j+ 1

2 ,k
χ̃j+ 1

2 ,k
+ w̃n+1

j,k+ 1
2

χ̃j,k+ 1
2
+ w̃n+1

j+ 1
2 ,k+ 1

2

χ̃j+ 1
2 ,k+ 1

2

]
.

(3.20)
Here, similarly to (3.6), {w̃n+1

j,k (x, y), w̃n+1
j+ 1

2 ,k
(x, y), w̃n+1

j,k+ 1
2

(x, y), w̃n+1
j+ 1

2 ,k+ 1
2

(x, y)} are

the quadratic pieces, and the χ̃’s stand for the characteristic functions of the corre-
sponding domains D.

The construction of our 2-D fully discrete central-upwind scheme is then com-
pleted by projecting the interpolant (3.20) back onto the original cells,

ūn+1
j,k =

1

∆x∆y

∫ x
j+ 1

2

x
j− 1

2

∫ y
k+ 1

2

y
k− 1

2

w̃n+1(x, y) dxdy.(3.21)

The derivation of the explicit form of the fully discrete higher-order scheme is omitted,
since it is rather complicated and is of no practical use. Note, however, that Wendroff
[50] has recently proposed a 2-D version of the Harten–Lax–van Leer Riemann solver,
which is closely related to the first-order fully discrete version of our scheme.

As in [25, section 3.3], we continue within the semidiscrete framework (as ∆t → 0),
where all the computations are much simpler.
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We use the following notation for the intersections of the cell [xj− 1
2
, xj+ 1

2
] ×

[yk− 1
2
, yk+ 1

2
] with the domains D – Cj± 1

2 ,k± 1
2
for the four corners, Sj± 1

2 ,k
, Sj,k± 1

2

for the four side domains, and Dj,k for the center. The sizes of these domains are
|C| ∼ (∆t)2 and |S| ∼ ∆t. Since we assume that the spatial derivatives of w̃n+1 are
bounded independently of ∆t, the relation between w̃n+1 and w̄n+1 is given by∫ ∫

C
j± 1

2
,k± 1

2

w̃n+1
j± 1

2 ,k± 1
2

dxdy = O((∆t)2),(3.22)

∫ ∫
S
j± 1

2
,k

w̃n+1
j± 1

2 ,k
dxdy = |Sj± 1

2 ,k
| w̄n+1

j± 1
2 ,k

+O(∆t2),(3.23)

∫ ∫
S
j,k± 1

2

w̃n+1
j,k± 1

2

dxdy = |Sj,k± 1
2
| w̄n+1

j,k± 1
2

+O(∆t2).(3.24)

Also, the conservation property of the reconstruction w̃n+1 yields∫ ∫
Dj,k

w̃n+1
j,k (x, y) dxdy = |Dj,k|w̄n+1

j,k .(3.25)

We now use (3.21) together with (3.22)–(3.25) and obtain

d

dt
ūj,k(t) = lim

∆t→0

ūn+1
j,k − ūn

j,k

∆t

= lim
∆t→0

(∑
±

|Sj,k± 1
2
|

∆t∆x∆y
w̄n+1

j,k± 1
2

+
∑
±

|Sj± 1
2 ,k

|
∆t∆x∆y

w̄n+1
j± 1

2 ,k

)

+ lim
∆t→0

1

∆t

[
|Dj,k|
∆x∆y

w̄n+1
j,k − ūn

j,k

]
.

(3.26)

For the first sum on the right-hand side (RHS), we apply Simpson’s quadrature for-
mula to the integrals over Dj,k± 1

2
in the computation of w̄n+1

j,k± 1
2

. Since |Sj,k± 1
2
| =

∓b∓
j,k± 1

2

∆t∆x+O((∆t)2), we arrive at (consult [25] for details)

lim
∆t→0

|Sj,k± 1
2
|

∆t∆x∆y
w̄n+1

j,k± 1
2

≈ −
b+
j,k± 1

2

b−
j,k± 1

2

6
(
b+
j,k± 1

2

− b−
j,k± 1

2

)
∆y

[
u

SW(NW)
j,k±1 + 4u

S(N)
j,k±1 + u

SE(NE)
j,k±1

]

+

(
b∓
j,k± 1

2

)2

6
(
b+
j,k± 1

2

− b−
j,k± 1

2

)
∆y

[
u

NW(SW)
j,k + 4u

N(S)
j,k + u

NE(SE)
j,k

]

+
b∓
j,k± 1

2

6
(
b+
j,k± 1

2

− b−
j,k± 1

2

)
∆y

[
g(u

SW(NW)
j,k±1 )− g(u

NW(SW)
j,k )

+ 4
(
g(u

S(N)
j,k±1)− g(u

N(S)
j,k )

)
+ g(u

SE(NE)
j,k±1 )− g(u

NE(SE)
j,k )

]
.(3.27)
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The second sum on the RHS of (3.26) is treated similarly, and we obtain

lim
∆t→0

|Sj± 1
2 ,k

|
∆t∆x∆y

w̄n+1
j± 1

2 ,k
≈ −

a+
j± 1

2 ,k
a−
j± 1

2 ,k

6
(
a+
j± 1

2 ,k
− a−

j± 1
2 ,k

)
∆x

[
u

NW(NE)
j±1,k + 4u

W(E)
j±1,k + u

SW(SE)
j±1,k

]

+

(
a∓
j± 1

2 ,k

)2

6
(
a+
j± 1

2 ,k
− a−

j± 1
2 ,k

)
∆x

[
u

NE(NW)
j,k + 4u

E(W)
j,k + u

SE(SW)
j,k

]

+
a∓
j± 1

2 ,k

6
(
a+
j± 1

2 ,k
− a−

j± 1
2 ,k

)
∆x

[
f(u

NW(NE)
j±1,k )− f(u

NE(NW)
j,k )

+ 4
(
f(u

W(E)
j±1,k)− f(u

E(W)
j,k )

)
f(u

SW(SE)
j±1,k )− f(u

SE(SW)
j,k )

]
.(3.28)

Finally, we consider the last term on the RHS of (3.26). Since the domain Dj,k

becomes rectangular as ∆t → 0, up to small corners of a negligible size O((∆t)2), the
integration of (3.17) over Dj,k × [tn, tn + ∆t] and the application of Simpson’s rule
result in

lim
∆t→0

1

∆t

[
|Dj,k|
∆x∆y

w̄n+1
j,k − ūn

j,k

]

≈
a−
j+ 1

2 ,k

6∆x

[
uNE
j,k + 4uE

j,k + uSE
j,k

]
−

a+
j− 1

2 ,k

6∆x

[
uNW
j,k + 4uW

j,k + uSW
j,k

]
+

b−
j,k+ 1

2

6∆y

[
uNW
j,k + 4uN

j,k + uNE
j,k

]
−

b+
j,k− 1

2

6∆y

[
uSW
j,k + 4uS

j,k + uSE
j,k

]
− 1

6∆x

[
f(uNE

j,k )− f(uNW
j,k ) + 4

(
f(uE

j,k)− f(uW
j,k)

)
+ f(uSE

j,k)− f(uSW
j,k )

]
− 1

6∆y

[
g(uNW

j,k )− g(uSW
j,k ) + 4

(
g(uN

j,k)− g(uS
j,k)

)
+ g(uNE

j,k )− g(uSE
j,k)

]
.(3.29)

Our 2-D semidiscrete central-upwind scheme is obtained by plugging (3.27)–(3.29)
into (3.26). It can be written in the following conservative form:

d

dt
ūj,k(t) = −

Hx
j+ 1

2 ,k
(t)−Hx

j− 1
2 ,k

(t)

∆x
−

Hy

j,k+ 1
2

(t)−Hy

j,k− 1
2

(t)

∆y
,(3.30)

where the numerical fluxes are

Hx
j+ 1

2 ,k
:=

a+
j+ 1

2 ,k

6
(
a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

)[f(uNE
j,k ) + 4f(uE

j,k) + f(uSE
j,k)

]

−
a−
j+ 1

2 ,k

6
(
a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

)[f(uNW
j+1,k) + 4f(uW

j+1,k) + f(uSW
j+1,k)

]

+
a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

6
(
a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

)[uNW
j+1,k − uNE

j,k + 4(uW
j+1,k − uE

j,k) + uSW
j+1,k − uSE

j,k

]
(3.31)
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and

Hy

j,k+ 1
2

:=
b+
j,k+ 1

2

6
(
b+
j,k+ 1

2

− b−
j,k+ 1

2

)[g(uNW
j,k ) + 4g(uN

j,k) + g(uNE
j,k )

]

−
b−
j,k+ 1

2

6
(
b+
j,k+ 1

2

− b−
j,k+ 1

2

)[g(uSW
j,k+1) + 4g(uS

j,k+1) + g(uSE
j,k+1)

]

+
b+
j,k+ 1

2

b−
j,k+ 1

2

6
(
b+
j,k+ 1

2

− b−
j,k+ 1

2

)[uSW
j,k+1 − uNW

j,k + 4(uS
j,k+1 − uN

j,k) + uSE
j,k+1 − uNE

j,k

]
.(3.32)

Here, the one-sided local speeds a±
j+ 1

2 ,k
, b±

j,k+ 1
2

are defined in (3.19), and the values

of the u’s are computed in (3.18), using the piecewise quadratic reconstruction {pj,k}
at time t. In our numerical examples, we have implemented the reconstruction intro-
duced in [25].

Remarks.
1. Our 2-D semidiscrete central-upwind scheme (3.30)–(3.32) is a Godunov-type
central scheme; therefore it can be applied componentwise and does not re-
quire Riemann solvers. As in [25], this scheme is constructed as a genuinely
multi-D scheme. Moreover, if one sets

a+
j+ 1

2 ,k
:= −a−

j+ 1
2 ,k

:= max
{
a+
j+ 1

2 ,k
,−a−

j+ 1
2 ,k

}
,

b+
j,k+ 1

2

:= −b−
j,k+ 1

2

:= max
{
b+
j,k+ 1

2

,−b−
j,k+ 1

2

}
,

the scheme (3.30)–(3.32) reduces to the one in [25].
2. As in the 1-D case, our 2-D scheme (3.30)–(3.32) has an upwind nature. To

illustrate this, let us consider the simplest linear scalar advection equation,
ut + aux + buy = 0, with positive a and b. In this setting, the first-order
version of the scheme (3.30)–(3.32) becomes a standard first-order upwind
scheme

d

dt
uj,k(t) = −a

uj,k − uj−1,k

∆x
− b

uj,k − uj,k−1

∆y
.

3. A second-order version of the 2-D scheme (3.30)–(3.32) can be obtained if one
uses a second-order piecewise polynomial reconstruction (say, the minmod
reconstruction) and a lower-order midpoint quadrature instead of the fourth-
order Simpson’s rule. This results in the scheme

d

dt
uj,k(t) = −

Hx
j+ 1

2 ,k
(t)−Hx

j− 1
2 ,k

(t)

∆x
−

Hy

j,k+ 1
2

(t)−Hy

j,k− 1
2

(t)

∆y
,(3.33)

with the corresponding numerical fluxes

Hx
j+ 1

2 ,k
:=

a+
j+ 1

2 ,k
f(uE

j,k)− a−
j+ 1

2 ,k
f(uW

j+1,k)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[
uW
j+1,k −uE

j,k

]
(3.34)
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and

Hy

j,k+ 1
2

:=
b+
j,k+ 1

2

g(uN
j,k)− b−

j,k+ 1
2

g(uS
j,k+1)

b+
j,k+ 1

2

− b−
j,k+ 1

2

+
b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

[
uS
j,k+1−uN

j,k

]
.

(3.35)
The same scheme can also be derived by applying the 1-D numerical flux
(3.15) in both x- and y-directions (this is the so-called dimension-by-dimension
approach, used in [26]).

4. The scheme (3.30)–(3.32) can be generalized and applied to convection-
diffusion equations (for details see [26, 25, 24]). Also, it can be rather easily
extended to the multi-D case, d ≥ 3.

3.2.1. Maximum principle for the second-order central-upwind scheme.
We consider the 2-D second-order central-upwind scheme (3.33)–(3.35), together with
the minmod reconstruction (3.16). We solve the time-dependent ODE system (3.33),
using a TVD Runge–Kutta method. Under an appropriate CFL condition, the result-
ing fully discrete scheme, applied to a scalar conservation law, satisfies the maximum
principle; see the following theorem.

Theorem 3.1 (maximum principle). Consider the scalar conservation laws
(3.17). Then the second-order scheme (3.33)–(3.35), with the minmod reconstruc-
tion (3.16), coupled with a TVD Runge–Kutta method [47, 45] satisfies the maximum
principle

min
j,k

{un
j,k} ≤ min

j,k
{un+1

j,k } ≤ max
j,k

{un+1
j,k } ≤ max

j,k
{un

j,k}(3.36)

under the CFL condition

max

(
∆tn

∆x
max
u

|f ′(u)|, ∆tn

∆y
max
u

|g′(u)|
)

≤ 1

8
,(3.37)

where ∆tn is the variable time step of the Runge–Kutta method.
We omit the proof since it is similar to the proof of Theorem 5.1 in [26].

3.3. Semidiscrete central-upwind scheme for Hamilton–Jacobi equa-
tions. In this section, we propose a new Godunov-type central-upwind scheme for
the 1-D and 2-D Hamilton–Jacobi equations (1.2). We follow the approach in [27],
but this time we utilize more precise information about the one-sided local speeds of
propagation.

We begin with the 1-D case and start at time level t = tn with the continuous
piecewise polynomial interpolant ϕ̃(x, tn) and estimate the maximal one-sided local
speeds, a+

j and a−j . For example, in the convex case, they are equal to

a+
j := max{H ′(ϕ+

x ), H
′(ϕ−

x ), 0}, a−j := min{H ′(ϕ+
x ), H

′(ϕ−
x ), 0},(3.38)

where we use the notation ϕ±
x := ϕ̃x(xj±0, tn). To construct the second-order scheme

one should use the continuous piecewise quadratic polynomial (2.5), and in this case,

ϕ±
x =

(∆ϕ)
n
j± 1

2

∆x
∓

(∆ϕ)
′
j± 1

2

2∆x
.(3.39)

Note that under an appropriate CFL-condition, the solution of the Hamilton–
Jacobi equation (1.2) with the piecewise polynomial initial data ϕ̃(x, tn) is smooth
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Fig. 3.3. Central-upwind differencing—1-D.

along the line segments (xn
j±, t), t

n ≤ t < tn+1, xn
j± := xj + a±j ∆t; see Figure 3.3.

Therefore, one can use the Taylor expansion to compute the intermediate point values
at the next time level:

ϕn+1
j± = ϕ̃(xj±, tn)−∆t ·H(ϕ̃x(x

n
j±, t

n)) +O(∆t)
2
.(3.40)

We complete the construction of our fully discrete central-upwind scheme by pro-
jecting the intermediate point values back onto the original grid. Since the distance
between xn

j+ and xn
j− is proportional to ∆t, it suffices to compute the weighted aver-

ages of ϕn+1
j+ and ϕn+1

j− , that is,

ϕn+1
j =

a+
j

a+
j − a−j

ϕn+1
j− − a−j

a+
j − a−j

ϕn+1
j+ +O(∆t)2.(3.41)

Finally, we substitute (3.40) in (3.41), and arrive at the fully discrete scheme

ϕn+1
j =

a+
j

a+
j − a−j

(
ϕ̃(xj−, tn)−∆tH(ϕ̃x(x

n
j−, t

n))
)

− a−j
a+
j − a−j

(
ϕ̃(xj+, t

n)−∆tH(ϕ̃x(x
n
j+, t

n))
)
,(3.42)

which is high-order in space (depending on the order of the piecewise polynomial
reconstruction) and only first-order in time.

A semidiscrete version of the scheme (3.42), coupled with a high-order ODE
solver, will allow us to achieve high accuracy both in space and time. To derive such
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a scheme, we first use the Taylor expansions, ϕ̃(xj±, tn) = ϕ̃(xj , t
n) + ∆ta±j ϕ̃x(xj ±

0, tn) +O(∆t)2, and rewrite the fully discrete scheme (3.42) as

ϕn+1
j = ϕn

j −∆t
a+
j a

−
j

a+
j − a−j

[
ϕ̃x(xj + 0, tn)− ϕ̃x(xj − 0, tn)

]
+

∆t

a+
j − a−j

[
a−j H(ϕ̃x(x

n
j+, t

n))− a+
j H(ϕ̃x(x

n
j−, t

n))
]
+O(∆t)2.(3.43)

We now let ∆t → 0, and end up with the following semidiscrete central-upwind
scheme:

d

dt
ϕj(t) =

1

a+
j − a−j

[
a−j H(ϕ+

x )− a+
j H(ϕ−

x )
]
− a+

j a
−
j

a+
j − a−j

(
ϕ+
x − ϕ−

x

)
.(3.44)

Here, a±j are given by (3.38), and ϕ±
x are the right and the left derivatives at the point

x = xj of the reconstruction ϕ̃(·, t) at time t.

We continue with the construction of a multi-D extension of the scheme (3.44).
Without loss of generality, we consider the 2-D Hamilton–Jacobi equation,

ϕt +H(ϕx, ϕy) = 0.(3.45)

Assume that at time t = tn the discrete approximation to the point values of its
solution, {ϕn

j,k ≈ ϕ(xj , yk, t
n)}, has already been computed. We then construct the

2-D continuous piecewise polynomial interpolant ϕ̃(x, y, tn). Such a reconstruction is
defined over the four triangles (NW, NE, SW, and SE) around each grid-point (xj , yk)
(see Figure 3.4). We refer the reader to [27] for an example of a nonoscillatory second-
order piecewise quadratic interpolant.

We now continue with the construction of our semidiscrete central-upwind scheme.
As in the 1-D case, we use the maximal values of the one-sided local speeds of prop-
agation in the x- and y-directions. These values at the grid-point (xj , yk) are given
by

a+
j,k := max

Cj,k

{
Hu(ϕ̃x(x, y), ϕ̃y(x, y))

}
+
, a−j,k := min

Cj,k

{
Hu(ϕ̃x(x, y), ϕ̃y(x, y))

}
−
,

b+j,k := max
Cj,k

{
Hv(ϕ̃x(x, y), ϕ̃y(x, y))

}
+
, b−j,k := min

Cj,k

{
Hv(ϕ̃x(x, y), ϕ̃y(x, y))

}
−
,

(3.46)
where Cj,k := [xj− 1

2
, xj+ 1

2
]× [yk− 1

2
, yk+ 1

2
] and ( · )+ := max(·, 0), ( · )− := min(·, 0).

To compute the solution at the next time level t = tn+1, we use the intermediate
values {ϕn+1

j±,k±}, obtained by the Taylor expansion about the points (xn
j± := xj +

a±j,k∆t, ynk± := yk + b±j,k∆t),

ϕn+1
j±,k± = ϕ̃(xn

j±, y
n
k±, t

n)−∆t ·H(ϕ̃x(x
n
j±, y

n
k±, t

n), ϕ̃y(x
n
j±, y

n
k±, t

n))+O(∆t)
2
.

(3.47)
Expansion (3.47) is valid, since due to the finite speed of propagation, the solution of
(3.45) with the initial data ϕ̃(x, y, tn) is smooth around (xn

j±, y
n
k±); see Figure 3.4.

Next, the computed intermediate values (3.47) are projected back onto the original
grid. This can be done using the weighted average of the values ϕn+1

j±,k±, since the
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Fig. 3.4. Central-upwind differencing—2-D.

distance between the points (xj±, yk±) is proportional to O(∆t). The resulting fully
discrete central-upwind scheme is

ϕn+1
j,k

=
a−j,kb

−
j,k

(a+
j,k − a−j,k)(b

+
j,k − b−j,k)

(
ϕ̃(xn

j+, y
n
k+, t

n)−∆t ·H(ϕ̃x(x
n
j+, y

n
k+, t

n), ϕ̃y(x
n
j+, y

n
k+, t

n))
)

− a−j,kb
+
j,k

(a+
j,k − a−j,k)(b

+
j,k − b−j,k)

(
ϕ̃(xn

j+, y
n
k−, t

n)−∆t ·H(ϕ̃x(x
n
j+, y

n
k−, t

n), ϕ̃y(x
n
j+, y

n
k−, t

n))
)

− a+
j,kb

−
j,k

(a+
j,k − a−j,k)(b

+
j,k − b−j,k)

(
ϕ̃(xn

j−, y
n
k+, t

n)−∆t ·H(ϕ̃x(x
n
j−, y

n
k+, t

n), ϕ̃y(x
n
j−, y

n
k+, t

n))
)

+
a+
j,kb

+
j,k

(a+
j,k − a−j,k)(b

+
j,k − b−j,k)

(
ϕ̃(xn

j−, y
n
k−, t

n)−∆t ·H(ϕ̃x(x
n
j−, y

n
k−, t

n), ϕ̃y(x
n
j−, y

n
k−, t

n))
)
.

(3.48)

As in the 1-D case, the scheme (3.48) is only first-order in time. This disadvantage
can be eliminated by passing to the semidiscrete limit in (3.48) as ∆t → 0. To this
end, we first compute the values of ϕ̃(xn

±, y
n
±, t

n) by the Taylor expansions,

ϕ̃(xj±, yk+, t
n) = ϕ̃(xj , yk, t

n) + ∆ta±j,kϕ̃x(xj ± 0, yk, t
n)

+ ∆tb+j,kϕ̃y(xj , yk + 0, tn) +O(∆t)2,

ϕ̃(xj±, yk−, tn) = ϕ̃(xj , yk, t
n) + ∆ta±j,kϕ̃x(xj ± 0, yk, t

n)

+ ∆tb−j,kϕ̃y(xj , yk − 0, tn) +O(∆t)2.

We then plug these values in (3.48), and after passing to the limit as ∆t → 0, we
obtain the 2-D semidiscrete central-upwind scheme,
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d

dt
ϕj,k(t)

= − a−j,kb
−
j,kH(ϕ+

x , ϕ
+
y )− a−j,kb

+
j,kH(ϕ+

x , ϕ
−
y )− a+

j,kb
−
j,kH(ϕ−

x , ϕ
+
y ) + a+

j,kb
+
j,kH(ϕ−

x , ϕ
−
y )

(a+
j,k − a−j,k)(b

+
j,k − b−j,k)

− a+
j,ka

−
j,k

a+
j,k − a−j,k

(
ϕ+
x − ϕ−

x

)
− b+j,kb

−
j,k

b+j,k − b−j,k

(
ϕ+
y − ϕ−

y

)
.

(3.49)
Here, ϕ±

x := ϕ̃x(xj ± 0, yk, t) and ϕ±
y := ϕ̃y(xj , yk ± 0, t) are the right and the left

derivatives in the x- and y-direction, respectively. The one-sided local speeds in (3.49)
are given by (3.46). In practice, these speeds can be estimated in a simpler way. For
instance, in the numerical examples, we have used

a+
j,k := max±

{
Hu(ϕ

±
x , ϕ

±
y )
}

+
, a−j,k := min±

{
Hu(ϕ

±
x , ϕ

±
y )
}
−
,

b+j,k := max±

{
Hv(ϕ

±
x , ϕ

±
y )
}

+
, b−j,k := min±

{
Hv(ϕ

±
x , ϕ

±
y )
}
−
.

(3.50)

Finally, to obtain the same second-order accuracy in time, our semidiscrete central-
upwind scheme (3.49)–(3.50) should be complemented with at least a second-order
ODE solver for time discretization.

4. Numerical examples. In this section, we implement our scheme for con-
servation laws and Hamilton–Jacobi equations and perform several numerical exper-
iments. We test the accuracy of the scheme on problems with smooth solutions and
solve various equations which admit nonsmooth solutions. Among them are the Eu-
ler equations of gas dynamics, the incompressible Euler equations, and others. The
numerical results show that our scheme gives sharper resolution and reduces some of
the side effects of the schemes from [27, 25].

The high-order semidiscrete methods, presented in this paper, require a time
discretization of the corresponding order. In the numerical examples, shown below,
we have used the third-order TVD Runge–Kutta method, proposed in [45, 47], and the
second-order modified Euler method. Our choice is based on the stability properties
of these methods, each time step of which can be viewed as a convex combination of
small forward Euler steps.

In all the numerical experiments below, the CFL number is equal to 0.475, and
the value of θ in the generalized minmod limiter is 2.

4.1. 1-D problems.

Example 1. Burgers’ equation. We consider the initial boundary value prob-
lem (IBVP) for the inviscid Burgers’ equation

ut +
(u2

2

)
x
= 0, u(x, 0) = 0.5 + sinx, x ∈ [0, 2π],(4.1)

with periodic boundary conditions. It is known that the unique entropy solution of
(4.1) develops a shock discontinuity at time t = 1. The solution at the preshock time
T = 0.5 is smooth, and this allows us to test the accuracy of the 1-D third-order
central-upwind scheme (3.14)–(3.15). We couple it with the basic piecewise quadratic
reconstruction (for details, see [37, 39, 25]), and compute the solution using N grid
points, N = 40, 80, . . . , 1280.

The L∞- and L1-errors are shown in Table 4.1, and they clearly demonstrate a
third-order experimental convergence rate.
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Table 4.1
Accuracy test for the Burgers’ equation (4.1), T = 0.5.

N L∞-error rate L1-error rate
40 1.456e-03 – 1.241e-03 –
80 2.177e-04 2.74 1.683e-04 2.88
160 2.893e-05 2.91 2.187e-05 2.94
320 3.689e-06 2.97 2.794e-06 2.97
640 4.559e-07 3.02 3.484e-07 3.00
1280 5.720e-08 2.99 4.376e-08 2.99
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Fig. 4.1. Problem (4.2)–(4.3), density at T = 0.01.

Example 2. 1-D Euler equations of gas dynamics. We solve the 1-D Euler
system

∂

∂t

 ρ
m
E

+
∂

∂x

 m
ρu2 + p
u(E + p)

 = 0, p = (γ − 1) ·
(
E − ρ

2
u2
)
,(4.2)

with the initial data

-u(x, 0) =


-uL = (1, 0, 2500)

T
, 0 ≤ x < 0.1,

-uM = (1, 0, 0.025)
T
, 0.1 ≤ x < 0.9,

-uR = (1, 0, 250)
T
, 0.9 ≤ x < 1,

(4.3)

and solid wall boundary conditions, applied to both ends. This problem, proposed in
[51], models the interaction of blast waves. Here, ρ, u, m = ρu, p , and E are the
density, velocity, momentum, pressure, and the total energy, respectively; γ = 1.4.

The solution is computed with our scheme (3.14)–(3.15) and the 1-D reconstruc-
tion in [25]. We use N = 400 grid points and plot the density, the velocity, and
the pressure together with a reference solution, obtained by the same method with
N = 1600.

Figures 4.1, 4.2, and 4.3 show the density, the velocity, and the pressure at time
T = .01. Note, that for N = 400, the second density spike has a height of ∼ 5.9, which
is closer to the actual value of the solution. This result is better than the heights of



CENTRAL-UPWIND SCHEMES 727

-10

-5

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N=1600
N=400

Fig. 4.2. Problem (4.2)–(4.3), velocity at T = 0.01.
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Fig. 4.3. Problem (4.2)–(4.3), pressure at T = 0.01.

∼ 5.75, ∼ 5.2, and ∼ 3.7, obtained by the third-order central schemes in [25, 39], and
the second-order Nessyahu–Tadmor scheme in [40], respectively. This illustrates the
higher resolution and smaller numerical dissipation of the central-upwind scheme.

The computations at times T = 0.03 and T = 0.038 are comparable to the results
from [25], and are shown in Figures 4.4–4.9.

Example 3. 1-D Hamilton–Jacobi equation. In this example, we apply
the second-order central-upwind scheme (2.7), (3.38)–(3.39), (3.44) to the Riemann
problem for a 1-D Hamilton–Jacobi equation with a nonconvex Hamiltonian,

ϕt +
1

4
(ϕ2

x − 1)(ϕ2
x − 4) = 0, ϕ(x, 0) = −2|x|.(4.4)

The numerical solution, computed for different numbers of grid points is plotted
in Figure 4.10. One can observe a very fast convergence of the approximate solutions
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Fig. 4.4. Problem (4.2)–(4.3), density at T = 0.03.
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Fig. 4.5. Problem (4.2)–(4.3), velocity at T = 0.03.

toward the exact (viscosity) solution of (4.4) as the mesh is refined. The exact solution
is obtained by solving the Riemann problem for the corresponding conservation law.

4.2. 2-D problems.

Example 4. 2-D Euler equations of gas dynamics. We solve the 2-D
compressible Euler equations

∂

∂t


ρ
ρu
ρv
E

+ ∂

∂x


ρu

ρu2 + p
ρuv

u(E + p)

+ ∂

∂y


ρv
ρuv

ρv2 + p
v(E + p)

 = 0, p = (γ−1)·
[
E − ρ

2
(u2 + v2)

]
(4.5)
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Fig. 4.6. Problem (4.2)–(4.3), pressure at T = 0.03.
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Fig. 4.7. Problem (4.2)–(4.3), density at T = 0.038.

for an ideal gas, γ = 1.4, in the domain [0, 2] × [0, 0.5] ∪ [0, 1] × [0.5, 1], with the
initial data corresponding to a vertical left-moving Mach 1.65 shock, positioned at
x = 1.375. The initial shock propagates and then diffracts around a solid corner.
Here ρ, u, v, p , and E are the density, the x- and y-velocities, the pressure, and the
total energy, respectively.

We compute the solution at time T = 0.5, using the scheme (3.30)–(3.32), coupled
with the reconstruction in [25]. The contour plots of the density for 128×64, 256×128,
and 512× 256 grid points are given in Figures 4.11, 4.12, and 4.13, respectively.

Note that as in [25], the results are obtained without using characteristic decom-
position, dimensional splitting, or evolution of nonconservative quantities.

Example 5. 2-D Hamilton–Jacobi equation. We consider the initial value
problem for the 2-D eikonal equation of geometric optics, which is a Hamilton–Jacobi
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Fig. 4.8. Problem (4.2)–(4.3), velocity at T = 0.038.
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Fig. 4.9. Problem (4.2)–(4.3), pressure at T = 0.038.

equation with a convex Hamiltonian,

ϕt+
√

ϕ2
x + ϕ2

y + 1 = 0, ϕ(x, y, 0) =
1

4
(cos(2πx)−1)(cos(2πy)−1)−1, (x, y) ∈ [0, 1]2.

(4.6)

The numerical solution of (4.6) at time T = 0.6 (after formation of the singularity)
has been computed by the 2-D second-order central-upwind scheme (3.49)–(3.50). The
nonoscillatory nature of the computed solution and nearly perfect resolution of the
singularity can be clearly seen in Figures 4.14–4.15.

4.3. 2-D incompressible Euler and Navier–Stokes equations. Here, we
consider the incompressible Euler (ν = 0) and Navier–Stokes (ν > 0) equations

-ut + (-u · ∇)-u+∇p = ν∆-u,(4.7)
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Fig. 4.11. Equation (4.5), density; T = 0.5, 128× 64 grid, 30 contours.

where p denotes the pressure and -u = (u, v) is the divergence-free velocity field,
satisfying ux + vy = 0. In the 2-D case, equation (4.7) admits an equivalent vorticity
formulation, which can be written either in the conservative form,

ωt + (uω)x + (vω)y = ν∆ω,(4.8)

or in the transport form,

ωt + uωx + vωy = ν∆ω,(4.9)

where ω is the vorticity, ω := vx − uy. Equation (4.8) can be viewed as a 2-D
conservation law

ωt + f(ω)x + g(ω)y = ν∆ω,(4.10)
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Fig. 4.12. Equation (4.5), density; T = 0.5, 256× 128 grid, 30 contours.
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Fig. 4.13. Equation (4.5), density; T = 0.5, 512× 256 grid, 30 contours.

with a global flux (f, g) := (uω, vω), while the transport equation (4.9) can be con-
sidered as a 2-D (viscous) Hamilton–Jacobi equation

ωt +H(ωx, ωy) = ν∆ω,(4.11)

with a global Hamiltonian H(ωx, ωy) = uωx + vωy.

We propose two alternative Godunov-type semidiscrete central-upwind schemes
for these two different formulations of the vorticity equation, (4.8) and (4.9). First,
we consider (4.8) as a conservation law (4.10) and apply our 2-D third-order central-
upwind scheme (3.30)–(3.32) to it. The resulting scheme has the conservative form

d

dt
ω̄j,k(t) = −

Hx
j+ 1

2 ,k
(t)−Hx

j− 1
2 ,k

(t)

∆x
−

Hy

j,k+ 1
2

(t)−Hy

j,k− 1
2

(t)

∆y
+ νQj,k(t).(4.12)
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Fig. 4.14. Problem (4.6); T = 0.6, 50× 50 grid.
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Fig. 4.15. Contour plot.

The following choice of the one-sided local speeds,

a±
j+ 1

2 ,k
:= (uj+ 1

2 ,k
)±, b±

j,k+ 1
2

:= (vj,k+ 1
2
)±,(4.13)

yields the simplified numerical convection fluxes

Hx
j+ 1

2 ,k
:=

a+
j+ 1

2 ,k

6
(
a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

)[uj+ 1
2 ,k+ 1

2
ωNE
j,k + 4uj+ 1

2 ,k
ωE
j,k + uj+ 1

2 ,k− 1
2
ωSE
j,k

]

−
a−
j+ 1

2 ,k

6
(
a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

)[uj+ 1
2 ,k+ 1

2
ωNW
j+1,k + 4uj+ 1

2 ,k
ωW
j+1,k + uj+ 1

2 ,k− 1
2
ωSW
j+1,k

]
,(4.14)
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and

Hy

j,k+ 1
2

:=
b+
j,k+ 1

2

6
(
b+
j,k+ 1

2

− b−
j,k+ 1

2

)[vj− 1
2 ,k+ 1

2
ωNW
j,k + 4vj,k+ 1

2
ωN
j,k + vj+ 1

2 ,k+ 1
2
ωNE
j,k

]

−
b−
j,k+ 1

2

6
(
b+
j,k+ 1

2

− b−
j,k+ 1

2

)[vj− 1
2 ,k+ 1

2
ωSW
j,k+1 + 4vj,k+ 1

2
ωS
j,k+1 + vj+ 1

2 ,k+ 1
2
ωSE
j,k+1

]
.(4.15)

The diffusion term in (4.12) is obtained by the fourth-order central differencing,

Qj,k =
−ω̄j+2,k + 16ω̄j+1,k − 30ω̄j,k + 16ω̄j−1,k − ω̄j−2,k

12(∆x)2

+
−ω̄j,k+2 + 16ω̄j,k+1 − 30ω̄j,k + 16ω̄j,k−1 − ω̄j,k−2

12(∆y)2
.(4.16)

The intermediate values of the velocities, required to compute the convection fluxes
(4.14) and (4.15), are approximated by the fourth-order averaging, namely,

uj+ 1
2 ,k

=
−uj+2,k + 9uj+1,k + 9uj,k − uj−1,k

16
,

vj,k+ 1
2
=

−vj,k+2 + 9vj,k+1 + 9vj,k − vj,k−1

16
.(4.17)

The velocities at the grid points, {uj,k, vj,k}, are recovered from the computed vor-
ticities {ωj,k} at every time step. This is done with the help of the streamfunction ψ,
such that u = ψy, v = −ψx, and ∆ψ = −ω. We solve this Poisson equation by the
nine-point Laplacian approximation. Then, having the values of {ψj,k}, we compute
the velocities

uj,k =
−ψj,k+2 + 8ψj,k+1 − 8ψj,k−1 + ψj,k−2

12∆y
,

vj,k =
ψj+2,k − 8ψj+1,k + 8ψj−1,k − ψj−2,k

12∆x
.(4.18)

This completes the construction of the “conservative” central-upwind scheme for the
incompressible Euler and Navier–Stokes equations.

We now apply this scheme, coupled with the reconstruction in [25], to the Navier–
Stokes equation (4.8) with ν = 0.05, augmented with the smooth periodic initial data

u(x, y, 0) = − cosx sin y, v(x, y, 0) = sinx cos y.(4.19)

This test problem, proposed in [9], admits the exact classical solution, given by

u(x, y, t) = −e−2νt cosx sin y, v(x, y, t) = e−2νt sinx cos y.

In this numerical experiment, we check the accuracy of our scheme. The numerical
solution is computed at time T = 2, and the errors for the vorticity, measured in
the L∞-, L1-, and L2-norms, are presented in Table 4.2. These results indicate the
expected third-order accuracy of the proposed scheme (4.12)–(4.18).

Next, we apply the scheme (4.12)–(4.18) together with the reconstruction in [25]
to the Euler equation, (4.8) with ν = 0, subject to the (2π, 2π)-periodic initial data

u(x, y, 0) =


tanh( 1

ρ (y − π/2)), y ≤ π,

tanh( 1
ρ (3π/2− y)), y > π,

v(x, y, 0) = δ · sinx.(4.20)
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Table 4.2
Accuracy test for the third-order “conservative” scheme for the Navier–Stokes equation (4.8),

(4.19), ν = 0.05; errors at T = 2.

Nx×Ny L∞-error rate L1-error rate L2-error rate
32× 32 2.103e-03 – 2.761e-02 – 5.623e-03 –
64× 64 2.788e-04 2.92 3.652e-03 2.92 7.404e-04 2.92
128× 128 3.548e-05 2.97 4.636e-04 2.98 9.385e-05 2.98
256× 256 4.444e-06 3.00 5.811e-05 3.00 1.176e-05 3.00
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Fig. 4.16. Vorticity—“conservative” scheme, 64× 64.
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Fig. 4.17. Vorticity—“conservative” scheme, 128× 128.

This is the double shear-layer model problem, proposed in [7]. We take ρ = π/15
and δ = 0.05. Figures 4.16(a) and 4.17(a) are the contour plots (30 contours) of the
vorticity at time T = 10 with 64 × 64 and 128 × 128 grid points, respectively. The
three-dimensional plots of the same results are shown in Figures 4.16(b) and 4.17(b).
The performed numerical experiments demonstrate that our scheme provides a very
high resolution. These results are comparable with the results obtained by the third-
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Table 4.3
Accuracy test for the second-order “transport” scheme for the Navier–Stokes equation (4.9),

(4.19), ν = 0.05; errors at T = 2.

Nx×Ny L∞-error rate L1-error rate L2-error rate
32× 32 5.559e-03 – 7.304e-02 – 1.492e-02 –
64× 64 1.672e-03 1.73 2.265e-02 1.69 4.574e-03 1.71
128× 128 4.531e-04 1.88 6.263e-03 1.85 1.250e-03 1.87
256× 256 1.176e-04 1.95 1.644e-03 1.93 3.276e-04 1.93

order semidiscrete central scheme in [25].
The second alternative is to solve the vorticity equation in its transport form,

(4.9), which can be viewed as a Hamilton–Jacobi equation (4.11).
We choose the one-sided local speeds to be

a±j,k := (uj,k)±, b±j,k := (vj,k)±,(4.21)

and in this setting, our 2-D second-order central-upwind scheme (3.49)–(3.50) has the
following simple form:

d

dt
ωj,k(t) = −a−j,kb

−
j,k(uj,kω

+
x + vj,kω

+
y )− a−j,kb

+
j,k(uj,kω

+
x + vj,kω

−
y )

(a+
j,k − a−j,k)(b

+
j,k − b−j,k)

+
a+
j,kb

−
j,k(uj,kω

−
x + vj,kω

+
y )− a+

j,kb
+
j,k(uj,kω

−
x + vj,kω

−
y )

(a+
j,k − a−j,k)(b

+
j,k − b−j,k)

+ νLj,k.(4.22)

Here, w±
x , w

±
y are the right and the left derivatives in the x- and y-directions of the

continuous piecewise polynomial reconstruction of {ωj,k}. The term Lj,k stands for
the standard central difference approximation of the linear viscous term, that is,

Lj,k =
ωj+1,k − 2ωj,k + ωj−1,k

(∆x)
2 +

ωj,k+1 − 2ωj,k + ωj,k−1

(∆y)
2 .(4.23)

As in the “conservative” scheme, we recover the velocities {uj,k, vj,k} from the known
values of the vorticity {ωj,k}, using the streamfunction approach. At each time step we
solve the five-points Laplacian ∆ψj,k = −ωj,k and compute the velocities as follows:

uj,k =
ψj,k+1 − ψj,k−1

2∆y
, vj,k = −ψj+1,k − ψj−1,k

2∆x
.(4.24)

We now apply this second-order “transport” scheme to the IBVP for the Navier–
Stokes equation (4.9), (4.19) with ν = 0.05. The numerical solution of this test
problem is computed at time T = 2, and the L∞-, L1-, and L2-errors for the vorticity
are presented in Table 4.3. These results indicate the second-order convergence rate
measured in all these norms. We would also like to point out that the absolute values
of the errors here are about 10 times smaller than the corresponding errors obtained
by the semidiscrete central scheme in [27, Table 6.1].

Finally, we test our scheme (4.21)–(4.24) on the double shear-layer problem (4.9),
(4.20). The contour plots (30 contours) of the vorticity are shown in Figures 4.18(a),
4.19(a), and 4.20(a), where the computations are performed at time T = 10 with
64× 64, 128× 128, and 256× 256 grid points. The corresponding three-dimensional
plots are presented in Figures 4.18(b), 4.19(b), and 4.20(b).
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Fig. 4.18. Vorticity—“transport” scheme, 64× 64.
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Fig. 4.19. Vorticity—“transport” scheme, 128× 128.
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Fig. 4.20. Vorticity—“transport” scheme, 256× 256.
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We would like to point out that our second-order “transport” scheme (4.21)–
(4.24) has a very high resolution. The numerical experiments show that it is far
superior to the second-order semidiscrete central scheme in [27, Figures 6.7–6.10]. This
improvement is attributed to the smaller numerical viscosity present in the central-
upwind scheme. Moreover, the resolution of (4.21)–(4.24) is almost as good as the
resolution of our third-order “conservative” scheme (Figures 4.16 and 4.17).

As in [27, Figures 6.9–6.10], our numerical solution has spurious spikes, but of
smaller heights. Also, the consequent mesh refinements (Figures 4.18–4.20) clearly
demonstrate that the supports of these spikes diminish as the mesh size decreases.

Concluding remark. We have already mentioned the benefits of using the new
central-upwind schemes in comparison to the central schemes in [26, 27, 24, 25].
Namely, they are less dissipative, and at the same time they retain the major ad-
vantages of central schemes—simplicity and efficiency.

In particular, the effect of the reduced numerical dissipation can be clearly seen
when solving the incompressible Euler equation in its transport form. Moreover, in all
of the numerical examples presented above, the achieved resolution is slightly better
than the resolution obtained in [27, 24, 25].

The only drawback is the fact that the new schemes require the computation of
both left and right local speeds, which increases the computational costs. However,
the increase is not substantial, because as in any central scheme, our central-upwind
schemes are Riemann-solver-free and do not require any computationally expensive
characteristic decomposition.
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