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ABSTRACT. Computing solutions of convection-diffusion equations, especially in the convection
dominated case, is an important and challenging problem that requires development of fast,
reliable numerical methods. We propose a second-order fast explicit operator splitting (FEOS)
method based on the Strang splitting. The main idea of the method is to solve the parabolic
problem via a discretization of the formula for the exact solution of the heat equation, which
is realized using a conservative and accurate quadrature formula. The hyperbolic problem is
solved by a second-order finite-volume Godunov-type scheme. The FEOS method is applied
to the one- and two-dimensional systems modeling two phase multicomponent flow in porous
media. Our results demonstrate that the method achieves a remarkable resolution and accuracy
in a very efficient manner, that is, when only few splitting steps are performed.

RÉSUMÉ. Le calcul de solutions d’équations de type convection-diffusion est, specialement dans
les cas où les effects convectifs dominent, un problème important et délicat qui requiert le déve-
lopement de méthodes numériques rapides, précises et robustes. Nous proposons une méthode
explicite d’ordre deux de type “operator splitting” basée sur la méthode du “Strang splitting”.
L’idée principale est de résoudre un problème parabolique via une discrétisation de l’expres-
sion de la solution exacte de l’équation de la chaleur par une méthode d’intégration numérique
conservative. Le problème hyperbolique est résolu par un schéma volume finis de type Godu-
nov d’ordre deux. La méthode est appliquée à des systèmes uni et bidimensionels modélisant
des écoulements biphasiques en milieu poreux. Nos résultats établissent clairement la remar-
quable précision et efficacité de la méthode et le fait que seuls quelques pas de “splitting” sont
nécessaires.

KEYWORDS: convection-diffusion equations, polymer system, operator splitting, finite-volume
schemes, central-upwind schemes.
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MOTS-CLÉS : equations convectives-diffusives, polymères, “operator splitting”, schémas volumes
finis, schémas centrés en amont.

1. Introduction

We present a fast explicit operator splitting (FEOS) method for the initial value
problem (IVP) for the system of convection-diffusion equations:

ut + ∇x · f(u) = D∆u, u(x, 0) = u0(x), x ∈ R
d. (1)

Here, u(x, t) = (u1(x, t), . . . , ul(x, t))
T is an l-vector, f is a nonlinear convection

flux, and D = diag(ε1, . . . , εl) is a constant diagonal matrix with positive entries.

Systems of convection-diffusion equations arise in a variety of applications and
model different (physical) processes in fluid mechanics, astrophysics, meteorology,
flow in porous media, and many other areas. In this paper, we consider systems
that describe polymer flooding processes in enhanced oil recovery, see, for exam-
ple, [JOH 88, RIS 91, TVE 90]. These systems are convection dominated, which is
the most challenging case from a numerical perspective: although the solution of (1)
is typically smooth for t > 0, its gradients may be very large and a full resolution of
viscous shock layers may be out of practical reach. Therefore, an application of shock
capturing methods, originally developed for hyperbolic systems of conservation laws
may be advantageous. At the same time, even when the impact of diffusion is not too
significant, its presence typically reduces the efficiency of explicit numerical schemes.

One way to overcome this difficulty is to use an operator splitting algorithm, which
can be briefly described as follows. We denote by SH the exact solution operator
associated with the corresponding hyperbolic system:

ut + ∇x · f(u) = 0, (2)

and by SP the exact solution operator associated with the (linear) parabolic system:

ut = D∆u. (3)

Then, introducing a time step ∆t, the solution of the original convection-diffusion
system (which is assumed to be available at time t) is evolved in time in three substeps:

u(x, t + ∆t) = SH(∆t/2)SP(∆t)SH(∆t/2)u(x, t). (4)

In general, if all solutions are smooth, this three-step splitting algorithm, called the
Strang operator splitting, is second-order accurate (see, e.g., [STR 68]).

In practice, the exact solution operators SH and SP are replaced by their numerical
approximations. Note that the main advantage of the operator splitting technique is
the fact that the hyperbolic, (2), and the parabolic, (3), subproblems, which are of
different nature, can be solved numerically by different methods.
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The “hyperbolic” substep in our FEOS method is based on finite-volume schemes.
Our particular choice is the second-order semi-discrete Godunov-type central scheme,
originally introduced in [KUR 00b], and then further improved in [KUR 01], where
the so-called central-upwind schemes have been developed. We note, however, that
the “hyperbolic” substep is not tied up to a specific choice of a finite-volume scheme
and can be implemented with one’s favorite Godunov-type method.

The outcome of the first “hyperbolic” substep in (4) is a global approximation of
u
∗ := SH(∆t/2)u(x, t), realized in terms of linear pieces over spatial cells. The

main idea of our method is to perform the “parabolic” substep using the exact so-
lution operator for the heat equation. The solution is in the form of a convolution
integral, which is approximated using an appropriate conservative and sufficiently ac-
curate quadrature, presented in §2.

In §3, we apply the FEOS method to the one- (1-D) and two-dimensional (2-D)
polymer systems. The proposed FEOS method seems to outperform the existing al-
ternative approaches.

2. Fast Explicit Operator Splitting (FEOS) Method

For simplicity, we present here only the 1-D version of the FEOS method. We
introduce a uniform spatial grid of size ∆x and assume that the solution is known at
time t.

The “hyperbolic” substep in (4) is carried out using a second-order Godunov-type
finite-volume scheme, in which we begin with the computed cell averages

ūj(t) ≈ ū(xj , t) :=
1

∆x

x
j+ 1

2∫

x
j− 1

2

u(x, t) dx.

The conservative piecewise linear (in x) interpolant for each component of the vector
u is then reconstructed in each grid cell [xj− 1

2
, xj+ 1

2
] and is given by

ũ(x; t) = ūj(t) + sj(x − xj), (5)

where the slopes sj have to be (at least) first-order approximations of the partial
derivatives ux(xj , t). In order to ensure a non-oscillatory behavior of the reconstruc-
tion, which is a necessary condition for the overall scheme to be non-oscillatory, the
slopes should be computed with the help of a nonlinear limiter (we have used the one-
parameter family of minmodθ limiters, see, for example, [LIE 03, SWE 84]). Then,
the solution at the new time level t + ∆tHYP is obtained by (approximately) solv-
ing the integral form of the system (2), subject to the piecewise linear initial data (5),
prescribed at time t. In this paper, the solution is evolved using the semi-discrete
central-upwind scheme from [KUR 01].
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REMARK. — Note that due to the CFL condition, ∆tHYP may be smaller than ∆t/2,
where ∆t is the size of the splitting step. In this case, the “hyperbolic” substep of the
splitting algorithm would consist of several smaller “finite-volume subsubsteps” of
size ∆tHYP. This is a typical situation, for example, in applications to polymer flows
(see §3), where one is interested in developing a reliable operator splitting method
that is capable to produce a high quality approximate solution with a small number of
splitting steps, that is, while keeping ∆t relatively large.

Once the solution of the first “hyperbolic” substep in (4) is performed, the new cell
averages, ū∗

j ≈ 1

∆x

∫ x
j+ 1

2
x

j− 1
2

SH(∆t/2)u(x, t)dx, are available, and we reconstruct an-

other piecewise linear interpolant ũ∗(x) following (5). This piecewise linear function
is then used as an initial condition for the parabolic IVP:

ut = Duxx, u(x, t) = ũ
∗(x), (6)

which is now, according to the Strang splitting algorithm (4), to be solved on the time
interval (t, t+∆t]. Note that since D is a diagonal matrix, the parabolic system in (6)
is actually a set of l uncoupled heat equations for each component of u:

(ui)t = εi(ui)xx, ui(x, t) = ũ∗
i (x), i = 1, . . . , l. (7)

From now on, we will simplify our notation by using v instead of any of the ui’s and
ε instead of any of the εi’s.

Next, we recall that the exact solution of (7) at time t + ∆t may be expressed in
the following integral form:

v∗∗(x) = ṽ∗(x) +

∞∫

−∞

G(x − ξ, ε∆t) (ṽ∗(ξ) − ṽ∗(x)) dξ, (8)

where G is the “heat” kernel:

G(x, t) =
1

2
√

πt
e−

x2
4t . (9)

We use the solution formula (8) since it is symmetric and allows us to discretize the
spatial integral while preserving the conservation of v, that is, ensuring that the equal-
ity,

∫ ∞

−∞
v∗∗(x) dx =

∫ ∞

−∞
ṽ∗(x) dx, is satisfied on a discrete level as well.

Since for the next “hyperbolic” substep only the cell averages of v∗∗(x) are needed,
we average (8) over the corresponding computational cells to obtain:

v̄∗∗j = v̄∗j +
1

∆x

x
j+ 1

2∫

x
j− 1

2




∞∫

−∞

G(x − ξ, ε∆t) (ṽ∗(ξ) − ṽ∗(x)) dξ


 dx

= v̄∗j +
1

∆x

∑

i∈Z

x
j+ 1

2∫

x
j− 1

2

x
i+1

2∫

x
i− 1

2

G(x − ξ, ε∆t) (ṽ∗(ξ) − ṽ∗(x)) dξ dx. (10)
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Next, the integrals on the right-hand side (RHS) of (10) are discretized using the mid-
point quadrature, that is,

v̄∗∗j = v̄∗j + ∆x
∑

i,∈Z

G(xj − xi, ε∆t)(v̄∗
i − v̄∗j ). (11)

It can be easily verified that this quadrature is conservative due to the symmetry of the
“heat” kernel (9).

REMARK. — In practice, the computational domain is finite and the infinite sum on the
RHS of (11) reduces to the sum over all computational cells (we obviously need to as-
sume that the solution is “exponentially flat” near the artificially imposed boundaries).

The third and last substep of the FEOS method is again “hyperbolic”. We start with
the cell averages ū

∗∗
j , computed at the “parabolic” substep, reconstruct a piecewise

linear interpolant û (following (5)), and then evolve it using the same finite-volume
method as in the first “hyperbolic” substep to obtain the cell averages of the solution
of (1) at the new time level: ūj(t + ∆t) ≈ 1

∆x

∫ x
j+ 1

2
x

j− 1
2

SH(∆t/2)û(x) dx.

This completes the description of one time step of the FEOS method.

3. Application to the Polymer System

In this section, we apply the FEOS method to the 1-D and 2-D system of convection-
diffusion equations that model polymer flooding processes in enhanced oil recovery
(see [JOH 88, RIS 91, TVE 90] and the references therein). The initial data in our ex-
amples are taken form [KAR 01] and [HAU 01], and thus a comparison of our method
with some existing alternative methods can be made.

3.1. One-Dimensional Examples

We first consider the 1-D system of two convection-diffusion equations:
{

st + f(s, c)x = εsxx

bt + (cf(s, c))x = εbxx,
(12)

with b = b(s, c) = sc + a(c). Here, (s, c)T is the unknown state vector, ε > 0 is a
small scaling parameter, and

f := f(s, c) =
s2

s2 + µ(1 + νc)(1 − s)2
, a := a(c) =

c

5(1 + c)
. (13)

In the numerical experiments, presented in this section, we take µ = 1/2 and ν = 2.

We will compare the numerical solution computed by the FEOS method with a ref-
erence solution obtained without any operator splitting by combining the second-order
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central-upwind scheme with the explicit second-order central-difference approxima-
tion of the diffusion term in (12). In our numerical experiments, we use the minmod1
limiter, since the flux here is nonconvex and, as it has been demonstrated in [KUR],
the use of a more compressive minmodθ limiter with θ > 1 may lead to a convergence
to a “wrong” solution that does not satisfy the entropy condition for all entropies. This
may not be a problem when ε is large, but we are focusing on the convection domi-
nated regime, in which a large error at the “hyperbolic” substep cannot be “fixed” by
a small diffusion acting at the “parabolic” substep.

Example 1. Here, we consider the polymer system (12) subject to the following
discontinues initial data:

(s, c)(x, 0) =

{
(1.0, 0.5), x ≤ 0.25,

(0.1, 0.1), x > 0.25.
(14)

In the inviscid case, these initial data correspond to a Riemann problem, whose solu-
tion consists of an s-shock, followed by a c-shock and an s-rarefaction wave.

In Figure 1, we plot the approximate solutions of (12),(14) (dotted line) at time t =
1 for ε = 0.001 and ε = 0.01, computed by the FEOS method with two splitting steps
and 500 uniform grid cells. The solid line represents a reference solution computed
with 10000 cells. As one can clearly see, for ε = 0.001 the computed solution agrees
well with the reference one, while for ε = 0.01 the s-component of the solution is
smeared. Therefore, one needs to perform more than two splitting steps. In Figure
2, the solutions computed for ε = 0.01 by the FEOS method with 8 and 32 splitting
steps are shown. Now the resolution of both s and c fronts is very high.

We also numerically study the convergence rate of the FEOS method with respect
to the number of splitting steps. In order to do this, we fix the spatial mesh to 1000
uniform cells and increase the number of splitting steps. We then compute the relative
L1 errors and convergence rates, which are shown in Table 1. As one can see, the
convergence rates start decreasing after a certain number of splitting steps. This occurs
since the “heat” kernel (9) develops a singularity as ∆t → 0, and thus the splitting
step in the FEOS method cannot be taken too small. A similar convergence study was
performed in [KAR 01] and we would like to point out that the relative errors obtained
in the FEOS method are, on the average, ten times smaller than those obtained in
[KAR 01] (we refer the reader to that work for comparison).

Example 2. This example is a Riemann problem corresponding to a compressive
shock in the inviscid case, in which both the s- and the c-characteristics go into a
shock and contribute to its self-sharpening. The initial condition is given by

(s, c)(x, 0) =

{
(0.75, 0.8), x ≤ 0.25,

(0.839619, 0.4), x > 0.25.
(15)

If this Riemann problem is slightly perturbed, the solution changes from a single shock
to a composition of waves moving with almost the same speed (see, e.g., [KAR 01]).
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Figure 1. Solution of (12),(14) with ε = 0.001 and ε = 0.01 by the FEOS method
with 2 splitting steps (dotted line). The solid line represents the reference solution.
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Figure 2. Solution of (12),(14) with ε = 0.01 by the FEOS method with 8 and 32
splitting steps (dotted line). The solid line represents the reference solution.

There are two possible results of the perturbation: either a monotone or a nonmono-
tone solution. In the viscous case, the problem will be perturbed instantly, which re-
sults in a truly nonlinear phenomenon: monotone initial data evolve into nonmonotone
solutions. In Figure 3, we plot the approximate solutions of (12),(15) with ε = 0.005
(dotted lines) at time t = 1, computed by the FEOS with four splittings steps. As
in the previous Example, we compare these solutions computed with 500 uniform
grid cells with the corresponding reference solutions computed with 10000 cells. The
exact (reference) solution has a dip in the s-component due to the presence of the dif-
fusion term. As one can observe, the dip is not resolved well when four splitting steps
are performed. Therefore, we also show the results obtained with 8 and 32 splittings
steps, where a very high resolution is achieved. We would like to point out that the
alternative operator splitting methods, described in [KAR 01], fail to resolve the dip
in the s-component of the solution (see Figures 10 and 11 in [KAR 01]).
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Number s-component c-component
of ε = 0.001 ε = 0.01 ε = 0.001 ε = 0.01

steps L1-error Rate L1-error Rate L1-error Rate L1-error Rate
2 2.53e-03 – 8.80e-03 – 7.06e-04 – 3.28e-03 –
4 1.66e-03 0.61 5.94e-03 0.57 5.33e-04 0.41 1.87e-03 0.81
8 1.09e-03 0.61 3.47e-03 0.78 4.11e-04 0.38 9.25e-04 1.02

16 7.74e-04 0.49 1.57e-03 1.14 3.34e-04 0.30 3.96e-04 1.23
32 6.14e-04 0.33 5.96e-04 1.40 3.28e-04 0.02 1.45e-04 1.44
64 5.56e-04 0.14 2.07e-04 1.52 3.54e-04 -0.11 4.31e-05 1.75

128 5.20e-04 0.09 9.05e-05 1.19 3.77e-04 -0.09 2.01e-05 1.10
256 5.14e-04 0.01 7.38e-05 0.30 3.92e-04 -0.05 2.58e-05 -0.36

Table 1. Example 1. Estimated errors and convergence rates for the s-and c-
components of the solution, computed by the FEOS method at time t = 1.

0 0.5 1 1.5 2
0.72

0.74

0.76

0.78

0.8

0.82

0.84

ε=0.005, 4 splitting steps

s

0 0.5 1 1.5 2

0.4

0.5

0.6

0.7

0.8

ε=0.005, 4 splitting steps

c

0 0.5 1 1.5 2
0.72

0.74

0.76

0.78

0.8

0.82

0.84

ε=0.005, 8 splitting steps

s

0 0.5 1 1.5 2
0.72

0.74

0.76

0.78

0.8

0.82

0.84

ε=0.005, 32 splitting steps

s

Figure 3. Solution of (12),(15) with ε = 0.005 by the FEOS method with 4, 8, and 32
splitting steps (dotted line). The solid line represents the reference solution.

3.2. Two-Dimensional Example

Finally, we consider the 2-D polymer system:
{

st + f(s, c)x + f(s, c)y = ε(sxx + syy)

bt + (cf(s, c))x + (cf(s, c))y = ε(bxx + byy),
(16)
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where, as in the 1-D case, b = b(s, c) = sc + a(c) and f and a are given by (13). We
now take µ = ν = 1 and consider the 2-D Riemann problem with the initial data:

(s, c)(x, y, 0) =






(1.0, 0.0), x < 0, y < 0,

(1.0, 0.1), x > 0, y > 0,

(0.0, 0.0), otherwise.

(17)

The example is taken from [HAU 01], where the corresponding inviscid system was
numerically solved by a front tracking method. Here, we consider the viscous case
with ε = 0.01. The solutions, computed at time t = 0.4 by the FEOS method with
400 × 400 grid cells and two and four splitting steps, are plotted in Figure 4. As one
can see, all major waves are already accurately captured with four splittings steps for
the s-component of the solution and with only two steps for the c-component of the
solution.

It should be pointed out that a fast and efficient implementation of the FEOS
method in two (and more) dimensions can only be achieved by taking into account
the special form of the heat kernel given by (9). The presence of exponents of type

e−
(xj−xi)2+(yk−y`)2

4ε∆t on the RHS of (11), used in the “parabolic” substep of the FEOS
method, allows one to perform the summation only in a (relatively) small neighbor-
hood of each cell. This significantly reduces CPU times and thus makes the FEOS
method very efficient.
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