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CENTRAL SCHEMES AND CONTACT DISCONTINUITIES
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Abstract. We introduce a family of new second-order Godunov-type central schemes for one-dimensio-
nal systems of conservation laws. They are a less dissipative generalization of the central-upwind
schemes, proposed in [A. Kurganov et al., submitted to SIAM J. Sci. Comput.], whose construction
is based on the maximal one-sided local speeds of propagation. We also present a recipe, which helps
to improve the resolution of contact waves. This is achieved by using the partial characteristic de-
composition, suggested by Nessyahu and Tadmor [J. Comput. Phys. 87 (1990) 408–463], which is
efficiently applied in the context of the new schemes. The method is tested on the one-dimensional
Euler equations, subject to different initial data, and the results are compared to the numerical solu-
tions, computed by other second-order central schemes. The numerical experiments clearly illustrate
the advantages of the proposed technique.
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1. Introduction

In this paper, we study second-order Godunov-type central schemes for one-dimensional systems of hyperbolic
conservation laws

ut + f(u)x = 0, (1.1)

subject to the initial data

u(x, 0) = u0(x). (1.2)

Here, u(x, t) := (u1(x, t), . . . , uN (x, t)) is the unknown vector-function and f(u) := (f1(u), . . . , fN (u)) is the
flux vector with the Jacobian A :=

(
∂fi
∂uj

)
, i, j = 1, . . . , N .

A first-order stable central scheme was first introduced by Lax and Friedrichs in [5, 15]. Unfortunately, the
Lax-Friedrichs (LxF) scheme has a large numerical dissipation which leads to a poor resolution of the nonsmooth
parts of the solution (unless a huge number of grid points is used, which may be practically impossible).
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In [22], Nessyahu and Tadmor proposed a second-order generalization (the NT scheme) of the LxF scheme. The
NT scheme has smaller numerical viscosity and resolves shock waves, rarefactions and contact discontinuities
much better than the first-order LxF scheme. Higher-order generalizations of the NT scheme were introduced
in [3, 17, 21]. We refer the reader to [24, 25] for an alternative staggered approach, and to [1, 2, 9, 18, 19] for
examples of central schemes in the multidimensional case.

A disadvantage of the staggered central schemes is that their numerical viscosity is proportional to (∆x)2r/∆t,
where r is the formal order of the scheme. This results in excessive numerical dissipation if a small time step
is enforced or a long-time integration is performed. To overcome this difficulty, a new family of nonstaggered
fully- and semi-discrete central schemes has been recently introduced in [11–14]. The key idea behind their
construction is to obtain a more precise estimate of the width of the local Riemann fans by utilizing the
maximal local speeds of propagation. This reduces the numerical viscosity to O(∆t)2r−1, and therefore makes it
possible to efficiently use central schemes when the time step is small.

Even though the numerical dissipation of the aforementioned high-order central schemes is small, it is not
small enough to provide a satisfactory resolution of contact discontinuities. A possible way to improve the
resolution was proposed in [22]. The main idea is to isolate the less expensive characteristic projection on
the linear contact field, and to use the component-wise approach for the other, nonlinear fields (see Sect. 4
in [22]). The effect of this partial characteristic decomposition can be amplified if it is used together with the
artificial compression method (ACM), applied to the isolated contact field (see [6, 7, 22]). The above technique
was extended in [20] in the multidimensional case. However, the drawback of using the ACM is that it requires
a certain a priori information about the solution in order to determine the optimal amount of the added
“anti-diffusion”.

The main purpose of this paper is to present (in the context of nonstaggered schemes from [13, 14]) an
alternative use of the partial characteristic information. First, in Section 2, we derive a new second-order
fully-discrete scheme and then, in Section 3, passing to the limit as ∆t → 0, we obtain a new second-order
semi-discrete scheme. Compared with the schemes from [13,14], the proposed schemes have smaller numerical
viscosity, which leads to a sharper resolution of contact discontinuities.

In Section 4, we use the partial characteristic decomposition to treat the linear and nonlinear fields separately,
and this helps to improve the resolution of the contact waves. At the same time, the numerical examples,
presented in Section 5, clearly demonstrate that the reduced numerical dissipation does not influence the stability
of the proposed central schemes. We would also like to mention that the computational cost of the partial
decomposition, used in the construction of the new schemes, is relatively low. This preserves one of the main
advantages of the central schemes – their efficiency.

2. Fully-discrete scheme

In this section, we derive a modification of the second-order fully-discrete central-upwind scheme, introduced
in [13]. First, we would like to recall the construction of central-upwind schemes (see [13]), which consist of
three consecutive steps – reconstruction, evolution and projection back onto the original grid.

We will consider only uniform grids and use the following notation, xj := j∆x, xj± 1
2

:= (j ± 1/2)∆x,
tn := n∆t, λ := ∆t/∆x, unj ≈ u(xj , tn), and

ūnj ≈ ū(xj , tn) :=
1

∆x

x
j+ 1

2∫
x
j− 1

2

u(ξ, tn) dξ.

Here, ∆x and ∆t are small spatial and time scales, respectively, and ūnj are the computed cell averages at time
level t = tn.
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Reconstruction

Assume that at time level t = tn we have computed the cell averages {ūnj }. We then reconstruct the
second-order piecewise linear interpolant

ũ(x, tn) = lnj (x) := ūnj + snj (x− xj), xj− 1
2
< x < xj+ 1

2
, ∀j. (2.1)

To ensure the non-oscillatory nature of this reconstruction, the slopes {snj } should be computed using a nonlinear
limiter. A wide variety of such limiters can be found, for example, in [7, 8, 10, 16, 22, 23]. In the numerical
experiments, presented below, we use the so-called minmod limiter [7, 16,23]

snj = minmod
(
θ
ūnj − ūnj−1

∆x
,
ūnj+1 − ūnj−1

2∆x
, θ
ūnj+1 − ūnj

∆x

)
, 1 ≤ θ ≤ 2, (2.2)

where

minmod(x1, x2, ...) :=


min
j
{xj}, if xj > 0 ∀j,

max
j
{xj}, if xj < 0 ∀j,

0, otherwise.

Notice that larger θ’s in (2.2) correspond to a less dissipative, but still non-oscillatory reconstruction (2.1). Our
experience shows that in practice the optimal value of θ for the Euler system of gas dynamics is about θ = 1.3.

Evolution

The interpolant (2.1) may be discontinuous at the interface points {xj+ 1
2
}. These discontinuities propagate

with right- and left-sided local speeds, which can be estimated by

a+
j+ 1

2
:= max

ω∈C(u−
j+ 1

2
,u+
j+ 1

2
)

{
λN
(
A(ω)

)
, 0
}
, (2.3)

and

a−
j+ 1

2
:= min

ω∈C(u−
j+ 1

2
,u+
j+ 1

2
)

{
λ1

(
A(ω)

)
, 0
}
, (2.4)

respectively. Here, λ1 < . . . < λN are the N eigenvalues of the Jacobian A, and C(u−
j+ 1

2
, u+
j+ 1

2
) is the Riemann

admissible curve in the phase space that connects the left, u−
j+ 1

2
:= lnj (xj+ 1

2
), and the right, u+

j+ 1
2

:= lnj+1(xj+ 1
2
),

states. For example, in the genuinely nonlinear or linearly degenerate case, we have

a+
j+ 1

2
= max

{
λN
(
A(u−

j+ 1
2
)
)
, λN

(
A(u+

j+ 1
2
)
)
, 0
}
,

a−
j+ 1

2
= min

{
λ1

(
A(u−

j+ 1
2
)
)
, λ1

(
A(u+

j+ 1
2
)
)
, 0
}
·

Next, let us denote by xn
j+ 1

2 ,l
:= xj+ 1

2
+ ∆ta−

j+ 1
2

and xn
j+ 1

2 ,r
:= xj+ 1

2
+ ∆ta+

j+ 1
2

and consider the non-equal
rectangular domains (see Fig. 2.1),

[xnj− 1
2 ,r
, xnj+ 1

2 ,l
]× [tn, tn+1] and [xnj+ 1

2 ,l
, xnj+ 1

2 ,r
]× [tn, tn+1],



1262 A. KURGANOV AND G. PETROVA

x j-1 jx

n
u j

n+1
u j

j-1/2
n+1

w

n+1
j+1w

n
j+1u

x j+3/2,l
n

x
n
j-1/2,l

j-1
n+1

w

n+1
j+1/2w

n+1
jw

x x x xj+1/2j-1/2 j+1 j+3/2

x x
n n

n
u

j-1/2,rj-3/2,r

j-1

n
j+1/2,lx j+1/2,rx

n

Figure 2.1. Central-upwind differencing.

where the solution of (1.1) with the initial data ũ(x, tn) is smooth and nonsmooth, respectively.
Integration of (1.1) over these domains together with the midpoint approximation of the flux integrals, results

in the following intermediate cell averages, outlined in Figure 2.1,

w̄n+1
j =

1
xn
j+ 1

2 ,l
− xn

j− 1
2 ,r

[ xn
j+ 1

2 ,l∫
xn
j− 1

2 ,r

ũ(x, tn) dx−
tn+1∫
tn

(
f(u(xnj+ 1

2 ,l
, t))− f(u(xnj− 1

2 ,r
, t))
)

dt

]

= ūnj +
∆t
2

(a+
j− 1

2
+ a−

j+ 1
2
)snj −

λ

1 + λ(a−
j+ 1

2
− a+

j− 1
2
)

[
f(un+ 1

2
j+ 1

2 ,l
)− f(un+ 1

2
j− 1

2 ,r
)
]
, (2.5)

and

w̄n+1
j+ 1

2
=

1
xn
j+ 1

2 ,r
− xn

j+ 1
2 ,l

[ xn
j+ 1

2 ,r∫
xn
j+ 1

2 ,l

ũ(x, tn) dx−
tn+1∫
tn

(
f(u(xnj+ 1

2 ,r
, t))− f(u(xnj+ 1

2 ,l
, t))
)

dt

]

=
a+
j+ 1

2
ūnj+1 − a−j+ 1

2
ūnj

a+
j+ 1

2
− a−

j+ 1
2

−
(∆x+ a−

j+ 1
2
∆t)a−

j+ 1
2
snj

2(a+
j+ 1

2
− a−

j+ 1
2
)

−
(∆x− a+

j+ 1
2
∆t)a+

j+ 1
2
snj+1

2(a+
j+ 1

2
− a−

j+ 1
2
)

− 1
a+
j+ 1

2
− a−

j+ 1
2

[
f(un+ 1

2
j+ 1

2 ,r
)− f(un+ 1

2
j+ 1

2 ,l
)
]
. (2.6)
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Here, the midpoint values are obtained from the corresponding Taylor expansions,

u
n+ 1

2
j+ 1

2 ,l
:= unj+ 1

2 ,l
− ∆t

2
f(unj+ 1

2 ,l
)
x
, unj+ 1

2 ,l
:= ūnj + ∆xsnj (λa−

j+ 1
2

+
1
2

),

(2.7)

u
n+ 1

2
j+ 1

2 ,r
:= unj+ 1

2 ,r
− ∆t

2
f(unj+ 1

2 ,r
)
x
, unj+ 1

2 ,r
:= ūnj+1 + ∆xsnj+1(λa+

j+ 1
2
− 1

2
).

Note that one can avoid the computation of the Jacobian in (2.7) by using a component-wise evaluation of fx,
consult [22].

Projection

At the final step we take the piecewise linear interpolant

w̃(x, tn+1) :=
∑
j

{[
w̄n+1
j+ 1

2
+ sn+1

j+ 1
2

(
x−

xn
j+ 1

2 ,l
+ xn

j+ 1
2 ,r

2

)]
χ[xn

j+ 1
2 ,l
,xn
j+ 1

2 ,r
] + w̄n+1

j χ[xn
j− 1

2 ,r
,xn
j+ 1

2 ,l
]

}
, (2.8)

reconstructed from the evolved intermediate cell averages (2.5)–(2.6), and project it back onto the original grid
by averaging (2.8) over [xj− 1

2
, xj+ 1

2
]. Notice, that in (2.8) we do not need a linear reconstruction over the

interval [xn
j− 1

2 ,r
, xn
j+ 1

2 ,l
], since it will be averaged out by the projection (see Fig. 2.1). This results in

ūn+1
j =

1
∆x

x
j+ 1

2∫
x
j− 1

2

w̃(ξ, tn+1) dξ = λa+
j− 1

2
w̄n+1
j− 1

2
+
[
1 + λ(a−

j+ 1
2
− a+

j+ 1
2
)
]
w̄n+1
j − λa−

j+ 1
2
w̄n+1
j+ 1

2

+
λ∆t

2

[
sn+1
j+ 1

2
a+
j+ 1

2
a−
j+ 1

2
− sn+1

j− 1
2
a+
j− 1

2
a−
j− 1

2

]
. (2.9)

This completes the construction of the second-order central-upwind fully-discrete scheme: (2.2)–(2.7), (2.9).

The key issue, which leaves us an additional degree of freedom, is the choice of the slopes {sn+1
j+ 1

2
}. This can

be done in different ways. For example, following the component-wise approach from [14], one may take

sn+1
j+ 1

2
= 2 ·minmod

θ w̄n+1
j+ 1

2
− w̄n+1

j

xn
j+ 1

2 ,r
− xn

j− 1
2 ,r

,
w̄n+1
j+1 − w̄n+1

j

xn
j+ 3

2 ,l
+ xn

j+ 1
2 ,r
− xn

j+ 1
2 ,l
− xn

j− 1
2 ,r

, θ
w̄n+1
j+1 − w̄n+1

j+ 1
2

xn
j+ 3

2 ,l
− xn

j+ 1
2 ,l

 . (2.10)

Here, the distances

xnj+ 1
2 ,r
− xnj− 1

2 ,r
= ∆x+ ∆t(a+

j+ 1
2
− a+

j− 1
2
) and xnj+ 3

2 ,l
− xnj+ 1

2 ,l
= ∆x+ ∆t(a−

j+ 3
2
− a−

j+ 1
2
),

are of order ∆x for small ∆t, and thus the slopes sn+1
j+ 1

2
are proportional to ∆w/∆x as ∆t ∼ 0. Another choice of

sn+1
j+ 1

2
is proposed in (4.2), where the slopes are ∼ ∆w/∆t. As it can be seen in Figure 2.2, both reconstructions

are non-oscillatory, but the first one leads to an excessive numerical dissipation, which is amplified when we
pass to a semi-discrete limit as ∆t→ 0 (see Sects. 3 and 4).

However, the amount of numerical viscosity in the scheme (2.2)–(2.7), (2.9) can be decreased if a partial
characteristic information is employed in the computation of the slopes sn+1

j+ 1
2
, as described in Section 4. Such an
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Figure 2.2. Two possible choices of sn+1
j+ 1

2
– using (2.10) or (4.2).

approach leads to a sharper resolution of contact discontinuities, and this can be seen in the numerical examples
presented in Section 5.

3. Semi-discrete scheme

In this section, we derive a family of semi-discrete central-upwind schemes for (1.1), proceeding along the
lines of [13,14]. From (2.9) we obtain that

d
dt
ūj(t) = lim

∆t→0

ūn+1
j − ūnj

∆t
=
a+
j− 1

2

∆x
lim

∆t→0
w̄n+1
j− 1

2
+ lim

∆t→0

1
∆t

{[
1 + λ(a−

j+ 1
2
− a+

j+ 1
2
)
]
w̄n+1
j − ūnj

}

−
a−
j+ 1

2

∆x
lim

∆t→0
w̄n+1
j+ 1

2
+

1
2∆x

lim
∆t→0

(
∆tsn+1

j+ 1
2
a+
j+ 1

2
a−
j+ 1

2
−∆tsn+1

j− 1
2
a+
j− 1

2
a−
j− 1

2

)
. (3.1)

The first three limits on the RHS of (3.1) can be computed as follows. From (2.5) and (2.6) we obtain

lim
∆t→0

1
∆t

{[
1 + λ(a−

j+ 1
2
− a+

j+ 1
2
)
]
w̄n+1
j − ūnj

}
=
a−
j+ 1

2
u−
j+ 1

2
− a+

j+ 1
2
u+
j+ 1

2

∆x
−
f(u−

j+ 1
2
)− f(u+

j− 1
2
)

∆x
, (3.2)

and

lim
∆t→0

w̄n+1
j+ 1

2
=
a+
j+ 1

2
u+
j+ 1

2
− a−

j+ 1
2
u−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

−
f(u+

j+ 1
2
)− f(u−

j+ 1
2
)

a+
j+ 1

2
− a−

j+ 1
2

, (3.3)

where u+
j+ 1

2
= lj+1(xj+ 1

2
) and u−

j+ 1
2

= lj(xj+ 1
2
) are the corresponding right and left values of the piecewise

linear interpolant {lj}, reconstructed at time t. A substitution of (3.2) and (3.3) in (3.1) results in a family of
semi-discrete central-upwind schemes, which can be written in the conservative form,

d
dt
ūj(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
, (3.4)
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with numerical flux Hj+ 1
2
, given by

Hj+ 1
2
(t) :=

a+
j+ 1

2
f(u−

j+ 1
2
)− a−

j+ 1
2
f(u+

j+ 1
2
)

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

[
u+
j+ 1

2
− u−

j+ 1
2

]

−
a+
j+ 1

2
a−
j+ 1

2

2
lim

∆t→0
(∆tsn+1

j+ 1
2
). (3.5)

If the slopes {sn+1
j+ 1

2
} are chosen to be uniformly bounded independently of ∆t, as in (2.10), then

lim
∆t→0

(∆tsn+1
j+ 1

2
) = 0, (3.6)

and we obtain the semi-discrete scheme from [13]. A choice of {sn+1
j+ 1

2
}, for which

qj+ 1
2

:= lim
∆t→0

(∆tsn+1
j+ 1

2
) 6= 0,

results in the semi-discrete scheme (3.4) with a less dissipative numerical flux

Hj+ 1
2
(t) =

a+
j+ 1

2
f(u−

j+ 1
2
)− a−

j+ 1
2
f(u+

j+ 1
2
)

a+
j+ 1

2
− a−

j+ 1
2

+ a+
j+ 1

2
a−
j+ 1

2

[
u+
j+ 1

2
− u−

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

−
qj+ 1

2

2

]
. (3.7)

Remarks.
1. If the qj+ 1

2
’s are computed component-wise, then the scheme (3.4)–(3.5) is a Godunov-type central scheme,

since it is based on integration over Riemann fans and does not require characteristic decomposition.
2. In the next section, we use a certain (partial) characteristic decomposition to obtain a semi-discrete scheme
(3.4), (3.7) with nonzero qj+ 1

2
’s. This will give a stable semi-discrete scheme, which will be less dissipative than

the scheme (3.4)–(3.6), and will provide a higher resolution of contact waves.
3. Any stable ODE solver of an appropriate order can be used for the time discretization of the semi-discrete
scheme (3.4)–(3.5). In the numerical examples below, we have used the second-order modified Euler method.
4. Instead of (2.1), one may use a higher-order non-oscillatory piecewise polynomial reconstruction, which will
result in a higher-order semi-discrete scheme (for details, consult [13]).

4. Partial characteristic decomposition

As we have already mentioned, the fully-discrete scheme (2.2)–(2.7), (2.9) and the semi-discrete scheme (3.4)–
(3.5) have a degree of freedom in choosing the slopes {sn+1

j+ 1
2
} in (2.9) and (3.5), respectively. A possible choice

of these slopes is (2.10). In this case, sn+1
j+ 1

2
∼ ∆w/∆x, which leads to a scheme with a relatively large numerical

dissipation, which can be decreased by choosing sn+1
j+ 1

2
to be proportional to ∆w/∆t. In the fully-discrete setting

we may proceed, for example, as follows. First, we approximate the values of the solution at the points xn
j+ 1

2 ,l

and xn
j+ 1

2 ,r
at time level t = tn+1. Since the solution is smooth there, we may use the Taylor expansion, and

similarly to (2.7) we obtain

un+1
j+ 1

2 ,l
:= unj+ 1

2 ,l
−∆tf(unj+ 1

2 ,l
)
x
, un+1

j+ 1
2 ,r

:= unj+ 1
2 ,r
−∆tf(unj+ 1

2 ,r
)
x
. (4.1)



1266 A. KURGANOV AND G. PETROVA

We then apply the minmod limiter to these point values and w̄n+1
j+ 1

2
to compute the slopes sn+1

j+ 1
2
, namely

sn+1
j+ 1

2
= minmod

θ w̄n+1
j+ 1

2
− un+1

j+ 1
2 ,l

δ
,
un+1
j+ 1

2 ,r
− un+1

j+ 1
2 ,l

2δ
, θ
un+1
j+ 1

2 ,r
− w̄n+1

j+ 1
2

δ

 , δ =
∆t
2

(a+
j+ 1

2
− a−

j+ 1
2
), (4.2)

and this completes the construction of a fully-discrete scheme (2.2)–(2.7), (2.9), (4.2).
The corresponding semi-discrete scheme is obtained by substituting (4.2) in (3.5). The limit is

lim
∆t→0

(∆tsn+1
j+ 1

2
) =

u+
j+ 1

2
− u−

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

,

and the resulting numerical flux is

Hj+ 1
2
(t) :=

a+
j+ 1

2
f(u−

j+ 1
2
)− a−

j+ 1
2
f(u+

j+ 1
2
)

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

2

[
u+
j+ 1

2
− u−

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

]
. (4.3)

Obviously, the scheme (3.4), (4.3) has less dissipation than the central-upwind scheme (3.4)–(3.6), but it may
have an oscillatory behavior. This instability is illustrated in numerical Example 3, Figures 5.6–5.7. However, it
is possible to retain the stability of the nonlinear fields, and yet improve the resolution of contact discontinuities.
It can be done if one applies the latter approach (the less dissipative reconstruction) only to the linear field(s).

To this end, we implement the idea of partial characteristic decomposition, introduced in [22] in the context
of the one-dimensional Euler equations of gas dynamics,

∂

∂t

 ρ
m
E

+
∂

∂x

 m
ρu2 + p
u(E + p)

 = 0, p = (γ − 1) ·
(
E − ρ

2
u2
)
. (4.4)

Here, ρ, u, m = ρu, p and E are density, velocity, momentum, pressure and the total energy, respectively.
Let us recall that the corresponding Roe matrix Âj+ 1

2
= Â(vj , vj+1) for (4.4) has eigenvalues

âj+ 1
2 ,1

= ûj+ 1
2
− ĉj+ 1

2
, âj+ 1

2 ,2
= ûj+ 1

2
, âj+ 1

2 ,3
= ûj+ 1

2
+ ĉj+ 1

2
, (4.5)

and right eigenvectors

R̂j+ 1
2 ,1

=

 1
û− ĉ
Ĥ − ûĉ


j+ 1

2

, R̂j+ 1
2 ,2

=

 1
û

1
2 û

2


j+ 1

2

, R̂j+ 1
2 ,3

=

 1
û+ ĉ

Ĥ + ûĉ


j+ 1

2

. (4.6)

The above quantities û, Ĥ and ĉ are defined by

û =
〈√ρu〉
〈√ρ〉 , Ĥ =

〈√ρH〉
〈√ρ〉 , ĉ =

√
(γ − 1)(Ĥ − 1

2
û2), (4.7)

where 〈v〉 := 1
2 (vj + vj+1) stands for the Roe average of vj and vj+1.
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Further, we introduce the notation

∆rvj+ 1
2

:= vj+ 1
2 ,r
− vj+ 1

2
, ∆lvj+ 1

2
:= vj+ 1

2
− vj+ 1

2 ,l
,

〈v〉r :=
1
2

(vj+ 1
2 ,r

+ vj+ 1
2
), 〈v〉l :=

1
2

(vj+ 1
2

+ vj+ 1
2 ,l

),

and ûr, Ĥr, ĉr (ûl, Ĥ l, ĉl), where the upper index r (l) means that in formula (4.7) 〈·〉r (〈·〉l) is used instead
of 〈·〉. We now consider the partial characteristic decomposition

un+1
j+ 1

2 ,r
− w̄n+1

j+ 1
2

= ∆rw̃j+ 1
2

+ αrj+ 1
2 ,2

 1
ûr

1
2 (ûr)2


j+ 1

2

:=

 ∆rρ̃
∆rm̃

∆rẼ


j+ 1

2

+ αrj+ 1
2 ,2

 1
ûr

1
2 (ûr)2


j+ 1

2

, (4.8)

where

αrj+ 1
2 ,2

= ∆rρj+ 1
2
−

∆rpj+ 1
2

(ĉr
j+ 1

2
)2
·

The difference w̄n+1
j+ 1

2
− un+1

j+ 1
2 ,l

can be written in a similar form, namely

w̄n+1
j+ 1

2
− un+1

j+ 1
2 ,l

=

 ∆lρ̃
∆lm̃

∆lẼ


j+ 1

2

+ αlj+ 1
2 ,2

 1
ûl

1
2 (ûl)2


j+ 1

2

, αlj+ 1
2 ,2

= ∆lρj+ 1
2
−

∆lpj+ 1
2

(ĉl
j+ 1

2
)2
· (4.9)

We call (4.8), (4.9) a partial characteristic decomposition, since it isolates the characteristic projection on the
contact field, and allows component-wise treatment of the other two fields. This enables us to treat linear and
nonlinear fields separately and therefore it provides an additional degree of freedom – we may use different
limiters for the different fields. It allows us to improve the resolution of contact waves without affecting the
stability of shocks and rarefactions.

Next, we employ the partial characteristic decomposition and use, for example, the slopes (2.10) for the
nonlinear fields, and a less dissipative reconstruction for the linear field. The performed numerical experiments
show that it is even possible to avoid the application of nonlinear limiters to the linear field, namely we can
choose the following slopes sn+1

j+ 1
2
,

sn+1
j+ 1

2
= 2 ·minmod

(
θ

∆lw̃j+ 1
2

xn
j+ 1

2 ,r
− xn

j− 1
2 ,r

,
∆w̃j

xn
j+ 3

2 ,l
+ xn

j+ 1
2 ,r
− xn

j+ 1
2 ,l
− xn

j− 1
2 ,r

, θ
∆rw̃j+ 1

2

xn
j+ 3

2 ,l
− xn

j+ 1
2 ,l

)

+
1

∆t(a+
j+ 1

2
− a−

j+ 1
2
)

αrj+ 1
2 ,2

 1
ûr

1
2 (ûr)2


j+ 1

2

+ αlj+ 1
2 ,2

 1
ûl

1
2 (ûl)2


j+ 1

2

 , (4.10)

which, together with (2.2)–(2.7), (2.9), completes our fully-discrete scheme for the Euler equations (4.4).
Substitution of (4.10) in (3.5) results in the semi-discrete scheme (3.4), (3.7) with

qj+ 1
2

=
αj+ 1

2 ,2

a+
j+ 1

2
− a−

j+ 1
2

 1
û

1
2 û

2


j+ 1

2

. (4.11)
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Here, αj+ 1
2 ,2

are the coefficients of the partial characteristic decomposition of

u+
j+ 1

2
− u−

j+ 1
2

=

 ρ̃+
j+ 1

2
− ρ̃−

j+ 1
2

m̃+
j+ 1

2
− m̃−

j+ 1
2

Ẽ+
j+ 1

2
− Ẽ−

j+ 1
2

+ αj+ 1
2 ,2

 1
û

1
2 û

2


j+ 1

2

, (4.12)

which corresponds to a Roe matrix Â(u+
j+ 1

2
, u−
j+ 1

2
).

Remarks.
1. In practice one may avoid the computation of un+1

j+ 1
2 ,r

and un+1
j+ 1

2 ,l
in (4.1) by replacing them in (4.8) and

(4.9) with w̄n+1
j+1 and w̄n+1

j , respectively. This does not effect the overall accuracy of the fully-discrete scheme.
Moreover, the performed numerical experiments illustrate an improvement of the resolution of contact discon-
tinuities.
2. The same approach of partial characteristic decomposition can be used for any other strictly hyperbolic
system with a known Roe matrix and at least one linear field.
3. If we set u+

j+ 1
2

= ūj+1 and u−
j+ 1

2
= ūj in (3.7) and (4.12) (which is equivalent to setting snj = 0 in (2.1)), the

resulting first-order scheme (3.4), (3.7), (4.11)–(4.12) is similar to the first-order scheme from [4].
4. Notice that in contrast to the NT scheme (introduced in [22]), where the partial characteristic decomposition
is used both at the reconstruction and the evolution steps, the proposed schemes use it only for the computation
of the slopes sn+1

j+ 1
2
. Therefore, the use of the partial characteristic decomposition in the presented schemes is

computationally nonexpensive.

5. Numerical examples

In this section, we study the performance of the introduced fully-discrete (FD) scheme (2.2)–(2.7), (2.9),
(4.10) and the semi-discrete (modified SD) scheme (3.4), (3.7), (4.11)–(4.12). They are tested on the one-
dimensional Euler equations (4.4) with γ = 1.4, subject to different initial conditions, and are compared to
the original NT scheme, the NT scheme that utilizes the partial characteristic decomposition (according to the
recipe (4.19) and (4.21) in [22]), and with the semi-discrete (SD) scheme, defined in (3.4), (4.3). We use the
CFL number 0.475 and θ = 1.3 (in the minmod limiter (2.2)) in all computations.

As expected, the numerical examples below clearly demonstrate that the FD and modified SD schemes give
a better resolution of the contact waves.

Example 1: Steady contact discontinuity

We solve the system (4.4) on the interval [−0.2, 0.2], subject to the initial data

~u(x, 0) =

{
~uL = (1, 0, 2.5)T , x < 0,
~uR = (0.5, 0, 2.5)T , x > 0,

(5.1)

which corresponds to a single steady contact discontinuity. We use 80 grid points and compute the solution
at a final time T = 10. Figure 5.1 shows the density, computed using the NT, the NT scheme with partial
decomposition, and the SD scheme. The excessive numerical viscosity, present in all these schemes, does not
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Figure 5.1. Steady contact – density.
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Figure 5.2. Steady contact – density.
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Figure 5.3. Moving contact – density; zoom at [0.7, 0.9].

allow a sharp resolution of the discontinuity. In contrast, the FD scheme gives a much better resolution, and
the modified SD scheme provides a perfect resolution of the steady contact wave (see Fig. 5.2).

Remark. This simple example, and the ones that follow (see Figs. 5.4–5.7), demonstrate that the partial
characteristic decomposition in the context of the NT scheme does not provide a big improvement, unless it is
used together with the ACM (see [20, 22]).

Example 2: Moving contact discontinuity

We consider problem (4.4) on the interval [−0.1, 0.9], subject to the initial data

~u(x, 0) =

{
~uL = (1, 0.1, 2.505)T , x < 0,
~uR = (0.5, 0.05, 2.5025)T , x > 0,

(5.2)
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which is an example of a single moving contact discontinuity. We compute the approximate solution at time
T = 8, using 200 grid points. The graph of the density is presented in Figure 5.3, and it clearly illustrates the
advantages of the FD and the modified SD schemes in this example.

Example 3: Lax problem

The Riemann problem with initial data

~u(x, 0) =

{
~uL = (0.445, 0.311, 8.928)T , x < 0,
~uR = (0.5, 0, 1.4275)T , x > 0,

(5.3)

was proposed by Lax in [15]. Figures 5.4–5.7 show the approximate solution, computed with 200 grid points
at time T = 0.16 by the NT, the NT with partial decomposition and the SD schemes. The quality of the
resolution, provided by these schemes, is about the same, but the SD scheme generates spurious oscillations
in the pressure and velocity fields, Figures 5.6–5.7. As mentioned in Section 4, this is due to the insufficient
numerical dissipation, present in the SD scheme. Notice that the oscillations occur around the location of the
contact discontinuity.

In Figures 5.8–5.10 we compare the SD scheme with the modified SD scheme, where a low dissipative
correction is applied only to the linear field. No oscillations are observed in this case.

The solution, computed by the FD scheme, is presented in Figures 5.11–5.14. Compared with the modified
SD scheme, our fully-discrete scheme provides much better resolution of the contact wave. This can be clearly
seen in Figure 5.12 – the modified SD scheme has twice as many points in the numerical contact layer as the
FD scheme has.

Example 4: Woodward–Colella problem

Finally, we solve the system (4.4) on the interval [0, 1] with the initial data

~u(x, 0) =


~uL = (1, 0, 2500)T , 0 ≤ x < 0.1,
~uM = (1, 0, 0.025)T , 0.1 ≤ x < 0.9,
~uR = (1, 0, 250)T , 0.9 ≤ x < 1,

(5.4)

and solid wall boundary conditions, applied to both ends. The example describes the interaction of blast waves
and was proposed by Woodward and Colella in [26].

We compute the solution at time levels T = 0.01, 0.03 and 0.038, using N = 400 grid points. A reference
solution is computed by the FD scheme with N = 3200 grid points and the least oscillatory minmod limiter (2.2)
with θ = 1.

Figures 5.15–5.16, 5.19–5.20 and 5.23–5.24 show that the SD and the modified SD schemes provide slightly
better resolution than the NT scheme. This can be seen in Figures 5.16, 5.20 and 5.24, where the values at
the peaks are compared. One can also observe that all these schemes poorly resolve the contact discontinuities.
The fully-discrete (FD) scheme cannot resolve them completely as well, but at least it indicates the presence
of contact waves. At the same time, the other tested central schemes fail to give even a qualitative behavior
of the solution near the contact fields. This demonstrates the advantage of the FD scheme, as it can be seen
in Figures 5.17–5.18, 5.21–5.22, 5.25–5.26. Moreover, the FD scheme also offers a better overall resolution
(compare the values at the peaks).
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Figure 5.4. Lax problem – density.
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Figure 5.5. Zoom at [0.15,0.45].
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Figure 5.6. Lax problem – velocity.
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Figure 5.7. Lax problem – pressure.
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Figure 5.8. Lax problem – density.
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Figure 5.9. Lax problem – velocity.
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Figure 5.10. Lax problem – pressure.
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Figure 5.11. Lax problem – density.
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Figure 5.12. Zoom at [0.15,0.45].
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Figure 5.13. Lax problem – velocity.
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Figure 5.14. Lax problem – pressure.
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Figure 5.15. WC problem – density, T=0.01.
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Figure 5.16. Zoom at [0.8,0.86].
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Figure 5.17. WC problem – density, T=0.01.
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Figure 5.18. Zoom at [0.26,0.36].
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Figure 5.19. WC problem – density, T=0.03.
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Figure 5.20. Zoom at [0.45,0.75].
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Figure 5.21. WC problem – density, T=0.03.

0

5

10

15

20

25

0.45 0.5 0.55 0.6 0.65 0.7 0.75

FD, N=3200
MODIFIED  SD, N=400

FD, N=400

Figure 5.22. Zoom at [0.45,0.75].
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Figure 5.23. WC problem – density, T=0.038.
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Figure 5.24. Zoom at [0.5,0.9].
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Figure 5.25. WC problem – density, T=0.038.
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Figure 5.26. Zoom at [0.5,0.9].
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