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uss appli
ations of semi-dis
rete 
entral s
hemes for systems ofbalan
e laws. We distinguish between two generi
 
ases of sti� and nonsti� sour
eterms. In the nonsti� 
ase, the main advantage of semi-dis
rete 
entral s
hemes istheir universality. Sin
e no (approximate) Riemann problem solver or 
hara
teristi
�eld de
omposition is involved, no operator splitting is required. It allows one to elim-inate splitting errors, whi
h may be very signi�
ant, espe
ially for quasi-stationarysolutions. In the sti� 
ase, operator splitting or an impli
it-expli
it ODE solver hasto be implemented in order to preserve eÆ
ien
y of the s
heme. Our numeri
al ex-periments demonstrate that the designed method, based on the semi-dis
rete 
entrals
heme from [KUR 00a℄, performs extremely well in both regimes.KEYWORDS: Balan
e laws, 
onservation laws, high-resolution semi-dis
rete 
entrals
hemes, sti� sour
e term, Broadwell model.1. Introdu
tionWe 
onsider the one-dimensional (1-D) system of balan
e laws,ut + f(u)x = 1"S(u; x; t); u 2 RN ; " > 0; [1℄subje
t to the initial data, u(x; 0) = u0(x). Balan
e laws arise in several hy-drodynami
al models (in
luding shallow water equations), gravitational 
ows,multi-phase models, 
hemotaxis models and other appli
ations. If the param-eter " << 1, the sour
e term is sti�, and the system [1℄ is of relaxation type.Sti� balan
e laws are of a spe
ial interest, sin
e they are used to model rea
ting
ows, 
ombustion, detonation, absorption, semi
ondu
tors, magnetohydrody-nami
s, traÆ
 
ows, and many other phenomena.



2 Finite volumes for 
omplex appli
ationsIn this paper, we study �nite-volume methods for balan
e laws. In parti
u-lar, we fo
us on Godunov-type 
entral s
hemes, whi
h are not tied to a spe
ialeigenstru
ture of the problem, and therefore 
an be used as a \bla
k-box-solver"for 
ompli
ated systems. The prototype of Godunov-type 
entral s
hemes isthe �rst-order Lax-Friedri
hs s
heme [LAX 71℄. Its staggered se
ond-ordergeneralization was proposed in [NES 90℄. For higher-order extensions of thestaggered 
entral s
hemes we refer the reader to [LEV 00℄ and the referen
estherein.The major drawba
k of staggered 
entral s
hemes is their relatively largenumeri
al dissipation, whi
h 
an be de
reased when (one-sided) lo
al speeds ofpropagation are utilized for more pre
ise estimate of the width of the Riemannfans. This leads to nonstaggered 
entral s
hemes, developed in [KUR 00b,KUR 01, KUR 00a℄ for homogeneous 
onservation laws. It should be no-ti
ed that unlike the staggered 
entral s
hemes, these new s
hemes admit aparti
ularly simple semi-dis
rete form, brie
y des
ribed in x2. This feature isespe
ially advantageous when the 
entral s
hemes are applied to 
onve
tion-di�usion equations, [KUR 00b, KUR 01℄, or nonsti� balan
e laws, [KUR 02℄,sin
e no operator splitting is required in these 
ases.The paper is fo
used on the appli
ation of semi-dis
rete 
entral s
hemesto hyperboli
 systems with relaxation. As a test-problem, whi
h admits bothsti� and nonsti� regimes, the Broadwell model [BRO 64℄ is 
onsidered. It isquite a 
hallenging task to design a numeri
al method, whi
h is 
apable to treatboth regimes of the model eÆ
iently and a

urately (see [CAF 97℄). Staggered
entral s
hemes for the Broadwell model, whi
h a
hieve this goal, have beenre
ently introdu
ed in [LIO 00, PAR 02a℄. The nonstaggered semi-dis
reteframework, however, is mu
h more 
onvenient than the fully-dis
rete staggeredone, espe
ially in the sti� 
ase. In x3, we design a se
ond-order semi-dis
retes
heme for the Broadwell model. The numeri
al experiments, presented in x4,
on�rm a very high resolution of the proposed method.2. Semi-dis
rete 
entral s
hemes { a brief overviewIn this se
tion we give a brief des
ription of the semi-dis
rete 
entral s
hemes,developed in [KUR 00b, KUR 01, KUR 00a, KUR 02℄.We �rst introdu
e a uniform spatial grid, x� = ��x. The integration ofsystem [1℄ over the 
ontrol volume Ij := [xj� 12 ; xj+ 12 ℄ results in an equivalentsemi-dis
rete form of [1℄,ddt �uj(t) + f�u(xj+ 12 ; t)�� f�u(xj� 12 ; t)��x = 1"�x xj+ 12Zxj� 12 S�u(x; t); x; t� dx; [2℄



Central-upwind s
hemes 3where �uj(t) denotes the 
ell average over Ij , �uj(t) := 1�x RIj u(x; t) dx: Semi-dis
rete �nite-volume s
hemes are then obtained by approximating the 
uxesat xj� 12 , and by the appli
ation of an appropriate quadrature for 
omputingthe sour
e average, �Sj(t), on the right-hand side of [2℄:ddt �uj(t) = �Hj+ 12 (t)�Hj� 12 (t)�x + 1" �Sj(t); [3℄where Hj+ 12 is a numeri
al 
ux.In this paper, we use a family of 
entral-upwind s
hemes from [KUR 00a℄,whose numeri
al 
uxes 
an be presented in the following form,Hj+ 12 (t) = a+j+ 12 f(u�j+ 12 )� a�j+ 12 f(u+j+ 12 )a+j+ 12 � a�j+ 12 +a+j+ 12 a�j+ 12 "u+j+ 12 � u�j+ 12a+j+ 12 � a�j+ 12 � qj+ 122 # :[4℄Here, u�j+ 12 := pj+ 12� 12 (xj+ 12 ) are the intermediate values of the pie
ewise poly-nomial interpolant, Pj pj(x; t)�j , re
onstru
ted at ea
h time step from thepreviously 
omputed 
ell averages, f�uj(t)g. The fun
tions fpj(�; t)g are poly-nomials of a given degree, and �j is the 
hara
teristi
 fun
tion of the intervalIj . The one-sided lo
al speeds of propagation, a�j+ 12 , are determined bya+j+ 12 = max��N��f�u (u�j+ 12 )�; �N��f�u (u+j+ 12 )�; 0� ;a�j+ 12 = min��1��f�u (u�j+ 12 )�; �1��f�u (u+j+ 12 )�; 0� ; [5℄with �1 < : : : < �N being the N eigenvalues of the Ja
obian �f=�u.Finally, qj+ 12 := q(u�j+ 12 ; a�j+ 12 ) represents an additional degree of freedom,whi
h may be used to further de
rease the numeri
al dissipation, attributed tothe original 
entral-upwind s
heme from [KUR 01℄, where qj+ 12 was set to bezero. We refer the reader to [KUR 00a℄ for details.Remark. |We would like to emphasize that one of the main advantages of theabove semi-dis
rete 
entral s
heme is its simpli
ity and universality. Indeed,the 1-D system of balan
e laws 
an be solved 
omponent-wise sin
e no (ap-proximate) Riemann problem solvers were utilized. Moreover, this allows oneto use the s
heme [3℄{[5℄ without operator splitting. For example, in [KUR 02℄,su
h unsplit s
heme (with qj+ 12 = 0) was applied to the Saint-Venant systemof shallow water equations [SAI 1871℄ with the sour
e term due to the non
atbottom elevation. The most deli
ate point in this appli
ation was to preservea balan
e between the 
ux gradients and the sour
e term, when the solution is



4 Finite volumes for 
omplex appli
ationsquasi-stationary. This was a
hieved by the use of a spe
ial quadrature for thesour
e average in [3℄, see [KUR 02℄ for details.Remark. | The (formal) order of the numeri
al 
ux [4℄ is determined by the(formal) order of a pie
ewise linear re
onstru
tion used in the 
omputation ofthe intermediate values. The non-os
illatory nature of the 
omputed solutionis typi
ally guaranteed by using a non-os
illatory re
onstru
tion. In this paper,we use the two-parameter family of pie
ewise linear, se
ond-order re
onstru
-tions from [LIE 02℄.Remark. | The semi-dis
rete s
heme [3℄{[5℄ forms a system of ODEs, whi
hshould be solved by a stable ODE solver of an appropriate order. When thesystem [1℄ in nonsti�, expli
it methods 
an be eÆ
iently used. The situationis mu
h more deli
ate for sti� systems, in whi
h 
ase expli
it methods may beineÆ
ient. Alternative impli
it approa
hes are dis
ussed below.3. Sti� problems: the Broadwell modelIn this se
tion, we design a se
ond-order semi-dis
rete 
entral s
heme for sti�systems of balan
e laws (" << 1). As an example, we 
onsider the Broadwellmodel, [BRO 64℄, that des
ribes a two-dimensional (2-D) gas as 
omposed ofparti
les of only four velo
ities with a binary 
ollision law and spatial variationin only one dire
tion. When looking for 1-D solutions of the 2-D gas, theevolution equations of the model are given by8>>>><>>>>: ft + fx = 1" (h2 � fg);ht = �1" (h2 � fg);gt � gx = 1" (h2 � fg); [6℄where " is the mean free path, f; h; and g denote the mass densities of gasparti
les with speeds 1,0, and �1 respe
tively.The 
uid dynami
s variables are density, � := f + 2h+ g, and momentum,m := f � g. We also de�ne z := f + g, and rewrite system [6℄ in the equivalentform as, 8><>: �t +mx = 0;mt + zx = 0;zt +mx = 12"(�2 +m2 � 2�z): [7℄
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hemes 5If "! 0, z is given by a lo
al Maxwellian distribution, z = (�2 +m2)=2�, andin the limit system [7℄ be
omes the following model Euler equations,8<: �t + (�v)x = 0;(�v)t + ��+ �v22 �x = 0;with velo
ity v := m=�.Our goal is to 
onstru
t a semi-dis
rete 
entral s
heme for system [7℄ thatwill perform in the sti� 
ase (" � 0) as good as in the nonsti� one (" = O(1)).The s
heme [3℄{[5℄ 
an be applied dire
tly. The hyperboli
 part of the systemis linear, and therefore the lo
al speeds are a�j+ 12 = �1 for all j. The numeri
al
ux [4℄ is then redu
ed toHj+ 12 (t) = f(u+j+ 12 ) + f(u�j+ 12 )2 � 12h(u+j+ 12 � u�j+ 12 )� qj+ 12 i;where u = (�;m; z)T . Sin
e all the �elds are linear, we may take qj+ 12 =(u+j+ 12 � u�j+ 12 )=2 without risking os
illations (see [KUR 00a℄ for details). Theresulting 
ux is then given byHj+ 12 (t) = f(u+j+ 12 ) + f(u�j+ 12 )2 � 14hu+j+ 12 � u�j+ 12 i: [8℄Finally, the spatial sour
e average, �S(t), in [3℄ is 
omputed using the midpointquadrature.As a result of the semi-dis
retization [3℄,[8℄, we obtain a system of ODEs,needed to be solved by a stable and a

urate ODE solver. The eÆ
ien
y of themethod 
an be ensured if one uses an impli
it-expli
it Runge-Kutta-type solver(see [ASC 95, PAR 02b℄). An alternative approa
h, realized in the numeri
alexperiments, is to use the se
ond-order Strang operator splitting, [STR 68℄:we treat the hyperboli
 and the relaxation parts of [3℄ separately. A se
ond-order modi�ed Euler method is used for the hyperboli
 evolution, while thesti� relaxation is resolved using the �fth-order impli
it RADAU5 solver from[HAI 96℄.4. Numeri
al experimentsWe solve the Broadwell model in the 
uid dynami
s variables, [7℄, by themethod des
ribed in x3. The Riemann initial data, taken from [CAF 97℄, are(�;m; z) = (2; 1; 1); for x < 0:2;(�;m; z) = (1; 0:13962; 1); for x > 0:2: [9℄



6 Finite volumes for 
omplex appli
ationsWe test two versions of the semi-dis
rete s
hemes (abbreviated by SD1 andSD2). The only di�eren
e between them is in the re
onstru
tion of the inter-mediate values u�j+ 12 , required by the 
ux, [8℄. The SD1 s
heme employs these
ond-order UNO re
onstru
tion ([HAR 87, NES 90℄), applied to the 
uiddynami
s variables, �;m, and z. To improve the resolution of 
onta
t waves,we perform a pie
ewise linear re
onstru
tion in the original, 
hara
teristi
 vari-ables, f; h, and g (it is important that all the three �elds are linear), as it wassuggested in [KUR 00a℄. In addition, we use a very 
ompressive limiter from[LIE 02℄, where the two-parameter family of pie
ewise linear re
onstru
tionsis introdu
ed. The SD2 s
heme 
orresponds to the most 
ompressive 
hoi
e ofthese parameters (� = 2 and � = �0:25), see [LIE 02℄ for details.Remark. | The use of the 
ompressive limiters does not provide a satisfa
-tory solution, if they applied to the 
uid dynami
s variables. In this 
ase, the
omputed solutions (not presented in this paper) are over
ompressed.In Figures 1a{
, we present the solutions of [7℄,[9℄, 
omputed by the SD1and SD2 s
hemes in three di�erent regimes: nonsti� (" = 1), sti� (" = 10�8),and the intermediate one (where " = 0:02 is proportional to �x). The referen
esolution is 
omputed by the SD2 s
heme with 4000 grid points. As one 
an seein Figure 1a, SD2 provides mu
h sharper resolution of the 
onta
t dis
ontinuity.The solutions obtained by the SD1 s
heme are not shown in Figures 1b and 1
,sin
e they look very similar to the solutions obtained by SD2.In Figure 1d, we show the numeri
al solutions of [7℄ subje
t to the di�erentinitial data, taken from [CAF 97℄ as well (we set " = 10�8),(�;m; z) = (1; 0; 1); for x < 0:5;(�;m; z) = (0:2; 0; 1); for x > 0:5: [10℄In this 
ase, the SD2 s
heme over
ompresses the rarefa
tion wave (when a largenumber of grid points is used). Therefore, the referen
e solution is 
omputedby the SD1 s
heme. At the same time, when a small number of grid points isused, the SD2 s
heme resolves the rarefa
tion wave mu
h better than SD1.A
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