
Central-upwind shemes for balane laws.Appliation to the Broadwell model.Alexander Kurganov**Department of Mathematis,Tulane University,6823 St. Charles Ave.,New Orleans, LA 70118,USAkurganov�math.tulane.eduABSTRACT. We disuss appliations of semi-disrete entral shemes for systems ofbalane laws. We distinguish between two generi ases of sti� and nonsti� soureterms. In the nonsti� ase, the main advantage of semi-disrete entral shemes istheir universality. Sine no (approximate) Riemann problem solver or harateristi�eld deomposition is involved, no operator splitting is required. It allows one to elim-inate splitting errors, whih may be very signi�ant, espeially for quasi-stationarysolutions. In the sti� ase, operator splitting or an impliit-expliit ODE solver hasto be implemented in order to preserve eÆieny of the sheme. Our numerial ex-periments demonstrate that the designed method, based on the semi-disrete entralsheme from [KUR 00a℄, performs extremely well in both regimes.KEYWORDS: Balane laws, onservation laws, high-resolution semi-disrete entralshemes, sti� soure term, Broadwell model.1. IntrodutionWe onsider the one-dimensional (1-D) system of balane laws,ut + f(u)x = 1"S(u; x; t); u 2 RN ; " > 0; [1℄subjet to the initial data, u(x; 0) = u0(x). Balane laws arise in several hy-drodynamial models (inluding shallow water equations), gravitational ows,multi-phase models, hemotaxis models and other appliations. If the param-eter " << 1, the soure term is sti�, and the system [1℄ is of relaxation type.Sti� balane laws are of a speial interest, sine they are used to model reatingows, ombustion, detonation, absorption, semiondutors, magnetohydrody-namis, traÆ ows, and many other phenomena.



2 Finite volumes for omplex appliationsIn this paper, we study �nite-volume methods for balane laws. In partiu-lar, we fous on Godunov-type entral shemes, whih are not tied to a speialeigenstruture of the problem, and therefore an be used as a \blak-box-solver"for ompliated systems. The prototype of Godunov-type entral shemes isthe �rst-order Lax-Friedrihs sheme [LAX 71℄. Its staggered seond-ordergeneralization was proposed in [NES 90℄. For higher-order extensions of thestaggered entral shemes we refer the reader to [LEV 00℄ and the referenestherein.The major drawbak of staggered entral shemes is their relatively largenumerial dissipation, whih an be dereased when (one-sided) loal speeds ofpropagation are utilized for more preise estimate of the width of the Riemannfans. This leads to nonstaggered entral shemes, developed in [KUR 00b,KUR 01, KUR 00a℄ for homogeneous onservation laws. It should be no-tied that unlike the staggered entral shemes, these new shemes admit apartiularly simple semi-disrete form, briey desribed in x2. This feature isespeially advantageous when the entral shemes are applied to onvetion-di�usion equations, [KUR 00b, KUR 01℄, or nonsti� balane laws, [KUR 02℄,sine no operator splitting is required in these ases.The paper is foused on the appliation of semi-disrete entral shemesto hyperboli systems with relaxation. As a test-problem, whih admits bothsti� and nonsti� regimes, the Broadwell model [BRO 64℄ is onsidered. It isquite a hallenging task to design a numerial method, whih is apable to treatboth regimes of the model eÆiently and aurately (see [CAF 97℄). Staggeredentral shemes for the Broadwell model, whih ahieve this goal, have beenreently introdued in [LIO 00, PAR 02a℄. The nonstaggered semi-disreteframework, however, is muh more onvenient than the fully-disrete staggeredone, espeially in the sti� ase. In x3, we design a seond-order semi-disretesheme for the Broadwell model. The numerial experiments, presented in x4,on�rm a very high resolution of the proposed method.2. Semi-disrete entral shemes { a brief overviewIn this setion we give a brief desription of the semi-disrete entral shemes,developed in [KUR 00b, KUR 01, KUR 00a, KUR 02℄.We �rst introdue a uniform spatial grid, x� = ��x. The integration ofsystem [1℄ over the ontrol volume Ij := [xj� 12 ; xj+ 12 ℄ results in an equivalentsemi-disrete form of [1℄,ddt �uj(t) + f�u(xj+ 12 ; t)�� f�u(xj� 12 ; t)��x = 1"�x xj+ 12Zxj� 12 S�u(x; t); x; t� dx; [2℄



Central-upwind shemes 3where �uj(t) denotes the ell average over Ij , �uj(t) := 1�x RIj u(x; t) dx: Semi-disrete �nite-volume shemes are then obtained by approximating the uxesat xj� 12 , and by the appliation of an appropriate quadrature for omputingthe soure average, �Sj(t), on the right-hand side of [2℄:ddt �uj(t) = �Hj+ 12 (t)�Hj� 12 (t)�x + 1" �Sj(t); [3℄where Hj+ 12 is a numerial ux.In this paper, we use a family of entral-upwind shemes from [KUR 00a℄,whose numerial uxes an be presented in the following form,Hj+ 12 (t) = a+j+ 12 f(u�j+ 12 )� a�j+ 12 f(u+j+ 12 )a+j+ 12 � a�j+ 12 +a+j+ 12 a�j+ 12 "u+j+ 12 � u�j+ 12a+j+ 12 � a�j+ 12 � qj+ 122 # :[4℄Here, u�j+ 12 := pj+ 12� 12 (xj+ 12 ) are the intermediate values of the pieewise poly-nomial interpolant, Pj pj(x; t)�j , reonstruted at eah time step from thepreviously omputed ell averages, f�uj(t)g. The funtions fpj(�; t)g are poly-nomials of a given degree, and �j is the harateristi funtion of the intervalIj . The one-sided loal speeds of propagation, a�j+ 12 , are determined bya+j+ 12 = max��N��f�u (u�j+ 12 )�; �N��f�u (u+j+ 12 )�; 0� ;a�j+ 12 = min��1��f�u (u�j+ 12 )�; �1��f�u (u+j+ 12 )�; 0� ; [5℄with �1 < : : : < �N being the N eigenvalues of the Jaobian �f=�u.Finally, qj+ 12 := q(u�j+ 12 ; a�j+ 12 ) represents an additional degree of freedom,whih may be used to further derease the numerial dissipation, attributed tothe original entral-upwind sheme from [KUR 01℄, where qj+ 12 was set to bezero. We refer the reader to [KUR 00a℄ for details.Remark. |We would like to emphasize that one of the main advantages of theabove semi-disrete entral sheme is its simpliity and universality. Indeed,the 1-D system of balane laws an be solved omponent-wise sine no (ap-proximate) Riemann problem solvers were utilized. Moreover, this allows oneto use the sheme [3℄{[5℄ without operator splitting. For example, in [KUR 02℄,suh unsplit sheme (with qj+ 12 = 0) was applied to the Saint-Venant systemof shallow water equations [SAI 1871℄ with the soure term due to the nonatbottom elevation. The most deliate point in this appliation was to preservea balane between the ux gradients and the soure term, when the solution is



4 Finite volumes for omplex appliationsquasi-stationary. This was ahieved by the use of a speial quadrature for thesoure average in [3℄, see [KUR 02℄ for details.Remark. | The (formal) order of the numerial ux [4℄ is determined by the(formal) order of a pieewise linear reonstrution used in the omputation ofthe intermediate values. The non-osillatory nature of the omputed solutionis typially guaranteed by using a non-osillatory reonstrution. In this paper,we use the two-parameter family of pieewise linear, seond-order reonstru-tions from [LIE 02℄.Remark. | The semi-disrete sheme [3℄{[5℄ forms a system of ODEs, whihshould be solved by a stable ODE solver of an appropriate order. When thesystem [1℄ in nonsti�, expliit methods an be eÆiently used. The situationis muh more deliate for sti� systems, in whih ase expliit methods may beineÆient. Alternative impliit approahes are disussed below.3. Sti� problems: the Broadwell modelIn this setion, we design a seond-order semi-disrete entral sheme for sti�systems of balane laws (" << 1). As an example, we onsider the Broadwellmodel, [BRO 64℄, that desribes a two-dimensional (2-D) gas as omposed ofpartiles of only four veloities with a binary ollision law and spatial variationin only one diretion. When looking for 1-D solutions of the 2-D gas, theevolution equations of the model are given by8>>>><>>>>: ft + fx = 1" (h2 � fg);ht = �1" (h2 � fg);gt � gx = 1" (h2 � fg); [6℄where " is the mean free path, f; h; and g denote the mass densities of gaspartiles with speeds 1,0, and �1 respetively.The uid dynamis variables are density, � := f + 2h+ g, and momentum,m := f � g. We also de�ne z := f + g, and rewrite system [6℄ in the equivalentform as, 8><>: �t +mx = 0;mt + zx = 0;zt +mx = 12"(�2 +m2 � 2�z): [7℄



Central-upwind shemes 5If "! 0, z is given by a loal Maxwellian distribution, z = (�2 +m2)=2�, andin the limit system [7℄ beomes the following model Euler equations,8<: �t + (�v)x = 0;(�v)t + ��+ �v22 �x = 0;with veloity v := m=�.Our goal is to onstrut a semi-disrete entral sheme for system [7℄ thatwill perform in the sti� ase (" � 0) as good as in the nonsti� one (" = O(1)).The sheme [3℄{[5℄ an be applied diretly. The hyperboli part of the systemis linear, and therefore the loal speeds are a�j+ 12 = �1 for all j. The numerialux [4℄ is then redued toHj+ 12 (t) = f(u+j+ 12 ) + f(u�j+ 12 )2 � 12h(u+j+ 12 � u�j+ 12 )� qj+ 12 i;where u = (�;m; z)T . Sine all the �elds are linear, we may take qj+ 12 =(u+j+ 12 � u�j+ 12 )=2 without risking osillations (see [KUR 00a℄ for details). Theresulting ux is then given byHj+ 12 (t) = f(u+j+ 12 ) + f(u�j+ 12 )2 � 14hu+j+ 12 � u�j+ 12 i: [8℄Finally, the spatial soure average, �S(t), in [3℄ is omputed using the midpointquadrature.As a result of the semi-disretization [3℄,[8℄, we obtain a system of ODEs,needed to be solved by a stable and aurate ODE solver. The eÆieny of themethod an be ensured if one uses an impliit-expliit Runge-Kutta-type solver(see [ASC 95, PAR 02b℄). An alternative approah, realized in the numerialexperiments, is to use the seond-order Strang operator splitting, [STR 68℄:we treat the hyperboli and the relaxation parts of [3℄ separately. A seond-order modi�ed Euler method is used for the hyperboli evolution, while thesti� relaxation is resolved using the �fth-order impliit RADAU5 solver from[HAI 96℄.4. Numerial experimentsWe solve the Broadwell model in the uid dynamis variables, [7℄, by themethod desribed in x3. The Riemann initial data, taken from [CAF 97℄, are(�;m; z) = (2; 1; 1); for x < 0:2;(�;m; z) = (1; 0:13962; 1); for x > 0:2: [9℄



6 Finite volumes for omplex appliationsWe test two versions of the semi-disrete shemes (abbreviated by SD1 andSD2). The only di�erene between them is in the reonstrution of the inter-mediate values u�j+ 12 , required by the ux, [8℄. The SD1 sheme employs theseond-order UNO reonstrution ([HAR 87, NES 90℄), applied to the uiddynamis variables, �;m, and z. To improve the resolution of ontat waves,we perform a pieewise linear reonstrution in the original, harateristi vari-ables, f; h, and g (it is important that all the three �elds are linear), as it wassuggested in [KUR 00a℄. In addition, we use a very ompressive limiter from[LIE 02℄, where the two-parameter family of pieewise linear reonstrutionsis introdued. The SD2 sheme orresponds to the most ompressive hoie ofthese parameters (� = 2 and � = �0:25), see [LIE 02℄ for details.Remark. | The use of the ompressive limiters does not provide a satisfa-tory solution, if they applied to the uid dynamis variables. In this ase, theomputed solutions (not presented in this paper) are overompressed.In Figures 1a{, we present the solutions of [7℄,[9℄, omputed by the SD1and SD2 shemes in three di�erent regimes: nonsti� (" = 1), sti� (" = 10�8),and the intermediate one (where " = 0:02 is proportional to �x). The referenesolution is omputed by the SD2 sheme with 4000 grid points. As one an seein Figure 1a, SD2 provides muh sharper resolution of the ontat disontinuity.The solutions obtained by the SD1 sheme are not shown in Figures 1b and 1,sine they look very similar to the solutions obtained by SD2.In Figure 1d, we show the numerial solutions of [7℄ subjet to the di�erentinitial data, taken from [CAF 97℄ as well (we set " = 10�8),(�;m; z) = (1; 0; 1); for x < 0:5;(�;m; z) = (0:2; 0; 1); for x > 0:5: [10℄In this ase, the SD2 sheme overompresses the rarefation wave (when a largenumber of grid points is used). Therefore, the referene solution is omputedby the SD1 sheme. At the same time, when a small number of grid points isused, the SD2 sheme resolves the rarefation wave muh better than SD1.AknowledgementThis work was supported in part by the NSF Grant DMS-0073631.Referenes[ASC 95℄ Asher U., Ruuth S., Wetton B., \Impliit-Expliit Meth-ods for Time-Dependent Partial Di�erential Equations", SIAM J. Numer.Anal., vol. 32, 1995, pp. 797-823.
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