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This paper is concerned with computing viscosity solutions of Hamilton–Jacobi
equations using high-order Godunov-type projection-evolution methods. These
schemes employ piecewise polynomial reconstructions, and it is a well-known
fact that the use of more compressive limiters or higher-order polynomial pieces
at the reconstruction step typically provides sharper resolution. We have
observed, however, that in the case of nonconvex Hamiltonians, such recon-
structions may lead to numerical approximations that converge to general-
ized solutions, different from the viscosity solution. In order to avoid this,
we propose a simple adaptive strategy that allows to compute the unique vis-
cosity solution with high resolution. The strategy is not tight to a particular
numerical scheme. It is based on the idea that a more dissipative second-order
reconstruction should be used near points where the Hamiltonian changes con-
vexity (in order to guarantee convergence to the viscosity solution), while a
higher order (more compressive) reconstruction may be used in the rest of
the computational domain in order to provide a sharper resolution of the
computed solution. We illustrate our adaptive strategy using a Godunov-type
central-upwind scheme, the second-order generalized minmod and the fifth-
order weighted essentially non-oscillatory (WENO) reconstruction. Our numer-
ical examples demonstrate the robustness, reliability, and non-oscillatory nature
of the proposed adaptive method.
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1. INTRODUCTION

We study approximate solutions of the Hamilton–Jacobi (HJ) equation:

ϕt +H(∇xϕ)=0, x ∈R
d , (1.1)

computed using a class of projection-evolution methods, called Godunov-
type schemes. One of the main building blocks of these schemes is a con-
tinuous piecewise polynomial interpolant based on the point values of the
computed solution. At every evolution step, this interpolant is evolved to
the next time level according to (1.1). We have observed that, as in the
case of nonconvex hyperbolic conservation laws (see [7]), the choice of the
reconstruction is crucial for capturing the viscosity solutions of HJ equa-
tions with nonconvex Hamiltonians (see [1,11] and the references therein
for a bird’s eye view on the theory of viscosity solutions and various
applications). Namely, the use of a dissipative second-order reconstruction
seems to result in the convergence of the computed solution toward the
viscosity solution, while more compressive and higher-order reconstruc-
tions may lead to the computation of a generalized solution, different
from the viscosity solution. While this behavior is expected in the case
of one-dimensional (1D) HJ equations (because of their direct relation
to the corresponding scalar conservation laws and the results reported in
[7]), it is completely new in the two-dimensional (2D) case, in which HJ
equations and conservations laws are no longer equivalent. Notice that
while dissipative reconstructions seem to ensure convergence to the phys-
ically relevant solutions, higher-order (more compressive) reconstructions
typically provide sharper resolution and a better quality of the computed
solutions.

In this paper, we propose a simple adaptive strategy, which follows the
one in [7] and automatically switches the high- and low-order reconstruc-
tions around the points where the Hamiltonian changes convexity. This
approach is not tight to a particular scheme and utilizes the advantages
of both reconstructions in order to compute the viscosity solution with high
resolution.

We illustrate this general strategy using a particular Godunov-
type method–the central-upwind scheme from [2] with the dissipative
second-order minmod reconstruction [8–10] and the fifth-order WENO
reconstruction [3, 5]. The resulting method is referred to as an adaptive
semi-discrete central-upwind scheme. However, we would like to point out
once again that our adaptive strategy can be applied with any Godunov-type
projection-evolution method and any couple of a dissipative and high-order
(compressive) reconstructions.
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The paper is organized as follows. In Sec. 2, we give a brief over-
view of the semi-discrete central-upwind schemes from [2] and describe our
adaptive strategy. The numerical experiments are carried out in Sec. 3.

2. SEMI-DISCRETE CENTRAL-UPWIND SCHEMES

2.1. Brief Overview

In this section, we describe the low-dissipative semi-discrete second-
order central-upwind scheme from [2] for the 1D HJ equation:

ϕt +H(ϕx)=0, x ∈R, (2.1)

subject to the initial data ϕ(x,0)=ϕ0(x). For simplicity, we consider a uni-
form grid in space and time, setting xj := j∆x and tn :=n∆t . We denote
the approximate value of ϕ

(
xj , t

n
)

by ϕnj and assume that the values ϕnj
have been already computed. The solution at time t = tn is then globally
approximated by a continuous non-oscillatory piecewise quadratic inter-
polant ϕ̃(x, tn), which is reconstructed from ϕnj . At every grid point, the
maximal right and left speeds of propagation, a+

j and a−
j (a±

j depend on
time, ϕ±

x depend on both time and location, but these dependences are
omitted to simplify the notation), are estimated by

a+
j = max

min{ϕ−
x ,ϕ

+
x }�u�max{ϕ−

x ,ϕ
+
x }

{
H ′(u),0

}
,

a−
j =

∣∣∣∣ min
min{ϕ−

x ,ϕ
+
x }�u�max{ϕ−

x ,ϕ
+
x }

{
H ′(u),0

}
∣∣∣∣,

(2.2)

where ϕ±
x are the one-sided derivatives at x=xj , that is,

ϕ±
x := ϕ̃x(xj ±0, tn).

The values ϕ±
x are given by:

ϕ±
x =

(∆ϕ)n
j± 1

2

∆x
∓ ∆x

2
(ϕxx)

n

j+ 1
2
, (∆ϕ)n

j+ 1
2

:=ϕnj+1 −ϕnj , (2.3)

where the second derivative is computed using a nonlinear limiter in order
to ensure a non-oscillatory nature of the reconstruction, and thus of the
resulting scheme. We use the generalized minmod limiter (see, e.g., [8–10])
to obtain
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(ϕxx)
n

j+ 1
2
=minmod

(
θ

(∆ϕ)n
j+ 3

2
− (∆ϕ)n

j+ 1
2

(∆x)2
,

(∆ϕ)n
j+ 3

2
− (∆ϕ)n

j− 1
2

2(∆x)2
,

θ

(∆ϕ)n
j+ 1

2
− (∆ϕ)n

j− 1
2

(∆x)2

)
. (2.4)

In (2.4), θ ∈ [1,2] and the minmod function is given by

minmod(x1, x2, . . . ) :=

⎧
⎪⎪⎨

⎪⎪⎩

min
j

{xj }, if xj >0 ∀j,
max
j

{xj }, if xj <0 ∀j,
0, otherwise.

It is well-known that larger values of θ correspond to a less dissipative,
more compressive reconstruction (see, e.g., [10]).

Finally, the semi-discrete central-upwind scheme from [2] can be writ-
ten as the following system of ODEs:

d

dt
ϕj (t)= −

a−
j H(ϕ

+
x )+a+

j H(ϕ
−
x )

a+
j +a−

j

+a+
j a

−
j

[
ϕ+
x −ϕ−

x

a+
j +a−

j

−minmod
(
ϕ+
x −ψ int

x

a+
j +a−

j

,
ψ int
x −ϕ−

x

a+
j +a−

j

)]

, (2.5)

where ψ int
x is given by

ψ int
x :=

a+
j ϕ

+
x +a−

j ϕ
−
x

(a+
j +a−

j )
− H(ϕ+

x )−H(ϕ−
x )

(a+
j +a−

j )
. (2.6)

The implementation of the semi-discrete scheme (2.2)–(2.6) requires a sta-
ble ODE solver of an appropriate order. In the numerical experiments,
reported in Sec. 3, we have used the third-order strong stability preserv-
ing Runge–Kutta method [4].

For further details, we refer the reader to [2], where the central-
upwind scheme (2.2)–(2.6) and its multidimensional and higher-order
extensions are thoroughly described.

2.2. Adaption Algorithm

First, we will try to give some insight of the observed phenomenon.
The problem is best understood in the 1D case, where differentiation of
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the HJ equation (2.1) results in an equivalent scalar conservation law for
ϕx . In the case of nonconvex H , the solution of the corresponding con-
servation law may develop composite waves that consist of a sequence
of joint rarefactions and shocks. The use of a low dissipative reconstruc-
tion, such as the second-order one based on the generalized minmod lim-
iter (2.4) with θ = 2 or the fifth-order WENO reconstruction, enhances
the influence of the shock over the rarefaction wave and thus leads to a
steeper piecewise polynomial reconstruction for ϕx in the neighborhoods
of shock-rarefaction junctions. The resulting overshoot/undershoot cannot
be compensated by the evolution (2.5), and leads to the computation of a
weak solution, different from the viscosity solution.

Next, we suggest an adaptive strategy that overcomes this difficulty:

• Use a second-order dissipative reconstruction at every point where
the convexity of the Hamiltonian changes and also within K neigh-
boring grid points (in the 2D case, this means K grid points in each
direction). At these grid points, the values of the local speeds are
calculated using (2.2).

• Use a high-order (compressive) reconstruction in the rest of the
computational domain, where (2.2) reduces to

a+
j =max

{
H ′(ϕ−

x ),H
′(ϕ+

x ),0
}
, a−

j = ∣∣min
{
H ′(ϕ−

x ),H
′(ϕ+

x ),0
}∣∣ .

Remarks.

1. Our numerical experiments suggest that in order to ensure conver-
gence to the viscosity solution, K should be taken proportional to
| ln(∆x)| as the grid is refined.

2. We denote by MM1 and MM2 the minmod limiter (2.4) with θ=
1 and θ = 2, respectively, and by WENO5 the fifth-order WENO
reconstruction. In our numerical experiments, the adaption algo-
rithm has been realized using the MM1 as a dissipative recon-
struction and the WENO5 as a higher-order one.

3. NUMERICAL EXAMPLES

In this section, we illustrate the performance of our adaptive central-
upwind scheme. We show 2D examples only, since in the 1D case, the
differentiation of HJ equations results in equivalent scalar conservation
laws, for which the dependence of the computed solution on the recon-
struction has been discovered in [7].
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As our 2D numerical experiments suggest, the MM1 reconstruction
consistently leads to capturing the viscosity solution, while the use of
the MM2 or WENO5 reconstructions may or may not (depending on
the problem solved) lead to the convergence towards the viscosity solu-
tion. The proposed adaptive scheme also consistently captures the viscosity
solution since our adaptive reconstruction reduces to the MM1 reconstruc-
tion near the Hamiltonian inflection points. At the same time, it enjoys
high resolution property of the WENO5 reconstruction in the rest of the
computational domain. We would also like to point out that our adaptive
strategy does not seem to be very sensitive to the choice of adaption con-
stant K. In the reported numerical examples, K=1 in all 201×201 com-
putations, while for the 801×801 grid K=2.

Example 1. We numerically solve the 2D HJ equation:

ϕt + sin(ϕx)+ cos(ϕy)=0, (x, y)∈ (−2,2)× (−2,2), t >0, (3.1)

subject to the following radially symmetric oscillatory initial condition
ϕ(x, y,0)=ϕ0(r), r :=

√
x2 +y2:

ϕ0(r)=
⎧
⎨

⎩

π
4 (14r−13), r� 1

2 ,
π
4 (14r−13)+2 sin(10πr), 1

2 <r�1,
π
4 r, r >1,

(3.2)

and the homogeneous Neumann boundary conditions for ϕx and ϕy :
{
ϕxx(−2, y, t)=ϕxx(2, y, t)=0, ∀t, ∀y ∈ [−2,2],
ϕyy(x,−2, t)=ϕyy(x,2, t)=0, ∀t, ∀x ∈ [−2,2]. (3.3)

We have computed the solution of the initial-boundary-value (IBVP) prob-
lem (3.1)–(3.3) at time t = 2 using the MM1, MM2, WENO5, and the
2D version of our adaptive reconstruction (we refer the reader to [2,6,
8] for a detailed description of these 2D reconstructions). For adaption,
we check at every grid point whether a point where the convexity of the
Hamiltonian changes is near-by (in this example, the convexity changes at
the points where either ϕx = kπ or ϕy = �π/2, k, �∈Z). If this is the case,
that is, if the distance between the current grid point and one of the afore-
mentioned inflection points is smaller than Kmax(∆x,∆y), the dissipative
MM1 reconstruction is used at this grid point. Otherwise, the numerical
Hamiltonian there is computed using the sharper WENO5 reconstruction.

Even though the exact viscosity solution of this IBVP is unavailable,
it seems to be reasonable to expect that similarly to the case of hyper-
bolic conservation laws, studied in [7], the MM1 solution would capture
the viscosity solution. In Fig. 1, we show the solutions computed on a
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Fig. 1. Computed solutions of the IBVP (3.1)–(3.3).
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relatively coarse 201×201 grid and on a much finer 801×801 grid. As one
can clearly see there, the difference between the MM1, MM2 and WENO5
solutions is quite significant (both MM2 and WENO5 solutions seem to
converge to generalized solutions, different from the viscosity solution).
On the other hand, both the MM1 solution and the solution, computed
by the adaptive central-upwind scheme, converge to what we believe to be
the viscosity solution of this IBVP.

The purpose of the next example is to show that even though both
the MM1 and adaptive solutions seem to converge to the viscosity solu-
tion, the adaptive solution provides higher resolution and thus justifies the
proposed adaptive strategy.

Example 2. We numerically solve a different 2D HJ equation:

ϕt + sin(ϕx)+ 1
4
ϕy =0, (x, y)∈ (−2,2)× (−2,2), t >0, (3.4)

subject to the same initial (3.2) and boundary (3.3) conditions. In this
example, the initial condition undergoes a nonlinear transformation in
the x-direction only, while it is being linearly advected in the y-direction.
Thus, the solution preserves some of its initial oscillatory nature, which is
captured much more accurately by a higher-order scheme.

As in Example 1, we compute the solution of the IBVP (3.2)–(3.4) at
time t = 2 with 201 × 201 and 801 × 801 uniform grids using the MM1,
MM2, WENO5, and the adaptive reconstruction. The contour lines of
the computed solution, presented in Fig. 2, demonstrate the convergence
of both the MM1 and adaptive solutions to the viscosity solution. One
can only observe a superior resolution, achieved by the adaptive central-
upwind scheme due to the smaller amount of numerical viscosity. We
would like to mention that in this example, the WENO5 solution also
seems to converge to the viscosity solution though slower than its MM1
and adaptive counterparts. Also, notice that the WENO5 solution is much
more oscillatory than the MM1 and adaptive solutions.

The cross-sections at y = 0.5 and x = 0 of the MM1, WENO5 and
adaptive solutions, computed with the 201 × 201 uniform grid are pre-
sented in Fig. 3. We also show the MM1 solution, computed on a finer
801×801 grid, which serves as a reference solution. As one could expect,
the y = 0.5 cross-sections of the MM1 and adaptive solutions are very
close (though the adaptive one is a little sharper near the extremum).
However, the x=0 cross-sections clearly demonstrate the advantage of the
proposed adaptive strategy: in the region where the solution has an oscil-
latory nature, the resolution achieved by the adaptive scheme with the
201 × 201 grid seems to be superior to the one obtained by the second-
order MM1 scheme with the 801×801 grid.
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Fig. 2. Computed solutions of the IBVP (3.2)–(3.4).
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Fig. 3. Cross-sections at y = 0.5 (left column) and x = 0 (right column) of the MM1,
WENO5, and adaptive solutions, computed on the 201 × 201 grid, and the reference MM1
solution, computed on the 801×801 grid.
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