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Abstract

We study a formation of patterns in Burgers-type equationdoeed with a bounded but
nonmonotonic dissipative fluxu: + f(u): = £vQ(uz)z, Q(s) = s/(1 + s?). Issues of
uniqueness, existence, and smoothness of a solution aresadd. Asymptotic regions of a
solution are discussed,; in particular, classical and ramsital traveling waves with an embedded
subshock are constructe@) 1998 John Wiley & Sons, Inc.

1 Introduction

Though the model equation proposed by Johannes BurgergithtbIdescribe
turbulent flow,

(1.1) Ut + UUy = VlUgg ,

turned out to be unsuitable for that purpose, it has becaraeptbtotypi-

cal equation for describing convective-dissipative iatgions in fluids. The
importance of this so-called Burgers equation for over lmalfentury stems
from its being linearizable via the Hopf-Cole map, the inyseit provided to

seek similar miracles elsewhere, and its ubiquity; equafibl) was shown
to emerge asymptotically (in the limit of small gradientslamplitudes) in a
wide variety of physical settings.

While mathematical accessibility of a model is almost gotgad to assure
its popularity, very often it also fixates its position in oomind far beyond
its scientific feasibility. After all, a model equation likd.1) is only a one-
dimensional toy. Its scientific (as opposed to mathematiesdvance is limited
to a weakly nonlinear regime with other degrees of freedom imoblem being
frozen. When a good toy model is introduced to explore newcepts, a hew
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paradigm is born, but an untamed use may turn a good deed ¢reqtisic
stagnation. It is a dangerous affair to seek in a toy what aaba found there.

The model problem presented here is a new mathematical tolylggn
intended to advance our understanding of the impact thamaigely nonlinear,
saturating diffusion has on the formation of patterns ingimeplest, nontrivial
setup as afforded by a generalized Burgers-type model

1—u?
(1.2) w+ flu) = V[me)L SR e
whereQ(uy) = Fu, /(1 + u2).

Within this very simple setting, we aim to understand certairongly
nonlinear processes that govern high amplitude/gradipheshomena where
critical changes in dynamics may take place. We stress thagetive a model
that describes its essentials, the genuinely nonlinearetse characterized by
large amplitudes and/or gradients is usually beyond owtreae lack the tools
needed for a methodical approach to such problems. Modelgraposed on
the basis of physical intuition and other “ingenious” me#&us$ not through
a systematic derivation. Such models are not necessarilgsser value but
can only a posteriori be evaluated as to their scientific m&dch transitions
are, as a rule, beyond the reach of weakly nonlinear theavlesre at large
amplitudes and/or gradients it is unrealistic to expedt timdy one property will
evolve while others remain frozen (say, thermal changeswiianot induce
motion in a liquid or deformation in solids). Therefore thenple model we
are proposing is intended only as a first step towards a hatigerstanding of
the mathematical and physical issues involved.

A degenerate version of (1.2) without the convective flfix), and with
a positive sign on the RHS was introduced in [10] and [9].

In our previous work [4], the dissipation flux functiagB(u,) = u, /(1 +
u2)'/? was assumed to be a monotone function in gradients. Here we go
into a more evolved physical setup where not only is the pésie flux
bounded but nonmonotonic relations between gradients heddissipation
flux are assumed. The particular choice@fu,) in (1.2) is not a replica of a
particular response; rather it is intended to be a simplea@re of complex
scenarios where at a critical stress the medium yields &agtoplastic transit)
or undergoes some critical transition accompanied by attral change (say,
a non-Newtonian behavior in complex liquids) of its chagaistics and, as a
consequence, its dynamical response changes drastid&lhle the change
of sign in the elliptic part has an important impact on the awics, the flux
saturation is at least as important in shaping the overalbhdyics. Therefore,
the observed phenomena in this problem are completelyreiffefrom those
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observed in other problems where the sign of the ellipti¢ plaanges but there
is no saturation of the dissipative flux (see, e.qg., [6, 12]).

The full nonlinearity of the dissipation manifests itseifmany ways. Per-
haps the most fundamental feature of our model equatior) {4.the change
in the sign of the elliptic part of the problem that occurs wiggadients reach
a critical value. Such a change in a linear problem would imhigtely imply
ill-posedness. As we shall see here, the nonlinearity atitig) this effect into
a useful instability that induces formation of a global pait

The paper is organized as follows: In Section 2 we considerldmg-
wavelength variant (1.2+) without the convective tefifu), augmented with
Dirichlet boundary conditions. Our main results are cagduoy Theorem 2.2,
which states that if the initial derivative is sufficientlgnall, then the solution
to the Dirichlet problem tends to its corresponding stestde solution.

In Section 3 we append the purely diffusive problem with alim@ar con-
vective term f(u),. First, in Section 3.1 we derive for the corresponding
Cauchy problem &/!(L>°) a priori estimate. This estimate is then utilized in
Theorem 3.2 to obtain the existence of a classical solutbdhe& Cauchy prob-
lem as well as its uniqueness (for sufficiently small initiata). In Section 3.2
we discuss the weak limit as | 0.

In Section 3.3 we analyze its traveling-wave solutions apdahstrate
an existence of a critical threshold above which no contisuapstream-
downstream trajectory is possible. We construct a sug&akisolution with
an embedded subshock. A proof of this fact is left to [2]. Thatastrophe”
in gradients is intuitively obvious; our model imposes amp&pbound on the
amount of the diffusive flux while the convective flux may belage as de-
sired. When the fluxes are no longer in balance, smooth grstaownstream
transit becomes impossible and subshock forms. The pegsenimerical sim-
ulations clearly demonstrate that the constructed tragelvave solutions are
strong attractors. In Section 3.4 we characterize the agyipbehavior of
the solution to the Dirichlet problem in terms of its steadgte solution.

In Sections 4 and 5 we study the short-wavelength variang—j1 The
innocuous change of sign from (1.2+) creates deep quatatianges in the
resulting dynamics. In the absence of convection, our mesnlt in Section 4
for (1.2-) is aW!(L>) estimate that we derive in two independent ways: by
using a formal maximum principle on the derivative and by &ying LP-
iterations. In Section 5 we revisit (1.2-) appended withveation. Corollary
5.2 states a weak maximum principle that allows ff¥é-norm of the solution
to (1.2-) to increase linearly with time. We present a nundifenumerical
examples that illustrate a formation of patterns in equi{ib2-).
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We stress that the purpose of the numerical examples goemthelyus-
tration. They are an important tool towards the unfoldingpbEnomena that
are at this point beyond the reach of our analysis. Theretbese examples
will play a key role in future efforts to understand these w@arly nonlinear
problems.

2 Long-Wavelength Equation: Part |

We consider first the following initial boundary value prebi (IBVP):

Uy

(2.1) w= VQ(U:s)m, Q(Uz) = m )

t>0, x€[xg,z1], v >0,

augmented with the initial boundary value conditions

{u(a:o,t) =u’,  u(zy,t) =ul,

2.2
(22) u(z,t =0) = up(x) .

Rewriting equation (2.1) as

2
1—ug

(23) Ut = I/mum

makes it clear that it is stable for small gradients. Howeter |u,| > 1, it
is unstable. As the gradients increase, the coefficient,gfin (2.3) is of the
order of 1/u2, and therefore its overall influence diminishes. The follogv
lemma characterizes the possible growth in the gradientnvthe initial data
are sufficiently small.

LEMMA 2.1 Consider the initial boundary value problef@.1)+2.2). Assume
that uy € C3[zg, 1] and that||u}||L~ < 1. Then¥Vt > 0, the following a
priori estimate holds

(2.4) e[| oo < Jlupl oo -

PrRooE Differentiating (2.1) with respect to and denoting:,. by w, we
have

1—w? 1—w?

2. | —Y T

Since||upl|L~ < 1, equation (2.5) remains parabolit¢ > 0, and the result
follows from the familiar maximum principle. |
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In other words, Lemma 2.1 assures that you do not enter thtahles
domain if you were not initially there.

Remark. Under the assumptions of Lemma 2.1, it is possible to prove
by standard arguments the existence and uniqueness ofsicalasolution to
problem (2.1)—(2.2) (for details, consult [5]).

We now turn to the asymptotic behavior of the solutions td }22.2).
We prove that for sufficiently small initial data, these gins tend to the
solutions of the corresponding steady-state problem. ehd we note that
the unique classical solution of the steady-state problem,

Qvz)z =0,
2.6
(2.:6) {v(mojt):uo, v(z1,t) = ut,
is given via
(2.7) v(x) = <zi :Zg) (x — o) +up .

THEOREM 2.2 (Asymptotic Steady-State Behaviorh\ssume thati(x,t) is a
classical solution of(2.1)—(2.2) that ug € C3[zg, 1], and thatv(x) is a
solution of (2.6). If the initial derivativewy, is sufficiently small, i.e., there
exists a constant < ¢, k = |(u1 — ug)/(z1 — x0)|, such that

(2.8) [u| e < min(1, B),

then there exists a positive constafit> 0 such that

(2.9) lul-,t) = v() 72 < e lluo() = v()]Z2
COROLLARY 2.3 Estimate(2.9) clearly implies that fort — oo,
(2.10) [u(,t) = v()ll2 = 0.

PROOF. Let w be the difference between the solutions of (2.1)-(2.2) and
(2.6), i.e.,w(x,t) = u(x,t) — v(z). We multiply (2.1) and (2.6) by a test
function ¢ € C} and integrate by parts to obtain

211 " od T e Ve dz =0
(2.11) /1’0 e erV/xo [<1+U§)_<1+v§)]% e

In particular, for the choiceo = w in (2.11), we obtain (since, = +k)

1d v 1 1+ ku
2.12 ——||w(-, )| / Lw2dr=0.
( ) thHw() )HL2+ 1+ k2 20 (1+u%)wx £ 0
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According to assumption (2.8) we have
11+ kug|pe >1—Ek3.

On the other hand, due to the same assumption, Lemma 2.1ldpsovi

L 1
T+u2 = 1+ |lupl?

1
> —.
-2

Consequently, (2.12) becomes

d

2.1 —
(2.13) Sl

(,OlIz2 + Cullwa (- )72 <0,

where(Cy = u% > 0. Applying Friedrichs inequality [1] and Gronwall’s
lemma [3] on inequality (2.13) produces the desired estén{at9) with the

promised constant’ = C(z1 — zo). |

It behooves us at this point to present two numerical exasnpiesolutions
to the IBVP (2.1)—(2.2). Neither example falls under thepgc@f Theorem
2.2: In the first example, the initial datum is smooth but éarip the second
example, the initial datum is a discontinuous step functidm both cases,
the numerical solution tends to the corresponding stegate-solution. Such
behavior is guaranteed by Theorem 2.2 for small initial dau& appears to
hold independently of this constraint.

In both examples, we solved the IBVP (2.1)—(2.2) forc [zg,z1] =
[-1,1], t > 0, v = 1. The Dirichlet boundary conditions were set such that
for u(x,0) = up(x),

(2.14) u® = ug(zo), ut = ug(z1) .
In the first problem we used a Gaussian initial datum
(2.15) up(z) = e 107 pe [—1,1].

The results are plotted in Figure 2.1.
The second example corresponds to the discontinuous| idatam

1, -1<z<0,
0, O0<ax<1.

(2.16) up(z) = {

In Figure 2.2 the numerical results are displayed. As exqakcit large times
the solution converges to the straight line connecting tendary points.
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Figure 2.2. Discontinuous initial data for problem (2.2)46).
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3 Long-Wavelength Equation: Part 11

We now append to equation (2.1) a smooth, nonlireeevective flux function
f(u), to recover the full equation (1.2+). Explicitly,

Uy
5,120, v>0,

Bl wt f(u)e =vQur)z, Qus)= 1+u2

which may thus be seen to be an extension of the Burgers equdthe RHS
of (3.1) remains the same as in (2.1) and hence is stable only.f| < 1.
3.1 Existence and Uniqueness of Classical Solutions

Consider the Cauchy problem for (3.1) augmented with p&aar compactly
supported initial data

(3.2) u(z,t=0) = up(z) .

We begin with anl.>°-bound on the derivative for a sufficiently small initial
datum, as guaranteed by the following:

LEMMA 3.1 (W1 (L>) A Priori Estimate) Letu(z,t) be a classical solution
of problem(3.1)—(3.2) If

/

U, v
3.3 — 0 2 o < Z Moo < 1
(3.3) v T3 (u)? Loo+ | f(wo)llze << 5 lugllree <1,
thenVvt > 0,
(3.4) lua (-, )|z < O

ProoF Following [4, sec. 5] one can derive (utilizing the maximum
principle onw), the following estimate:

‘ u:r(x7t) ‘ H u6

O S 1| e FES A

+ 2| f(uo)|lpe » ¢>0.
Loo

The RHS of (3.5) is bounded due to assumption (3.3). Hence, $afficiently
small initial datum (3.3),

Uy (2, t)

(3.6) v ’ 1+ u2(z,1)

<o,

and in spite of the nonmonotonic behavior @{u,), u, remains bounded
(consult Figure 3.1). |
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Figure 3.1. Q(uz).

Following the arguments presented in [4, secs. 3 and 5],atss possible
to prove the existence and unigueness of a classical soltdi¢3.1)—(3.2) by
the vanishing-viscosity method. To this end, we consider

s N S 6
(37) up + f(u)e =v (1+(Ug)2)x +oug, §>0.
u®(z,0) = up(x)

The smooth solution of the viscous problem (3.7) dependshen(small)
parameters. Utilizing Lemma 3.1 and following similar arguments to #®
found in [4], the existence and uniqueness of a solution df){$3.2) can be
shown by taking the limit | 0. We summarize these results in the following:

THEOREM 3.2 (Existence and Uniguenessyonsider the probler(8.1)—(3.2)
Assume that the initial datumy(z) € C? satisfies(3.3). Then there exists a
unique global classical solution(z,t) € C?!(x, ).

3.2 Convergenceasv | 0

We analyze the behavior of solutions of equation (3.1) ap#iameter tends
to zero. To clarify the dependence of the solution:grwe rewrite (3.1) as

v
ul‘

_ 0.
N

(38)  ul+ fu), = V[Qw;)L, Quz) =
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SinceQ(uY) is bounded, it is possible to overcome the difficulty due ® th
u; terms and formally define weak solutions of (3.8) [11]. Evikaugh exis-
tence and uniqueness results of such weak solutions arentiyrunavailable,
we have the following:

THEOREM 3.3 (Convergence Rate)Assume that" is a solution of(3.8) sub-
ject to L>°-bounded initial conditions:” (x,0) = up(x). Then u” converges
to the unique entropy solution of

asv | 0, and the following error estimates hold for &ll> 0:

(39)  u(t) — ule Dl gy < consty v,
3.10) u’ (-, t) — u(-,t)||» < consty - 17, 2<p< oo,
(

(3.11) |lu? (-, t) — u(-,t)|| 1 < consty - /.

The proof of Theorem 3.3 is based on the boundednesg} arfid is analo-
gous to the proof of theorem 4.1 in [4] due to [13, prop. 2.1].

3.3 Traveling Waves

We consider the traveling-wave solutions for equation )(3Throughout this
section we letv = 1, f(u) = u%/2, and choose: = 0 andu = u; to be
the upstream and downstream values, respectively.z etz — A¢; then one
integration of (3.1) yields

2

u u,
3.12 — — =
(3.12) Aut 2 14+u?

+C, C =const.

The derivativeu, has to vanish fow, = 0 andv = «;, and hence” = 0 and
the downstream amplitude is related to the wave speedia 2\. Solving
(3.12) with respect ta, yields

1T —w?(u—u)?
N u(u — uq) '

(3.13) us

Clearly, a continuous trajectory connecting the upstreachdownstream exists
provided that the discriminant is not negative. The crititansition occurs
atu; =2 (A = 1). Above this critical value, only a discontinuous upstream-
downstream transit is possible. Such a discontinuity mestdnnected by a
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subshock. The size of the jump across the subshock can &asfbyund to be
(3.14) [u] = \/u? — 4.

The results obtained so far in this section are formal. Weprawme, though,
that under suitable conditions @p, “catastrophe in gradients” always occurs,
as finite gradients become infinite within a finite time. Thegdrof this fact
will be detailed in [2].

At this point we present a number of numerical experimentsnided to
demonstrate that these traveling-wave solutions arecédii In our examples,
we imposed a symmetric upstream-downstream profile wigh = —urignt, SO
that the resulting wave is stationary. In this case, the jacmnpss the subshock

becomes

In all of the numerical examples in this section, the bouiesarere held at
the constant values (2.14). Since the interval is largepthendaries have no
influence and the numerics can be considered as the sollitithe @roblems
on an infinite domain. In the first example, the initial datwraken as

5
(3.15) up(x) = —\1/—0_ tanh(z), € [—50,50].
The results obtained are shown in Figure 3.2.
The second example, shown in Figure 3.3, describes the maheonver-
gence of a discontinuous, subcritical initial datum

\1/—03 , <0,
(3.16) up(x) =
—‘1/—05 , O0<ax,

(which corresponds to a Riemann problem) to the smoothcatira

In Figures 3.4 and 3.5, supercritical initial states arensholn Figure 3.4
the initial datum is smooth, while Figure 3.5 shows the ressabtained with
a discontinuous Riemann datum. In these examplgs,= /5.

We recall that in order to carry out these numerical expenitsiethe values
at the boundaries were kept at a constant value. Thus, de feetsolved a
Dirichlet problem. In the next section we directly addressufcritical variant
of the Dirichlet problem.
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3.4 Dirichlet Problem

We consider the asymptotic behavior of solutions of (3.1graented with

(3.17) {“(@"Oﬂf) = u(z1,t) =u’,

u(z,t =0) = up(z).

Admittedly, the assumption on the boundary values is g@istrictive because
it eliminates patterns of the type shown in the last sect{on.the other hand,
in the case studied here we can present a systematic analysis

Our main result states that as— oo, the solution of (3.1)/(3.17) tends to
the solution of the corresponding steady-state problem

(3.18) {f(”)x =v(s¥5z), U

v(zo,t) = v(xy,t) = u’.

The constanty(z) = u is the trivial classical solution of the steady-state
problem (3.18).

ASSERTION3.4 Consider the problen{3.18) If we require the additional
relation between the fluxes at the boundaries

VU VU,
. <
(3.19) ( )x_m_ <1+v§>

1+ 02
then the problem admits a unique classical solution, whichihie constant

v(z) = u°.

)
T=x0

PROOF  Multiplying (3.18) byv and integrating over the intervat, x|
results in

T T Vg
(3.20) /xo vf(v)wd:c—v/xo (1+U%>xvdaﬁ.

After an integration by parts, the LHS of (3.20) vanishesijleviis RHS is

1 2
_1// vx2da:—|—1/( vaQ)
zo 1+vZ 1+ vz

and due to assumption (3.19), it is nonpositive. Hence,amed,v, =0. 1

1

9

o
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For sufficiently small initial data that satisfy (3.3), tié-distance between
the classical solution of problem (3.1)/(3.17) and the tamissteady-state
solutionu(z) = u" tends to zero as— oo as stated in the following theorem:

THEOREM 3.5 (Asymptotic Behavior) Let u(z,t) be a classical solution of
(3.1)/(3.17) and assume thaty(z) € C3[xg, x1] and satisfies conditio(B.3).
Then there exists a positive constant> 0 such that

(3.21) Ju(-,t) — w72 < e “luo(-) — w32

PrROOFE We denote byw the difference between the solution of (3.1) and
(3.17) andu®, i.e., w(x,t) = u(x,t) — u’. Following the lines of the proof of
Theorem 2.2, we obtain

1

1d 2 z1 2
G2 S lwl. 0l +/ F(u)ow dz + ,,/ wlde =0,
o T

o 14uz *

Since integration by parts yields

7f(U)xwda? =- 7f(U)ux dz =0,

the second term in (3.22) vanishes.

Lemma 3.1 provides an upper bound pa, | ~. Hence,(1 + u2)~! is
bounded away from zero, and we conclude by proceeding apasbgto the
proof of Theorem 2.2. ]

Note that Theorem 3.5 does not contradict the numerical piesmpre-
sented in the previous section, where the boundaries adeahdifferent values
of w.

Let us illustrate the asymptotic behavior of solutions afLl{A3.17) with a
numerical example; the assumed initial datum is

(3.23) up(z) = 2sin(27x), x=€[-1,1],

and the boundaries are held at the fixed values (3.17).

The results are plotted in Figure 3.6. As expected, convratauses the
profile to sharpen. It looks as if a shock has formed, though was not
explicitly stated in our results. Eventually the patterrolges towards the
trivial steady-state solution.
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-1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
Figure 3.6. Sinusoidal initial data for problem (3.1)/@)2
Remarks.

1. Since the initial datum in this example is not small, it sloet fall into

the scope of Theorem 3.5. Nevertheless, in this numericangie and
many others, the numerical solution appears to convergéedacorre-
sponding steady state. This indicates that the limitatioa small initial
datum, as imposed by Theorem 3.5, is only a technical one.

The numerical examples presented in Section 2 were c@udpuging
a centered, second-order Lax-Friedrichs-type scheme. ntimeerical
examples in Section 3 were computed using a central, secatal-
Nessyahu-Tadmor scheme [7], which was originally developethe
context of numerical solutions for hyperbolic conservatiaws and was
therefore able to capture the expected shocks. A systestatidity and
convergence analysis of numerical schemes for the presebtgms is
a highly nontrivial affair and is left to a future work.

4 Short-Wavelength Equation: Part |

The change of sign in (1.2+) that begets the short-wave &uét.2—) intro-
duces deep qualitative changes in the resulting dynamias.staft with the
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nonconvective case

Uy

(41) Ut:VQ(’U,J;)I, Q(ux):_m7 tZOa V>07
augmented with the initial datum
(4.2) u(z,t=0) = up(x)

and homogeneous Neumann boundary conditions
4.3) ug(zo,t) =0, ug(z1,t) =0.

For long waves, (2.1), equation (4.1) is a backward equatitmerefore,
unlike (2.1), there is no classical maximum principle fdrc, t). Though the
questions of existence and uniqueness of solutions to thisigm are highly
nontrivial, surprisingly, the following strong a priori #®ates onu, hold:

LEMMA 4.1 (W'(L') A Priori Estimate) Consider the IBVR4.1)<4.3), and
assume that the initial datum, € W*'(L'). Then fort < T, its classical
solution satisfies

(4.4) lua ()l < flup()llLr + 2(z1 — o) -

PrRoOOF Differentiating equation (4.1) with respecticand denotingv =
u,, We obtain

(4.5) wy = vQ(W) gy -
Multiplying (4.5) by sgn(|w| — 1)sgn(w) followed by an integration over

(l’o, .’L‘l) yleldS

d 21
G011 = v [ Qe sgn(w] - 1) san(u)d

r
%5

X
w? —1

J

!

%5

Here every paifc;,((c;)) is one of the following:

o={z|w(z)>1}, C(0) = +1,
@.7) o={z|w@) <-1},  (0)=-1,
c={z|0<w(x) <1}, ((o)=-1,
o={z|-1<w(x) <0}, ((o)=+1,
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where byz;  and x'(,j we denote the right and left edges of the interya)
respectively.

It is easy to see that every addend in the sum of the RHS of {4.6)
nonpositive, and inequality (4.4) follows. |

The Wl(L') estimate, (4.4), implies by standard arguments the bounded
ness of solutions of (4.1)—(4.3), as stated by the following

COROLLARY 4.2 (Maximum Principle) Consider the IBVR4.1)—(4.3) and
assume that the initial datumy, € W(L'). Then fort < T, its classical
solution satisfies

(4.8) [u(-t)[[Le < C.

Here the constanC depends on the initial datum, and on the size of the
domain(z; — xg).

TheW!(L') bound, as provided by Lemma 4.1, enables us to proceed with
similar a priori estimates foW!(LP), p > 2. First, we treat the case= 2.

LEMMA 4.3 (W'(L?) A Priori Estimate) Consider the IBVR4.1)—(4.3) and
assume that the initial datumy € W!(L?). Then fort < T, its classical
solution satisfies

(4.9) Jua (-, )|z < C,

where the constant' depends ofjug || 72, |
(:L‘l — xo).

ug|| 1, and the size of the-domain

PROOE Multiplying (4.5) by (w — 2 arctanw) and integrating over the
interval (xg, x1) implies

d (o (w?
a / (w_ — 2warctanw + In(1 + w2)> dx
dt Jz, \ 2

z1
= y/ Q(w) gz (w — 2 arctan w)dx
Zo

ow?—1 2
- _ (11— —= ) widx <0
I//:DO (1+w2)2( 1+w2)wx r sV,

which, in turn, carries

X1 2
/ <w7 — 2warctanw + In(1 + w2)> dr < Co,

zo
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whereCy = Co(J|ugl| 2, [|ug|l1). Using Lemma 4.1 we can bound

1
2/ (warctan w) dz < 7l|w|| x < 7llubl|L
zo

and theL?-estimate (4.9) follows. [
We may now turn to the general case.

LEMMA 4.4 (W'(LP) A Priori Estimate) Consider the IBVR4.1)—(4.3) and
assume that the initial datum, € W1(LP). Then fort < T and for even
p = 2m, its classical solution satisfies

(4.10) e (-, )|l < CY™ + K,

where the constants and K depend on the initial datuma, and on the length
of thez-domain(z; — ).

PROOF We multiply (4.5) by
w2m—1 w?m—?)
<2m -1 2m-— 3)
and integrate by parts to obtain

d [ wm w2m—2
dt /xo <(2m)(2m —1)  (2m—-2)(2m - 3)> dr <0.

Hence,

dt Ja, (2m — 2)(2m — 3)
< 2m(2m — 1)
= (2m —4)(2m —5) dt Ja,

d /zl w?™ dx < 2m@m —1) d /zl w?™ % dx
= dt /o,
d (o

w2m74 dx
d (=
<o <m(2m — 1)—/ w? dz .
dt X0
We therefore have the following estimate:
z1
/ w?™(x,t)dx
o
1

xr1
< / w?™(z,0)dz + m(2m — 1)/ w(z,t)dx
o T

0
1

—m(2m — 1)/ w?(z,0)dz

o
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which, in turn, yields
1 1/2m 1 1/2m
</ w2m($7t)dﬂj) < <m(2m _ 1)/ w2($,t)dl‘> + K
o xo

and the desired estimate (4.10) follows by Lemma 4.3. |

Taking the limitp — oo in the LP-estimate (4.10) leads to the key result
of this section:

COROLLARY 4.5 (W!(L>) A Priori Estimate) Consider the IBVP (4.1)—
(4.3), and assume that the initial datumy € W!(L?). Then fort < T,
its classical solution satisfies

(4.11) Jug (-, E)|[ze < C

Remarks.
1. It is clear that estimates similar to (4.10) hold for gi#.

2. The W' (L?) a priori estimate (4.9) implies that the solution of (4.1)-
(4.3) remains continuous with respectitéor initial datumug € W1 (L?).

3. Itis possible to derive similar results for the periodaubdary conditions

u(zg) = u(zy) and wuz(xo) = uz(z1).

4. Analogous results can also be obtained for the Cauchylgmolwith a
compactly supported initial datum. In this case, the r@sgilbounds on
the derivatives also depend on the size of the support of cheian.
Hence, if the support of the solution does not increase i tonif it
grows at finite speed, the derivative is bounded in fienorm. We do
not know if any of these conditions hold at all, but a numérresult
presented below hints that such a conjecture is reasonable.

An alternative proof to the above a priori estimates can ek as follows
using a formal maximum principle on the derivativg:

LEMMA 4.6 (W!(L>) A Priori Estimate Il) Consider the IBVR4.1)—(4.3)
and assume that the initial data are smooth. Thentfot T, its classical
solution satisfies

(4.12) (-, ) o < max(flug ()] Lo, 1) -
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ProoFr Differentiating (4.1) with respect te and denotingv = u,, we
obtain

For y(t) := max, w(z,t), we deduce that eithey(t) < 1 or y < 0. Similar
arguments hold for the minimum af, and the lemma follows. [ |

Remark. The proof of Lemma 4.6 can also be extended to more general
problems like the following:

1. For the IBVP

{ut =vQ(uy)z, u(z,0)=uo(z),
ug(wo,t) = po(t), ue(x1,t) =p1(t),

where |po(t)| < Py, |p1(t)| < Pi, and Py and P, are constants, the
classical solution satisfies

lua (s O)ll e < max(fJug()llz<, 1, Po, 1)

2. For the Cauchy problem with smooth initial datum

up = vQ(ug)y, u(z,0) =ug(z);

the classical solution satisfies the same estimate, (4Ndg that unlike
the LP-iterations technique, the size of the support plays no wdien
using the formal maximum principle om,.

In what follows we present a number of numerical simulatiofigqua-
tion (4.1) (v = 1) with the same Lax-Friedrichs-type scheme implemented in
Section 2.

Examplel. First we consider equation (4.1) with homogeneous Neumann
boundary conditions, (4.3), and initial datum

(4.13) up(z) = e 0BT g e [—5,5].

The numerical results are plotted in Figure 4.1. The sofutiends to a
constant steady state, which is consistent with the coatiervof v and the
stability of the solution for large gradients.
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Example2. The initial datum is now
(4.14) up(w) = 2% — 3.5z + 3522 -~ 0.6, x€[-1,1],
supplemented with nonhomogeneous Neumann boundary morg]it
(4.15) ug(—=1,t) =1, wux(1,t)=—-1.

Notably, the a priori estimates presented in this sectidhhsild with these
boundary conditions.

Observe that the solution evolves in two stages. In the fiagtes(on a short
time scale), it evolves into a piecewise-linear pattern ol all slopes equal
+1. In a later stage, the solution grows in time but retainshiape. Note that
Oy ffl u(z,t)dr = 1, and theL?-norm of the solution increases. These trends
are clearly seen in Figure 4.2.

Example3. We use boundary conditions (4.15) and the initial datum
(4.16) up(w) = 122 — 24522 +12.5, x € [-1,1].

This example, shown in Figure 4.3, demonstrates that tiraaté pattern does
not depend on the size of the initial gradients. Again, thelgion follows
two stages. In the first stage the solution organizes intdaadgular shape
with slopes equal tet1. At large times, the triangular shape remains, but its
amplitude increases in tandem with the increase i ftsiorm.

Exampled. See Figure 4.4. There equation (4.1) is solved using the
Dirichlet boundary condition (2.14) and the initial datum

(4.17) up(x) = e 107 g e [—1,1].

The solution is seen to converge upon a steady state, whiliriangle (with
slopes =+1) formed in the center of the region.

Note that the emergence of the sharp corners in the last deaagpees
with our a priori estimates. Also, as expected, the regidrsrall gradients in
Figure 4.4 are unstable. However, there is a more basic ingakved because
the emerging solution is a weak one, and as such it is not er{iigu instance,
take any of its translations along the line). Without a secprinciple, we
cannot exclude infinite other possibilities. The numeriesywever, seem to
capture the solution centered around the local peak.
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Figure 4.1. Gaussian initial data for problem (4.1)/(4.48h homogeneous Neumann bound-
ary values (4.3).

Figure 4.2. Polynomial initial data for problem (4.1)/(4)lwith nonhomogeneous Neumann
boundary values (4.15) < ¢ < 10.
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(b) 1 08 06 04 02 0 02 0.4 06 0.8 1

Figure 4.3. Polynomial initial data for problem (4.1)/(8)lwith nonhomogeneous Neumann
boundary values (4.15). (@<t < 1. (b)0 <t < 10.
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T T T T T T T T

Figure 4.4. Gaussian initial data for problem (4.1)/(4 &ith Dirichlet boundary values (2.14).

5 Short-Wavelength Equation: Part Il
We now append to equation (4.1) a nonlinear convection,

61wt fWe=rQur)e, Qus) = —7= . 120, v >0,

As before, the convective flu¥(u) is assumed to be an arbitrary smooth
function.

Computations analogous to those of Section 3.3 show thavaliing-wave
solution for (5.1), withf (u) = u?/2, exists, and it is a reflectiox — —z) of
the solution in (3.12). This solution, howeveannot be stable for a convex
convective flux Alternatively, given a concave convective flux, e.f(u) =
—u?/2, the wave traveling to the left is identical to the travelingve in
Section 3.3 and is thus stable. It is also important to nadéwe do not know
if equation (5.1) can develop shocks during the evolutiosroboth data, and
numerics do not provide convincing evidence either way.

The presence of convection causes a major difficulty in obtgia priori
estimates for (5.1). The convective term prevents us fronraightforward
application of the arguments used in Section 4. The resdtvet! in this
section are at a far less satisfactory stage.

We start with a lemma analogous to Lemma 4.1.
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LEMMA 5.1 (W!(L') A Priori Estimate) Consider(5.1)subject to the initial
condition u(z,t = 0) = ug(x) € WI(L') and the homogeneous Neumann
boundary conditior(4.3). Assume also that the convective fl{(«) is convex
and that its second derivative has an upper bound, thatisp < f”(u) < .
Then fort < T, a classical solution satisfies

(5.2) e (- ) 1 < [lug() s + (2 + Bt) (w1 — o) -

Proor. Differentiating equation (5.1) with respecticand denotingy =
uz, We obtain

(5.3) wp = vQ(w)ae — (f'(u)w), -

Multiplying (5.3) by sgn(Jw| — 1) sgn(w) followed by an integration over
(l‘o, :L‘l) yleldS

d
a”\w(',t)\ =1z

(5.4) = V/:l Q(w)ze sgn(Jw| — 1) sgn(w)dx

_ /:l(f'(u)w)x sen(|w| — 1) sgn(w)de = Ty + T .

0

As proved in Lemma 4.1, the first integral in the RHS of (54, is non-
positive. The second integraly, can be rewritten as

LoT

(5.5) Iy =~ (o) f (wuw| ~,
j

where the(o;,((o;)) are the same as in (4.7). Without loss of generality, we
considerw(z, t) to behave qualitatively as in Figure 5.1. Other cases can be
treated analogously.
For the present choice af(x),
T = —{[f'(u(b,1) — f'(u(a, )] + [f(u(d, 1)) = F'(u(c, 1)
+ [f(u(d, 1)) = f'(ula, )] + [f'(u(b, t)) — f'(ulc, t))]}
(5.6) =:TZo1+Too+Zo3+Tos.



NONMONOTONIC DISSIPATIVE FLUX 469
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x0 a b c d x1

Figure 5.1. w(z,t).

The first three terms in the RHS of (5.6)31, Z22, andZ,3, are negative
due to the monotonicity of’ and the positivity ofw = u,. The last term in
the RHS of (5.6),Z-4, is positive but can be bounded using the mean value
theorem and the boundednessfd{

(5.7) Toa = f"(E)ua(n,t)(c — b) < Blz1 — o) -

Here we also made use of the boundedness ef u, by 1 in [b, c] (see Figure
5.1). Hence

d
7 1wl = 1] < Blar — o).
and the lemma follows. [ |

Lemma 5.1 leads to a weak maximum principle for the solutioings.1).
Unlike Corollary 4.2, the bound obtained for tfh&°-norm of the solution now
depends on time as well, and thus th&’-norm of the solution may increase
linearly in time.

COROLLARY 5.2 (Maximum Principle) Consider equation(5.1) subject to
the initial conditionu(z,t = 0) = up(z) € W(L') and to the homogeneous
Neumann boundary conditior(@.3). Then fort < T, a classical solution
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satisfies
(5.8) Ju(-, )|~ < Cr.

Here the constan€’r depends on the initial datum,, on the timel", and on
the size of the domaifw; — zo).

We do not know whether it is possible to obtain AfP-bound onu,, but
we are able to derive an Oleinik-type estimate [8] for equa{b.1) as follows:

LEMMA 5.3 (A One-Sided Estimate am,) Consider equatior(5.1) subject

to the smooth initial conditionu(z,t = 0) = ug(z) and to the homogeneous
Neumann boundary conditigd.3). Assume that the convective flux is convex
and thatVu, f”(u) > a > 0. Then fort < T, its classical solution satisfies

1 —1
(59) ux(I’ t) < max <<at + maXa:[Ux('7O)}+> , 1) 7

where(-)4 = max(-,0).

ProoF Differentiating (5.1) with respect te and denotingyv = u,, we
obtain

w? —1 w2 —1
wy + f”(u)fw2 + f(u)w, = mwm + m Wy -

Denotingy(t) := max, w(z, t), we deduce that eithei(t) < 1 or y+ay? <0,
and the lemma follows. [ |

Lemma 5.3 can also be extended to more general initial boyrmtanditions
(see the remark following Lemma 4.6).

The embedded instability of equation (5.1) in the regionsmoall gradi-
ents presents a major challenge in implementing numerigakighms for its
solutions. The analytical results guided us to derive a migalescheme that
allows a linear growth in thé.> and theW!(L!) norms of the solution. Fig-
ures 5.2 and 5.3 display the results of our numerical studidsvo different
times for the IBV problem:

(5.10) {“”%(“2)96: (), wel-119)
uo(e) =sin(z), u(~1,t) =sin(~1), u(15,1) =sin(15).

We have used an adaptive Lax-Friedrichs-type numericaraeh At each time
level, the time step\¢ was taken so as to satisfy the total variation limit (5.2).
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Figure 5.2. Problem (5.10).

In Figure 5.3 we consider in more detail two unstable domaihshe
solution shown in Figure 5.2. Although one is tempted to @bersthis pattern
as the beginning of a fractal structure, we could not at ttagies come to a
definite conclusion regarding this phenomenon.

In conclusion, we would like to stress two problems relatedhese nu-
merical results:

1. Can the available dissipation allow a formation of sh@ckemma 5.3
provides an upper bound on the derivativg but not a lower bound.

2. Are the small staircase structures we observe in the blestamall-
gradients region typical of the dynamics of this problem cg they
merely numerical artifacts?
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